What Is the Current State of Sustainability in the Decorative Electroplating Industry? A Close Look at New Practices and Advances
<p>Fashion accessories presenting a complex geometry made of many cusps and valleys to represent a horse crest; the difference in deposited thicknesses of precious metals on a cusp and a valley observed in a cross section of the sample by a scanning electron microscopy (SEM) analysis.</p> "> Figure 2
<p>Current density (i) distribution and thickness distribution (δ) over a cathode of irregular shape obtained with CFD simulations by Kauffman [<a href="#B75-sustainability-16-05821" class="html-bibr">75</a>] (image under Creative Commons CC BY 4.0 license, all rights and intellectual property belong to the authors; for more information, see <a href="https://creativecommons.org/licenses/by/4.0" target="_blank">https://creativecommons.org/licenses/by/4.0</a> accessed on 15 April 2024).</p> "> Figure 3
<p>A 500 L electroplating tank containing (a) two anode bars, one for each side, to which the MMO anodes are connected; (b) a central cathodic bar, where the rack is attached; (c) a float to control the level and temperature of the solution; (d) a heating element for heating the solution.</p> "> Figure 4
<p>Anode schemes of (<b>a</b>) the Italfimet RAEP system, where 1 indicates the connectors related to the upper section of the three-anode system, 2 the connector related to the middle section and 3 the connector related to the lower section; (<b>b</b>) the LBT HCS system, where 1 indicates the connectors related to the lower section of the three-anode system, 2 the connector related to the middle section and 3 the connector related to the upper section.</p> "> Figure 5
<p>Normalized distributions of electrodeposited gold thicknesses, measured by XRF analysis, relative to a sample obtained (<b>a</b>) under standard conditions (DC1); (<b>b</b>) using the RAEP system; (<b>c</b>) using the HCS. The <span class="html-italic">x</span> and <span class="html-italic">y</span> axes represent the coordinates inside the plating rack, which contains 16 plates arranged in rows and columns of 4. Areas of the rack where there are no plates are shown in black.</p> "> Figure 6
<p>Normalized distributions of electrodeposited gold thicknesses, measured by XRF analysis, relative to a sample obtained (<b>a</b>) under standard DC conditions (DC2); (<b>b</b>) under PC deposition conditions. The <span class="html-italic">x</span> and <span class="html-italic">y</span> axes represent the coordinates inside the plating rack, which contains 16 plates arranged in rows and columns of 4. Areas of the rack where there are no plates are shown in black.</p> "> Figure 7
<p>Electrodialysis principles [<a href="#B155-sustainability-16-05821" class="html-bibr">155</a>] (image under Creative Commons CC BY 4.0 license, all rights and intellectual property belong to the authors; for more information, see <a href="https://creativecommons.org/licenses/by/4.0" target="_blank">https://creativecommons.org/licenses/by/4.0</a> accessed on 15 April 2024).</p> "> Figure 8
<p>The conceptual reaction path of photocatalysis over TiO<sub>2</sub> [<a href="#B159-sustainability-16-05821" class="html-bibr">159</a>] (image under Creative Commons CC BY 4.0 license, all rights and intellectual property belong to the authors; for more information, see <a href="https://creativecommons.org/licenses/by/4.0" target="_blank">https://creativecommons.org/licenses/by/4.0</a> accessed on 15 April 2024).</p> ">
Abstract
:1. Introduction
2. Computational Methods
2.1. Atomistic Simulations
2.2. Multiphysics Simulations
3. Deposition Systems
3.1. DC Deposition Systems
3.2. Pulsed Plating System
3.3. Corrosion Tests
4. Recovery of Metals
- -
- Recover valuable materials without loss of quality;
- -
- Save energy compared to primary production;
- -
- Decrease the need for mining activities;
- -
- Minimize waste.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Z.; He, G.; Zhao, Z.; He, X.; Zhao, H. Research Progress of Electroplated Micropore for Interconnection Technology. J. Phys. Conf. Ser. 2023, 2430, 012011. [Google Scholar] [CrossRef]
- Zhang, Y.; An, M.; Yang, P.; Zhang, J. Recent Advances in Electroplating of Through-Hole Copper Interconnection. Electrocatalysis 2021, 12, 619–627. [Google Scholar] [CrossRef]
- Pappaianni, G.; Giurlani, W.; Bonechi, M.; Calisi, N.; Cortigiani, B.; Bazzicalupi, C.; Caneschi, A.; Fontanesi, C.; Innocenti, M. Electrodeposition of MnAs-Based Thin-Film as a Possible Promising Candidate in Spintronics Applications. J. Electrochem. Soc. 2024, 171, 062502. [Google Scholar] [CrossRef]
- Bandinelli, R.; Fani, V.; Bindi, B. Electroplating and Pvd Finishing Technologies in the Fashion Industry: Perspectives and Scenarios. Sustainability 2021, 13, 4453. [Google Scholar] [CrossRef]
- Giurlani, W.; Gambinossi, F.; Salvietti, E.; Passaponti, M.; Innocenti, M. Color Measurements in Electroplating Industry: Implications for Product Quality Control. ECS Trans. 2017, 80, 757–766. [Google Scholar] [CrossRef]
- Biffoli, F.; Giurlani, W.; Vorobyova, M.; Maccioni, I.; Giovani, C.; Salvi, M.; Cianfanelli, E.; Pagliai, M.; Innocenti, M. Tailoring Barrier Layers Design for Haute Couture through X-ray Microanalysis: Insights and Guidelines. Heliyon 2024, 10, e32147. [Google Scholar] [CrossRef] [PubMed]
- United Nations Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 19 March 2024).
