The Impact of Regional Carbon Emission Reduction on Corporate ESG Performance in China
<p>Trends in Chinese carbon emissions and carbon emission intensity. Notes: Data from China Emission Accounts and Datasets. Carbon intensity = carbon emissions/GDP.</p> "> Figure 2
<p>The relationship between carbon emission intensity across various provinces in China and the ESG performance of listed companies during the period from 2009 to 2021. Notes: <a href="#sustainability-16-05802-f002" class="html-fig">Figure 2</a> provides a detailed depiction of the relationship between the average carbon intensity and the average ESG performance of locally listed companies in each province from 2009 to 2021. Additionally, Tibet, Taiwan, Hong Kong, and Macau were not included in our research sample because we were unable to obtain the necessary carbon emission data for these areas. Data from China Emission Accounts and Datasets and Hua Zheng ESG Rating System. Carbon intensity = carbon emissions/GDP.</p> "> Figure 3
<p>The relationship between carbon reduction levels across various provinces in China and the ESG performance of listed companies during the period from 2009 to 2021. Notes: The red numbers on the right axis represent negative numbers. Data from China Emission Accounts and Datasets and Hua Zheng ESG Rating System. Detailed calculation methods for carbon reduction levels are provided in the Variable Definition section of <a href="#sec4dot2-sustainability-16-05802" class="html-sec">Section 4.2</a> below.</p> "> Figure 4
<p>Rail passenger traffic in China from 2017 to 2021. Notes: Data from the Ministry of Transport of China.</p> "> Figure 5
<p>Monthly rail passenger traffic in China for 2019 and 2020. Notes: The horizontal axis of <a href="#sustainability-16-05802-f005" class="html-fig">Figure 5</a> represents the months from January to December. Data from the Ministry of Transport of China.</p> "> Figure 6
<p>Theoretical model.</p> ">
Abstract
:1. Introduction
2. Institutional Background
2.1. Chinese Carbon Emission Reduction History
2.2. Analysis of the Relationship between Carbon Emission Reduction and ESG Performance of Local Firms in Chinese Provinces
2.3. The Impact of the COVID-19 Pandemic on Carbon Emissions in China
3. Literature Review, Theoretical Analysis, and Hypothesis Development
3.1. Regional Carbon Emission Reduction and ESG Performance of Local Enterprises
3.2. The Channel Mechanisms of Regional Carbon Emission Reduction in the ESG Performance of Local Enterprises: Green Credit
3.3. The Channel Mechanisms of Regional Carbon Emission Reduction in the ESG Performance of Local Enterprises: Media Coverage
3.4. The Channel Mechanisms of Regional Carbon Emission Reduction in the ESG Performance of Local Enterprises: Green Investors
4. Research Design
4.1. Sample and Data
4.2. Variable Definitions
4.2.1. Carbon Emission Reduction
4.2.2. Corporate ESG Performance
4.2.3. Control Variables
4.3. Empirical Models
5. Empirical Results and Analysis
5.1. Descriptive Statistics
5.2. Baseline Regression Analysis
5.3. Robustness Check
5.3.1. Instrumental Variable Approach
5.3.2. Propensity Score Matching
5.3.3. Excluding the Three Biggest Provinces in Terms of Population
5.3.4. Alternative Measures of Corporate ESG Performance
5.3.5. Alternative Measures of Regional Carbon Emissions Reduction
5.3.6. Lagging the Explanatory Variable
5.3.7. Excluding the Impact of the COVID-19 Pandemic
Variables | (1) ESG | (2) ESG | (3) WindESG | (4) ESG | (5) ESG | (6) ESG |
---|---|---|---|---|---|---|
0.360 *** | 0.261 *** | 0.693 *** | 0.294 *** | 0.270 *** | ||
(3.813) | (2.760) | (5.666) | (3.272) | (3.225) | ||
0.055 ** | ||||||
(2.112) | ||||||
2.072 *** | 2.136 *** | −0.516 | 1.855 *** | 1.563 *** | 1.977 *** | |
(4.902) | (4.923) | (−1.248) | (4.748) | (3.684) | (4.573) | |
Control variables | YES | YES | YES | YES | YES | YES |
YES | YES | YES | YES | YES | YES | |
YES | YES | YES | YES | YES | YES | |
N | 21,680 | 23,057 | 12,852 | 30,349 | 26,238 | 23,560 |
adj. R2 | 0.360 | 0.367 | 0.203 | 0.374 | 0.390 | 0.262 |
5.4. Mechanism Analysis
5.4.1. The Green Credit Mechanism
5.4.2. The Media Coverage Mechanism
5.4.3. The Green Investor Mechanism
5.5. Heterogeneity Analysis
5.5.1. Impact of Environmental Regulation
5.5.2. Impact of Industry Nature
5.5.3. Impact of Digitization
Variables | Environmental Regulation | Industry Nature | Digitization | |||
---|---|---|---|---|---|---|
(1) Lenient ESG | (2) Stringent ESG | (3) Non-Heavy-Polluting ESG | (4) Heavy-Polluting ESG | (5) Low ESG | (6) High ESG | |
0.079 | 0.314 *** | 0.167 | 0.476 *** | 0.335 *** | 0.128 | |
(0.545) | (3.226) | (1.492) | (3.715) | (3.720) | (0.902) | |
3.033 *** | 1.309 *** | 1.709 ** | 2.675 *** | 2.634 *** | 1.137 ** | |
(6.273) | (2.700) | (3.845) | (3.961) | (5.281) | (2.111) | |
Control variables | YES | YES | YES | YES | YES | YES |