- Jeyamala, S.; Kumaraguru, A.K.; Nagarani, N. Occupational Health Effects Due to Nickel and Chromium Exposure in Electroplating Workers. Toxicol. Environ. Chem. 2012, 94, 1583–1590. [Google Scholar] [CrossRef]
- Moura, B.; Papaioannou, E.; Grigoropoulos, A.; Zoikis-Karathanasis, A.; Monteiro, H. Sustainability of Spent Nickel-Based Electroplating Baths: An Innovative Valorisation Process. Sustainability 2023, 15, 15366. [Google Scholar] [CrossRef]
- Xu, P.; Lai, S.; Wu, L.; Chen, W.; Chen, Y.; Xu, D.; Xiang, J.; Cheng, P.; Chen, Z.; Wang, X.; et al. Insights into the Health Status of the General Population Living near an Electroplating Industry Zone: Metal Elevations and Renal Impairment. Environ. Sci. Pollut. Res. 2022, 30, 31905–31915. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, Y.; Ji, L.; Zhang, J.; Cai, Y.; Yang, Z. Water Management for Industrial Development, Energy Conservation, and Subjective Attitudes: A Comprehensive Risk-Oriented Model to Explore the Tolerance of Unbalanced Allocation Problem. J. Water Clim. Chang. 2022, 13, 139–157. [Google Scholar] [CrossRef]
- Li, T.; Wei, G.; Liu, H.; Gong, Y.; Zhao, H.; Wang, Y.; Wang, J. Comparative Study of Electroplating Sludge Reutilization in China: Environmental and Economic Performances. Environ. Sci. Pollut. Res. 2023, 30, 106598–106610. [Google Scholar] [CrossRef] [PubMed]
- Pizzetti, F.; Salvietti, E.; Giurlani, W.; Emanuele, R.; Fontanesi, C.; Innocenti, M. Cyanide-Free Silver Electrodeposition with Polyethyleneimine and 5,5-Dimethylhydantoin as Organic Additives for an Environmentally Friendly Formulation. J. Electroanal. Chem. 2022, 911, 116196. [Google Scholar] [CrossRef]
- Satpathy, B.; Jena, S.; Das, S.; Das, K. A Comprehensive Review of Various Non-Cyanide Electroplating Baths for the Production of Silver and Gold Coatings. Int. Mater. Rev. 2023, 68, 825–861. [Google Scholar] [CrossRef]
- Jasni, A.B.; Yoshihara, S. Electrodeposition of Silver in Cyanide-Free Solution Containing Pyrimidine Derivative as a Complexing Agent. J. Electrochem. Soc. 2023, 170, 092504. [Google Scholar] [CrossRef]
- El Sayed, M.A.; Elazab, N.T.; Gassoumi, M.; Ibrahim, M.A.M. Nanocrystalline Silver Coatings on Steel by Electrodeposition from Non-Polluting Aqueous Baths and Its Antibacterial Activity. J. Taiwan Inst. Chem. Eng. 2022, 132, 104212. [Google Scholar] [CrossRef]
- El Sayed, M.A.; Ibrahim, M.A.M.; Elazab, N.T.; Gassoumi, M. Electrochemical Synthesis of Nanocrystalline CuAg Coatings on Stainless Steel from Cyanide-Free Electrolyte. Processes 2022, 10, 2134. [Google Scholar] [CrossRef]
- Navinšek, B.; Panjan, P.; Milošev, I. PVD Coatings as an Environmentally Clean Alternative to Electroplating and Electroless Processes. Surf. Coat. Technol. 1999, 116–119, 476–487. [Google Scholar] [CrossRef]
- Legg, K.O.; Graham, M.; Chang, P.; Rastagar, F.; Gonzales, A.; Sartwell, B. The Replacement of Electroplating. Surf. Coat. Technol. 1996, 81, 99–105. [Google Scholar] [CrossRef]
- Vorobyova, M.; Biffoli, F.; Giurlani, W.; Martinuzzi, S.M.; Linser, M.; Caneschi, A.; Innocenti, M. PVD for Decorative Applications: A Review. Materials 2023, 16, 4919. [Google Scholar] [CrossRef]
- Larson, C.; Farr, J.P.G. Current Research and Potential Applications for Pulsed Current Electrodeposition—A Review. Trans. IMF 2012, 90, 20–29. [Google Scholar] [CrossRef]
- Kalantary, M.R.; Gabe, D.R. Coating Thickness Distribution and Morphology of Pulsed Current Copper Electrodeposits. Surf. Eng. 1995, 11, 246–254. [Google Scholar] [CrossRef]
- Mariani, E.; Giurlani, W.; Bonechi, M.; Dell’Aquila, V.; Innocenti, M. A Systematic Study of Pulse and Pulse Reverse Plating on Acid Copper Bath for Decorative and Functional Applications. Sci. Rep. 2022, 12, 18175. [Google Scholar] [CrossRef]
- Siddiqui, A.; Potoff, R.; Huang, Y. Sustainability Metrics and Technical Solution Derivation for Performance Improvement of Electroplating Facilities. Clean Technol. Environ. Policy 2023, 26, 1825–1842. [Google Scholar] [CrossRef]
- Iñigo, E.A.; Albareda, L. Understanding Sustainable Innovation as a Complex Adaptive System: A Systemic Approach to the Firm. J. Clean. Prod. 2016, 126, 1–20. [Google Scholar] [CrossRef]
- Xiao, J.; Huang, Y. Technology Integration for Sustainable Manufacturing: An Applied Study on Integrated Profitable Pollution Prevention in Surface Finishing Systems. Ind. Eng. Chem. Res. 2012, 51, 11434–11444. [Google Scholar] [CrossRef]
- Piluso, C.; Huang, Y. Collaborative Profitable Pollution Prevention: An Approach for the Sustainable Development of Complex Industrial Zones under Uncertain Information. Clean Technol. Environ. Policy 2009, 11, 307–322. [Google Scholar] [CrossRef]
- Song, H.; Bhadbhade, N.; Huang, Y. Sustainability Assessment and Performance Improvement of Electroplating Process Systems. In Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes; Elsevier: Amsterdam, The Netherlands, 2016; pp. 227–248. ISBN 9780128020647. [Google Scholar]
- Kirichenko, K.Y.; Vakhniuk, I.A.; Ivanov, V.V.; Tarasenko, I.A.; Kosyanov, D.Y.; Medvedev, S.A.; Soparev, V.P.; Drozd, V.A.; Kholodov, A.S.; Golokhvast, K.S. Complex Study of Air Pollution in Electroplating Workshop. Sci. Rep. 2020, 10, 11282. [Google Scholar] [CrossRef]
- Wei, J.; Shi, P.; Cui, G.; Li, X.; Xu, M.; Xu, D.; Xie, Y. Analysis of Soil Pollution Characteristics and Influencing Factors Based on Ten Electroplating Enterprises. Environ. Pollut. 2023, 337, 122562. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Z. Contamination and Health Risk Assessment of Heavy Metals in Soil Surrounding an Electroplating Factory in JiaXing, China. Sci. Rep. 2024, 14, 4097. [Google Scholar] [CrossRef]
- Ohno, T. Toyota Production System: Beyond Large-Scale Production; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 1988; ISBN 9781138360846. [Google Scholar]
- Pande, P.; Neuman, R.P.; Cavanagh, R.R. The Six Sigma Way: How GE, Motorola, and Other Top Companies Are Honing Their Performance; McGraw-Hill Professional: New York, NY, USA, 2001; ISBN 0-07-135806-4. [Google Scholar]
- Monday, L.M. Define, Measure, Analyze, Improve, Control (DMAIC) Methodology as a Roadmap in Quality Improvement. Glob. J. Qual. Saf. Healthc. 2022, 5, 44–46. [Google Scholar] [CrossRef]
- Mittal, A.; Gupta, P.; Kumar, V.; Al Owad, A.; Mahlawat, S.; Singh, S. The Performance Improvement Analysis Using Six Sigma DMAIC Methodology: A Case Study on Indian Manufacturing Company. Heliyon 2023, 9, e14625. [Google Scholar] [CrossRef] [PubMed]
- Kadir, A.M.Y.; Amar, K.; Asmal, S. A Design of Procurement Managing Tool Based on the Lean Six Sigma-DMADV: A Case Study of an Indonesian Fishery Company. Qual. Success 2024, 25, 139–146. [Google Scholar] [CrossRef]
- Trubetskaya, A.; McDermott, O.; Durand, P.; Powell, D.J. Improving Value Chain Data Lifecycle Management Utilising Design for Lean Six Sigma Methods. TQM J. 2024, 36, 136–154. [Google Scholar] [CrossRef]
- Niemann, J.; Reich, B.; Stöhr, C. Lean Six Sigma; Springer: Berlin/Heidelberg, Germany, 2024; ISBN 978-3-662-68743-7. [Google Scholar]
- Safaei, A. Discrete Event Simulation as a Lean Manufacturing Tool for Copper Plating of PCB Manufacturing; State University of New York at Binghamton: Binghamton, NY, USA, 2012. [Google Scholar]
- Kidwell, M. Lean Manufacturing and the Environment. Target 2006, 22, 13–18. [Google Scholar]
- Kantichaimongkol, P.; Chutima, P. Method for Reducing Defect in Electroplating Process. Eng. J. Chiang Mai Univ. 2019, 26, 169–180. [Google Scholar]
- Leiden, A.; Herrmann, C.; Thiede, S. Cyber-Physical Production System Approach for Energy and Resource Efficient Planning and Operation of Plating Process Chains. J. Clean. Prod. 2021, 280, 125160. [Google Scholar] [CrossRef]
- Todeschini, B.V.; Cortimiglia, M.N.; Callegaro-de-Menezes, D.; Ghezzi, A. Innovative and Sustainable Business Models in the Fashion Industry: Entrepreneurial Drivers, Opportunities, and Challenges. Bus. Horiz. 2017, 60, 759–770. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations (UN): New York, NY, USA, 2015. [Google Scholar]
- Wu, B.; Huang, J.; Lv, Z.; Cui, Z.; Hu, G.; Luo, J.; Selim, M.S.; Hao, Z. Experimental and DFT Study of the Effect of Mercaptosuccinic Acid on Cyanide-Free Immersion Gold Deposition. RSC Adv. 2020, 10, 9768–9776. [Google Scholar] [CrossRef] [PubMed]
- Pinto, G.; Silva, F.; Porteiro, J.; Míguez, J.; Baptista, A. Numerical Simulation Applied to PVD Reactors: An Overview. Coatings 2018, 8, 410. [Google Scholar] [CrossRef]
- Giurlani, W.; Fidi, A.; Anselmi, E.; Pizzetti, F.; Bonechi, M.; Carretti, E.; Lo Nostro, P.; Innocenti, M. Specific Ion Effects on Copper Electroplating. Colloids Surf. B Biointerfaces 2023, 225, 113287. [Google Scholar] [CrossRef]
- Lai, Z.; Wang, S.; Wang, C.; Hong, Y.; Zhou, G.; Chen, Y.; He, W.; Peng, Y.; Xiao, D. A Comparison of Typical Additives for Copper Electroplating Based on Theoretical Computation. Comput. Mater. Sci. 2018, 147, 95–102. [Google Scholar] [CrossRef]
- Maris, P.; Sosonkina, M.; Vary, J.P.; Ng, E.; Yang, C. Scaling of Ab-Initio Nuclear Physics Calculations on Multicore Computer Architectures. Procedia Comput. Sci. 2010, 1, 97–106. [Google Scholar] [CrossRef]
- Allinger, N.L.; Zhou, X.; Bergsma, J. Molecular Mechanics Parameters. J. Mol. Struct. THEOCHEM 1994, 312, 69–83. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, K.G.; Jaeger, V.W.; Pfaendtner, J. The General AMBER Force Field (GAFF) Can Accurately Predict Thermodynamic and Transport Properties of Many Ionic Liquids. J. Phys. Chem. B 2015, 119, 5882–5895. [Google Scholar] [CrossRef] [PubMed]
- Di Grande, S.; Ciofini, I.; Adamo, C.; Pagliai, M.; Cardini, G. Absorption Spectra of Flexible Fluorescent Probes by a Combined Computational Approach: Molecular Dynamics Simulations and Time-Dependent Density Functional Theory. J. Phys. Chem. A 2022, 126, 8809–8817. [Google Scholar] [CrossRef]
- Daneshmand, H.; Araghchi, M.; Asgary, M.; Karimi, M.; Torab-Mostaedi, M. New Insight into Adsorption Mechanism of Nickel–Ammonium Complex on the Growth of Nickel Surfaces with Hierarchical Nano/Microstructure. Results Surf. Interfaces 2021, 3, 100014. [Google Scholar] [CrossRef]
- Pérez Jiménez, V.A.; Hernández-Montoya, V.; Ramírez-Montoya, L.A.; Castillo-Borja, F.; Tovar-Gómez, R.; Montes-Morán, M.A. Adsorption of Impurities from Nickel-Plating Baths Using Commercial Sorbents to Reduce Wastewater Discharges. J. Environ. Manag. 2021, 284, 112024. [Google Scholar] [CrossRef]
- Li, Q.; Hu, J.; Zhang, J.; Yang, P.; Hu, Y.; An, M. Screening of Electroplating Additive for Improving Throwing Power of Copper Pyrophosphate Bath via Molecular Dynamics Simulation. Chem. Phys. Lett. 2020, 757, 137848. [Google Scholar] [CrossRef]
- Levine, I.N. Quantum Chemistry; Pearson College: Engelwood Cliffs, NJ, USA, 2013; ISBN 978-0321803450. [Google Scholar]
- Di Grande, S.; Kállay, M.; Barone, V. Accurate Thermochemistry at Affordable Cost by Means of an Improved Version of the JunChS-F12 Model Chemistry. J. Comput. Chem. 2023, 44, 2149–2157. [Google Scholar] [CrossRef]
- Verrucchi, M.; Comparini, A.; Bonechi, M.; del Pace, I.; Zangari, G.; Giurlani, W.; Innocenti, M. Electrochemical Spectroscopic Analysis of Additives in Copper Plating Baths by DRT and Multivariate Approach. J. Electroanal. Chem. 2024, 954, 118045. [Google Scholar] [CrossRef]
- Dianat, A.; Yang, H.; Bobeth, M.; Cuniberti, G. DFT Study of Interaction of Additives with Cu(111) Surface Relevant to Cu Electrodeposition. J. Appl. Electrochem. 2018, 48, 211–219. [Google Scholar] [CrossRef]
- Li, Y.; Ren, P.; Zhang, Y.; Wang, S.; Zhang, J.; Yang, P.; Liu, A.; Wang, G.; Chen, Z.; An, M. The Influence of Leveler Brilliant Green on Copper Superconformal Electroplating Based on Electrochemical and Theoretical Study. J. Ind. Eng. Chem. 2023, 118, 78–90. [Google Scholar] [CrossRef]
- Mendieta-Moreno, J.I.; Marcos-Alcalde, I.; Trabada, D.G.; Gómez-Puertas, P.; Ortega, J.; Mendieta, J. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules. Adv. Protein Chem. Struct. Biol. 2015, 100, 67–88. [Google Scholar]
- Hou, G.; Zhu, X.; Elstner, M.; Cui, Q. A Modified QM/MM Hamiltonian with the Self-Consistent-Charge Density-Functional-Tight-Binding Theory for Highly Charged QM Regions. J. Chem. Theory Comput. 2012, 8, 4293–4304. [Google Scholar] [CrossRef] [PubMed]
- Tzeliou, C.E.; Mermigki, M.A.; Tzeli, D. Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules 2022, 27, 2660. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.M.; Josell, D.; John, J.; Moffat, T.P. Editors’ Choice—Simulation of Copper Electrodeposition in Through-Hole Vias. J. Electrochem. Soc. 2020, 167, 013510. [Google Scholar] [CrossRef]
- European Committee for Standardization EN 1811:2011+A1:2015 Reference Test Method for Release of Nickel from All Post Assemblies Which Are Inserted into Pierced Parts of the Human Body and Articles Intended to Come into Direct and Prolonged Contact with the Skin. Brussels, Belgium. 2015. Available online: https://store.uni.com/uni-en-1811-2015 (accessed on 19 March 2024).
- Fabbri, L.; Giurlani, W.; Mencherini, G.; De Luca, A.; Passaponti, M.; Piciollo, E.; Fontanesi, C.; Caneschi, A.; Innocenti, M. Optimisation of Thiourea Concentration in a Decorative Copper Plating Acid Bath Based on Methanesulfonic Electrolyte. Coatings 2022, 12, 376. [Google Scholar] [CrossRef]
- Berretti, E.; Calisi, N.; Capaccioli, A.; Capozzoli, L.; Hamouda, A.M.S.; Giaccherini, A.; Giurlani, W.; Ienco, A.; Martinuzzi, S.; Innocenti, M.; et al. Electrodeposited White Bronzes on Brass: Corrosion in 3.5% Sodium Chloride Solution. Corros. Sci. 2020, 175, 108898. [Google Scholar] [CrossRef]
- Giurlani, W.; Biffoli, F.; Fei, L.; Pizzetti, F.; Bonechi, M.; Fontanesi, C.; Innocenti, M. Analytic Procedure for the Evaluation of Copper Intermetallic Diffusion in Electroplated Gold Coatings with Energy Dispersive X-Ray Microanalysis. Anal. Chim. Acta 2023, 1269, 341428. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Giovani, C.; Giurlani, W.; Galvanetto, E.; Calisi, N.; Casale, M.; Fontanesi, C.; Ciattini, S.; Innocenti, M. A Robust and Cost-Effective Protocol to Fabricate Calibration Standards for the Thickness Determination of Metal Coatings by XRF. Spectrochim. Acta Part B At. Spectrosc. 2021, 182, 106255. [Google Scholar] [CrossRef]
- Li, S. Introduction to Electrochemical Reaction Engineering. In Chemical Reaction Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 599–651. [Google Scholar]
- Nishiki, Y.; Aoki, K.; Tokuda, K.; Matsuda, H. Secondary Current Distribution in a Two-Dimensional Model Cell Composed of an Electrode with an Open Part. J. Appl. Electrochem. 1986, 16, 291–303. [Google Scholar] [CrossRef]
- Colli, A.N.; Bisang, J.M. Tertiary Current and Potential Distribution Including Laminar/Turbulent Convection, Diffusion, and Migration by the Finite Volume Method Using OpenFOAM. Ind. Eng. Chem. Res. 2021, 60, 11927–11941. [Google Scholar] [CrossRef]
- Beale, S.; Lehnert, W. Electrochemical Cell Calculations with OpenFOAM; Lecture Notes in Energy; Springer International Publishing: Cham, Switzerland, 2022; Volume 42, ISBN 978-3-030-92177-4. [Google Scholar]
- Kauffman, J.; Gilbert, J.; Paterson, E. Multi-Physics Modeling of Electrochemical Deposition. Fluids 2020, 5, 240. [Google Scholar] [CrossRef]
- Rahman, M.M.; Liu, W.; Lv, M.; Pan, H. Exploring SIMPLE Algorithm for All Speeds. Ain Shams Eng. J. 2023, 14, 101854. [Google Scholar] [CrossRef]
- Issa, R.; Gosman, A.; Watkins, A. The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme. J. Comput. Phys. 1986, 62, 66–82. [Google Scholar] [CrossRef]
- Payri, R.; Ruiz, S.; Gimeno, J.; Martí-Aldaraví, P. Verification of a New CFD Compressible Segregated and Multi-Phase Solver with Different Flux Updates-Equations Sequences. Appl. Math. Model. 2015, 39, 851–861. [Google Scholar] [CrossRef]
- Dickinson, E.J.F.; Wain, A.J. The Butler-Volmer Equation in Electrochemical Theory: Origins, Value, and Practical Application. J. Electroanal. Chem. 2020, 872, 114145. [Google Scholar] [CrossRef]
- Ngandjong, A.C.; Lombardo, T.; Primo, E.N.; Chouchane, M.; Shodiev, A.; Arcelus, O.; Franco, A.A. Investigating Electrode Calendering and Its Impact on Electrochemical Performance by Means of a New Discrete Element Method Model: Towards a Digital Twin of Li-Ion Battery Manufacturing. J. Power Sources 2021, 485, 229320. [Google Scholar] [CrossRef]
- Chandrupatla, T.; Belegundu, A. Introduction to Finite Elements in Engineering; Cambridge University Press: Cambridge, UK, 2021; ISBN 9781108882293. [Google Scholar]
- Sabat, L.; Kundu, C.K. History of Finite Element Method: A Review. Recent Dev. Sustain. Infrastruct. Sel. Proc. ICRDSI 2021, 2020, 395–404. [Google Scholar]
- Tsige, D.; Korita, M.; Beyene, A. Deformation Analysis of Cement Modified Soft Clay Soil Using Finite Element Method (FEM). Heliyon 2022, 8, e09613. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E.J.F.; Ekström, H.; Fontes, E. COMSOL Multiphysics®: Finite Element Software for Electrochemical Analysis. A Mini-Review. Electrochem. Commun. 2014, 40, 71–74. [Google Scholar] [CrossRef]
- Goel, V.; Thornton, K. Enabling the Electrochemical Simulation of Li-Ion Battery Electrodes with Anisotropic Tortuosity in COMSOL Multiphysics®. MethodsX 2021, 8, 101425. [Google Scholar] [CrossRef] [PubMed]
- Andreou, E.; Roy, S. Modelling the Scaling-Up of the Nickel Electroforming Process. Front. Chem. Eng. 2022, 4. [Google Scholar] [CrossRef]
- Jasak, H. OpenFOAM: Open Source CFD in Research and Industry. Int. J. Nav. Archit. Ocean Eng. 2009, 1, 89–94. [Google Scholar] [CrossRef]
- Huang, M.; Weber, N.; Mutschke, G. A Simulation Framework for Electrochemical Processes with Electrolyte Flow. J. Electrochem. Soc. 2023, 170, 073502. [Google Scholar] [CrossRef]
- Lee, Y.K. How Complex Systems Get Engaged in Fashion Design Creation: Using Artificial Intelligence. Think. Ski. Creat. 2022, 46, 101137. [Google Scholar] [CrossRef]
- Särmäkari, N.; Vänskä, A. ‘Just Hit a Button!’—Fashion 4.0 Designers as Cyborgs, Experimenting and Designing with Generative Algorithms. Int. J. Fash. Des. Technol. Educ. 2022, 15, 211–220. [Google Scholar] [CrossRef]
- Kallioras, N.A.; Lagaros, N.D. DzAIℕ: Deep Learning Based Generative Design. Procedia Manuf. 2020, 44, 591–598. [Google Scholar] [CrossRef]
- Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings 2018, 8, 260. [Google Scholar] [CrossRef]
- Ishizuka, N.; Yamada, T.; Izui, K.; Nishiwaki, S. Topology Optimization for Unifying Deposit Thickness in Electroplating Process. Struct. Multidiscip. Optim. 2020, 62, 1767–1785. [Google Scholar] [CrossRef]
- Yang, G.; Deng, D.; Zhang, Y.; Zhu, Q.; Cai, J. Numerical Optimization of Electrodeposition Thickness Uniformity with Respect to the Layout of Anode and Cathode. Electrocatalysis 2021, 12, 478–488. [Google Scholar] [CrossRef]
- Giurlani, W.; Berretti, E.; Innocenti, M.; Lavacchi, A. Measuring the Thickness of Metal Coatings: A Review of the Methods. Coatings 2020, 10, 1211. [Google Scholar] [CrossRef]
- Italfimet GalvanoTecnica e Nuove Finiture ISSN 1221-855X. 2020, pp. 234–236. Available online: https://www.calameo.com/read/006235656c74a61e8e77c (accessed on 19 March 2024).
- Luxury Brands Technologies HCS: Homogeneous Coating System. Available online: https://luxurybrandstechnologies.it/hcs-homogeneous-coating-system/ (accessed on 19 March 2024).
- Chen, M.; Wu, M.; Lin, C. Application of Indices Cp and Cpk to Improve Quality Control Capability in Clinical Biochemistry Laboratories. Chin. J. Physiol. 2014, 57, 63–68. [Google Scholar] [CrossRef]
- Mariani, E.; Giurlani, W.; Verrucchi, M.; Dell’Aquila, V.; Lo Nostro, P.; Innocenti, M. Pulse Electroplating of Gold-Nickel Alloys: Morphological and Aesthetic Improvement Compared to DC. J. Electrochem. Soc. 2024, 171, 012504. [Google Scholar] [CrossRef]
- ISO 9227:2017; Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. International Organization for Standardization: Geneva, Switzerland, 2017.
- Canda, L.; Heput, T.; Ardelean, E. Methods for Recovering Precious Metals from Industrial Waste. IOP Conf. Ser. Mater. Sci. Eng. 2016, 106, 012020. [Google Scholar] [CrossRef]
- Comparini, A.; Del Pace, I.; Giurlani, W.; Emanuele, R.; Verrucchi, M.; Bonechi, M.; Innocenti, M. Electroplating on Al6082 Aluminium: A New Green and Sustainable Approach. Coatings 2022, 13, 13. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Ani, J.U.; Akpomie, K.G.; Okoro, U.C.; Aneke, L.E.; Onukwuli, O.D.; Ujam, O.T. Potentials of Activated Carbon Produced from Biomass Materials for Sequestration of Dyes, Heavy Metals, and Crude Oil Components from Aqueous Environment. Appl. Water Sci. 2020, 10, 69. [Google Scholar] [CrossRef]
- Habib, S.S.; Naz, S.; Fazio, F.; Cravana, C.; Ullah, M.; Rind, K.H.; Attaullah, S.; Filiciotto, F.; Khayyam, K. Assessment and Bioaccumulation of Heavy Metals in Water, Fish (Wild and Farmed) and Associated Human Health Risk. Biol. Trace Elem. Res. 2024, 202, 725–735. [Google Scholar] [CrossRef]
- Barakat, M.A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Babel, S. Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Bragagni, M.; Xhaferraj, L. Copper and Our Sustainable Future. Esharelife Found. 2021. [Google Scholar] [CrossRef]
- Paulino, A.T.; Minasse, F.A.S.; Guilherme, M.R.; Reis, A.V.; Muniz, E.C.; Nozaki, J. Novel Adsorbent Based on Silkworm Chrysalides for Removal of Heavy Metals from Wastewaters. J. Colloid Interface Sci. 2006, 301, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Oyaro, N.; Ogendi, J.; Murago, E.N.; Gitonga, E. The Contents of Pb, Cu, Zn and Cd in Meat in Nairobi, Kenya. Int. J. Food Agric. Environ. 2007, 5, 119–121. [Google Scholar]
- Kania, H.; Saternus, M. Evaluation and Current State of Primary and Secondary Zinc Production—A Review. Appl. Sci. 2023, 13, 2003. [Google Scholar] [CrossRef]
- Cleanmetals SA Nickel. Available online: http://www.elsametal.com/metals/nickel/ (accessed on 19 March 2024).
- Borba, C.E.; Guirardello, R.; Silva, E.A.; Veit, M.T.; Tavares, C.R.G. Removal of Nickel(II) Ions from Aqueous Solution by Biosorption in a Fixed Bed Column: Experimental and Theoretical Breakthrough Curves. Biochem. Eng. J. 2006, 30, 184–191. [Google Scholar] [CrossRef]
- Tomioka, H.; King, T.E.; Schnabel, A. Gold-Induced Pulmonary Disease: Clinical Features, Outcomes, and Differentiation from Rheumatoid Lung Disease. Pneumologie 1997, 51, 921. [Google Scholar] [CrossRef] [PubMed]
- Pitzianti, E. Quanto Male Fa Al Pianeta l’estrazione Dell’oro? Available online: https://www.wired.it/article/estrazione-oro-danni-ambiente-inquinamento/ (accessed on 19 March 2024).
- Khezami, L.; Capart, R. Removal of Chromium(VI) from Aqueous Solution by Activated Carbons: Kinetic and Equilibrium Studies. J. Hazard. Mater. 2005, 123, 223–231. [Google Scholar] [CrossRef]
- Ripley, E.A.; Redmann, E.R.; Crowder, A.A.; Ariano, T.C.; Corrigan, C.A.; Farmer, R.J.; Jackson, L.M. Environmental Effects of Mining; Routledge: London, UK, 2018; ISBN 9780203757147. [Google Scholar]
- Earthworks; Oxfam America Dirty Metals—Mining, Communities and the Environment. 2004. Available online: https://earthworks.org/files/publications/NDG_DirtyMetalsReport_HR.pdf (accessed on 2 July 2024).
- Cui, J.; Forssberg, E. Mechanical Recycling of Waste Electric and Electronic Equipment: A Review. J. Hazard. Mater. 2003, 99, 243–263. [Google Scholar] [CrossRef]
- Lezak, S.; Wilson, C.; Ansar, A.; Bazilian, M. The Case against Gold Mining. Environ. Res. Lett. 2023, 18, 011001. [Google Scholar] [CrossRef]
- Chen, W.; Hong, J.; Wang, C.; Sun, L.; Zhang, T.; Zhai, Y.; Zhang, Q. Water Footprint Assessment of Gold Refining: Case Study Based on Life Cycle Assessment. Ecol. Indic. 2021, 122, 107319. [Google Scholar] [CrossRef]
- Dossou Etui, I.M.; Stylo, M.; Davis, K.; Evers, D.C.; Vera, I.S.; Wood, C.; Burton, M.E.H. Artisanal and Small-Scale Gold Mining and Biodiversity: A Global Literature Review. Ecotoxicology 2024, 33, 484–504. [Google Scholar] [CrossRef]
- Fairtrade Oro Etico: Un Passo Avanti Verso Un Futuro Sostenibile. Available online: https://www.fairtrade.it/blog/fairtrade/oro-etico-un-passo-avanti-verso-un-futuro-sostenibile/ (accessed on 18 April 2024).
- Fritz, B.; Peregovich, B.; da Silva Tenório, L.; da Silva Alves, A.C.; Schmidt, M. Mercury and CO2 Emissions from Artisanal Gold Mining in Brazilian Amazon Rainforest. Nat. Sustain. 2023, 7, 15–22. [Google Scholar] [CrossRef]
- Esdaile, L.J.; Chalker, J.M. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chem.–A Eur. J. 2018, 24, 6905–6916. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Watari, T.; Seccatore, J.; Nakajima, K.; Nansai, K.; Takaoka, M. A Review of Gold Production, Mercury Consumption, and Emission in Artisanal and Small-Scale Gold Mining (ASGM). Resour. Policy 2023, 81, 103370. [Google Scholar] [CrossRef]
- Mook, A.; Overdevest, C. Fairtrade Credentialism: Towards Understanding Certified Producer Organizations’ Perceptions of Fairtrade as a Credential. Globalizations 2020, 17, 110–125. [Google Scholar] [CrossRef]
- Oakley, P. Searching for Pure Gold: The Impact of Ethical Gold Sourcing Certification Programmes in the UK and Switzerland. Environ. Sci. Policy 2022, 132, 101–108. [Google Scholar] [CrossRef]
- Fairtrade Gold and Precious Metals. Available online: https://www.fairtrade.net/product/gold (accessed on 19 March 2024).
- Bloomfield, M.J.; Manchanda, N. Business, Power, and Private Regulatory Governance: Shaping Subjectivities and Limiting Possibilities in the Gold Supply Chain. Regul. Gov. 2024, 18, 81–98. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-H.; Babel, S. Physico–Chemical Treatment Techniques for Wastewater Laden with Heavy Metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Babu, B.R.; Bhanu, S.U.; Seeni, M.K. Waste Minimization in Electroplating Industries: A Review. J. Environ. Sci. Heal. Part C 2009, 27, 155–177. [Google Scholar] [CrossRef]
- Azmi, A.A.; Jai, J.; Zamanhuri, N.A.; Yahya, A. Precious Metals Recovery from Electroplating Wastewater: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 358, 012024. [Google Scholar] [CrossRef]
- Upadhyay, K. Solution for Wastewater Problem Related to Electroplating Industry: An Overview. J. Ind. Pollut. Control 2006, 22, 59–66. [Google Scholar]
- Adhoum, N.; Monser, L.; Bellakhal, N.; Belgaied, J. Treatment of Electroplating Wastewater Containing Cu2+, Zn2+ and Cr(VI) by Electrocoagulation. J. Hazard. Mater. 2004, 112, 207–213. [Google Scholar] [CrossRef]
- Selpiana, S.; Haryati, S.; Bustan, M.D. Cathode Current Efficiency of Lead Electrowinning in Sulphate Electrolyte. AIP Conf. Proc. 2022, 2391, 040007. [Google Scholar] [CrossRef]
- Rajoria, S.; Vashishtha, M.; Sangal, V.K. Treatment of Electroplating Industry Wastewater: A Review on the Various Techniques. Environ. Sci. Pollut. Res. 2022, 29, 72196–72246. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, S.; Choi, M.; Min, K.J.; Park, K.Y.; Chon, K.; Bae, S. Metal Ion Recovery from Electrodialysis-Concentrated Plating Wastewater via Pilot-Scale Sequential Electrowinning/Chemical Precipitation. J. Clean. Prod. 2022, 330, 129879. [Google Scholar] [CrossRef]
- Janssen, L. The Role of Electrochemistry and Electrochemical Technology in Environmental Protection. Chem. Eng. J. 2002, 85, 137–146. [Google Scholar] [CrossRef]
- Kongsricharoern, N.; Polprasert, C. Electrochemical Precipitation of Chromium (Cr) from an Electroplating Wastewater. Water Sci. Technol. 1995, 31, 109–117. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). Wastewater Technology Fact Sheet Chemical Precipitation—EPA832-F-00-018; US Environmental Protection Agency (EPA): Washington, DC, USA, 2000.
- Wang, L.K.; Hung, Y.-T.; Shammas, N.K. (Eds.) Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA, 2005; Volume 3, ISBN 978-1-58829-165-3. [Google Scholar]
- Shammas, N.K. Coagulation and Flocculation. In Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA, 2005; pp. 103–139. [Google Scholar]
- Cheng, R.C.; Liang, S.; Wang, H.; Beuhler, M.D. Enhanced Coagulation for Arsenic Removal. J. AWWA 1994, 86, 79–90. [Google Scholar] [CrossRef]
- Matis, K.A.; Zouboulis, A.I.; Gallios, G.P.; Erwe, T.; Blöcher, C. Application of Flotation for the Separation of Metal-Loaded Zeolites. Chemosphere 2004, 55, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Vigneswaran, S.; Ngo, H.H.; Chaudhary, D.S.; Hung, Y.-T. Physicochemical Treatment Processes for Water Reuse. In Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA, 2005; pp. 635–676. [Google Scholar]
- Wahab Mohammad, A.; Othaman, R.; Hilal, N. Potential Use of Nanofiltration Membranes in Treatment of Industrial Wastewater from Ni-P Electroless Plating. Desalination 2004, 168, 241–252. [Google Scholar] [CrossRef]
- Bohdziewicz, J.; Bodzek, M.; Wąsik, E. The Application of Reverse Osmosis and Nanofiltration to the Removal of Nitrates from Groundwater. Desalination 1999, 121, 139–147. [Google Scholar] [CrossRef]
- Madaeni, S.; Mansourpanah, Y. COD Removal from Concentrated Wastewater Using Membranes. Filtr. Sep. 2003, 40, 40–46. [Google Scholar] [CrossRef]
- Dąbrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Moreira, S.A.; Melo, D.Q.; de Lima, A.C.A.; Sousa, F.W.; Oliveira, A.G.; Oliveira, A.H.B.; Nascimento, R.F. Removal of Ni2+, Cu2+, Zn2+, Cd2+ Ions from Aqueous Solutions Using Cashew Peduncle Bagasse as an Eco-Friendly Biosorbent. Desalin. Water Treat. 2016, 57, 10462–10475. [Google Scholar] [CrossRef]
- Cesiulis, H.; Tsyntsaru, N. Eco-Friendly Electrowinning for Metals Recovery from Waste Electrical and Electronic Equipment (WEEE). Coatings 2023, 13, 574. [Google Scholar] [CrossRef]
- Chen, G. Electrochemical Technologies in Wastewater Treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- MikeChE Electrodialysis. Available online: https://commons.wikimedia.org/wiki/File:Electrodialysis.jpg (accessed on 19 March 2024).
- Subbaiah, T.; Mallick, S.; Mishra, K.; Sanjay, K.; Das, R. Electrochemical Precipitation of Nickel Hydroxide. J. Power Sources 2002, 112, 562–569. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Barakat, M. Removal of Toxic Cyanide and Cu(II) Ions from Water by Illuminated TiO2 Catalyst. Appl. Catal. B Environ. 2004, 53, 13–20. [Google Scholar] [CrossRef]
- Ibhadon, A.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
Standard DC1 | RAEP | HCS | |
---|---|---|---|
Average thickness (µm) | 0.57 ± 0.05 | 0.52 ± 0.05 | 0.53 ± 0.05 |
Standard deviation (µm) | 0.13 | 0.09 | 0.13 |
Standard deviation % | 23.75 | 18.23 | 25.46 |
Standard deviation of the averages of each plate (µm) | 0.052 | 0.016 | 0.022 |
Standard deviation of the averages of each plate (µm)% | 9.17 | 3.03 | 4.10 |
Standard DC1 | RAEP | HCS | |
---|---|---|---|
Cp | 0.12 | 0.18 | 0.12 |
Cpk | −0.044 | 0.110 | 0.054 |
Standard DC2 | PC | |
---|---|---|
Average (µm) | 0.49 ± 0.05 | 0.52 ± 0.05 |
Standard deviation (µm) | 0.15 | 0.15 |
Standard deviation % | 31.66 | 29.81 |
Standard deviation of the averages of each plate (µm) | 0.080 | 0.091 |
Standard deviation of the averages of each plate (µm)% | 16.36 | 17.67 |
Standard DC2 | PC | |
---|---|---|
Cp | 0.11 | 0.11 |
Cpk | 0.080 | 0.075 |
Heavy Metal | Toxicities | MCL (mg/L) |
---|---|---|
Arsenic | Skin manifestations, visceral cancers, vascular disease | 0.05 |
Cadmium | Kidney damage, renal disorder, human carcinogen | 0.01 |
Chromium | Headache, diarrhea, nausea, vomiting, carcinogenic | 0.05 |
Copper | Liver damage, Wilson disease, insomnia | 0.25 |
Nickel | Dermatitis, nausea, chronic asthma, coughing, human carcinogen | 0.20 |
Zinc | Depression, lethargy, signs and increased neurological thirst | 0.80 |
Lead | Damage to the fetal brain; diseases of the kidneys, circulatory system and nervous system | 0.006 |
Mercury | Rheumatoid arthritis; diseases of the kidneys, circulatory system and nervous system | 0.00003 |
Type of Treatment | Advantages | Disadvantages |
---|---|---|
Chemical precipitation [142] | Low cost, simple operation | Sludge generation, additional operational cost for sludge disposal |
Coagulation–flocculation [144] | Reduced time for suspended solids to settle, enhanced sludge settling | Sludge production, extra operational cost for sludge disposal |
Dissolved air flotation [145] | Low cost, reduced hydraulic retention time | Additional treatments are necessary to enhance the removal efficiency of heavy metals |
Ultrafiltration [131] | Smaller space requirement | High operational cost, susceptibility to membrane fouling |
Nanofiltration [147] | Low pressure than RO (7–30 bar) | Costly, prone to membrane fouling |
Reverse osmosis [148] | High rejection rate, ability to withstand high temperature | High energy consumption due to required pressure (20–100 bar), susceptible to membrane fouling |
Ion exchange [146] | No sludge generation, velocity | Not all resins are adequate for metal removal, high capital cost |
Adsorption [131] | Low cost, simple operating conditions, wide pH range, high metal binding ability | Low selectivity, waste products |
Electrowinning [138] | Low installation cost, simplicity | Need of moderately concentrated metal cation solutions |
Electrodialysis [154] | High separation selectivity | High operational cost due to membrane fouling and energy consumption |
Membrane electrolysis [139] | Use in a wide range of metal concentrations | High energy consumption |
Electrochemical precipitation [156] | Less chemicals, acidic or basic conditions | Sludge production |
Photocatalysis [157] | Simultaneous removal of metals and organic pollutant, fewer harmful by-products | Slow process, limited applications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giurlani, W.; Pappaianni, G.; Biffoli, F.; Mariani, E.; Bonechi, M.; Giliberti, L.; Tufarelli, M.; Franzo, P.; Cianfanelli, E.; Innocenti, M. What Is the Current State of Sustainability in the Decorative Electroplating Industry? A Close Look at New Practices and Advances. Sustainability 2024, 16, 5821. https://doi.org/10.3390/su16135821
Giurlani W, Pappaianni G, Biffoli F, Mariani E, Bonechi M, Giliberti L, Tufarelli M, Franzo P, Cianfanelli E, Innocenti M. What Is the Current State of Sustainability in the Decorative Electroplating Industry? A Close Look at New Practices and Advances. Sustainability. 2024; 16(13):5821. https://doi.org/10.3390/su16135821
Chicago/Turabian StyleGiurlani, Walter, Giulio Pappaianni, Fabio Biffoli, Elena Mariani, Marco Bonechi, Leonardo Giliberti, Margherita Tufarelli, Paolo Franzo, Elisabetta Cianfanelli, and Massimo Innocenti. 2024. "What Is the Current State of Sustainability in the Decorative Electroplating Industry? A Close Look at New Practices and Advances" Sustainability 16, no. 13: 5821. https://doi.org/10.3390/su16135821
APA StyleGiurlani, W., Pappaianni, G., Biffoli, F., Mariani, E., Bonechi, M., Giliberti, L., Tufarelli, M., Franzo, P., Cianfanelli, E., & Innocenti, M. (2024). What Is the Current State of Sustainability in the Decorative Electroplating Industry? A Close Look at New Practices and Advances. Sustainability, 16(13), 5821. https://doi.org/10.3390/su16135821