YES | YES | YES | YES | YES | YES | |
YES | YES | YES | YES | YES | YES | |
N | 15,264 | 15,085 | 21,401 | 8945 | 14,824 | 14,824 |
adj. R2 | 0.444 | 0.271 | 0.410 | 0.290 | 0.322 | 0.414 |
6. Further Analysis
6.1. The Spillover Effects of Regional Residents’ Carbon Emission Reduction
6.2. Economic Consequence Check
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baldini, M.; Maso, L.D.; Liberatore, G.; Mazzi, F.; Terzani, S. Role of country-and firm-level determinants in environmental, social, and governance disclosure. J. Bus. Ethics 2018, 150, 79–98. [Google Scholar] [CrossRef]
- Martiny, A.; Testa, F.; Taglialatela, J.; Iraldo, F. Determinants of Environmental Social and Governance (ESG) Performance: A Systematic Literature Review. J. Clean. Prod. 2024, 456, 142213. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.; Liao, X. Help or hindrance? The impact of female executives on corporate ESG performance in China. J. Clean. Prod. 2024, 437, 140614. [Google Scholar] [CrossRef]
- Li, Y.; Gong, M.; Zhang, X.Y.; Koh, L. The impact of environmental, social, and governance disclosure on firm value: The role of CEO power. Br. Account. Rev. 2018, 50, 60–75. [Google Scholar] [CrossRef]
- Fang, M.; Nie, H.; Shen, X. Can enterprise digitization improve ESG performance? Econ. Model. 2023, 118, 106101. [Google Scholar] [CrossRef]
- Deng, X.; Li, W.; Ren, X. More sustainable, more productive: Evidence from ESG ratings and total factor productivity among listed Chinese firms. Financ. Res. Lett. 2023, 51, 103439. [Google Scholar] [CrossRef]
- Tsang, A.; Frost, T.; Cao, H. Environmental, social, and governance (ESG) disclosure: A literature review. Br. Account. Rev. 2023, 55, 101149. [Google Scholar] [CrossRef]
- Shen, H.; Lin, H.; Han, W.; Wu, H. ESG in China: A review of practice and research, and future research avenues. China J. Account. Res. 2023, 4, 100325. [Google Scholar] [CrossRef]
- Wang, K.; Chen, X.; Wang, C. The impact of sustainable development planning in resource-based cities on corporate ESG—Evidence from China. Energy Econ. 2023, 127, 107087. [Google Scholar] [CrossRef]
- He, Y.; Zhao, X.; Zheng, H. How does the environmental protection tax law affect firm ESG? Evidence from the Chinese stock markets. Energy Econ. 2023, 127, 107067. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, N. Environmental regulation and environmental productivity: The case of China. Renew. Sustain. Energy Rev. 2016, 62, 758–766. [Google Scholar] [CrossRef]
- Li, J.; Lian, G.; Xu, A. How do ESG affect the spillover of green innovation among peer firms? Mechanism discussion and performance study. J. Bus. Res. 2023, 158, 113648. [Google Scholar] [CrossRef]
- Broadstock, D.C.; Chan, K.; Cheng, L.T.; Wang, X. The role of ESG performance during times of financial crisis: Evidence from COVID-19 in China. Financ. Res. Lett. 2021, 38, 101716. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Hou, J.; Li, J.; Gao, W. Exploring the relationship of ESG score and firm value using fsQCA method: Cases of the Chinese manufacturing enterprises. Front. Psychol. 2022, 13, 1019469. [Google Scholar] [CrossRef] [PubMed]
- Qiang, S.; Gang, C.; Dawei, H. Environmental cooperation system, ESG performance and corporate green innovation: Empirical evidence from China. Front. Psychol. 2023, 14, 1096419. [Google Scholar] [CrossRef]
- Zhu, N.; Zhou, Y.; Zhang, S.; Yan, J. Tax incentives and environmental, social, and governance performance: Empirical evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 54899–54913. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Shang, M.; Huang, Y. Corporate culture and ESG performance: Empirical evidence from China. J. Clean. Prod. 2024, 437, 140732. [Google Scholar] [CrossRef]
- Letta, M.; Tol, R.S. Weather, climate and total factor productivity. Environ. Resour. Econ. 2019, 73, 283–305. [Google Scholar] [CrossRef]
- Li, C.; Tang, W.; Liang, F.; Wang, Z. The impact of climate change on corporate ESG performance: The role of resource misallocation in enterprises. J. Clean. Prod. 2024, 445, 141263. [Google Scholar] [CrossRef]
- Ji, Q.; Quan, X.; Yin, H.; Yuan, Q. Gambling preferences and stock price crash risk: Evidence from China. J. Bank. Financ. 2021, 128, 106158. [Google Scholar] [CrossRef]
- Ding, X.; Ren, Y.; Tan, W.; Wu, H. Does carbon emission of firms matter for Bank loans decision? Evidence from China. Int. Rev. Financ. Anal. 2023, 86, 102556. [Google Scholar] [CrossRef]
- Safiullah, M.; Kabir, M.N.; Miah, M.D. Carbon emissions and credit ratings. Energy Econ. 2021, 100, 105330. [Google Scholar] [CrossRef]
- Hu, Y.; Monroy, C.R. Chinese energy and climate policies after Durban: Save the Kyoto Protocol. Renew. Sustain. Energy Rev. 2012, 16, 3243–3250. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S. Preventing carbon emission retaliatory rebound post-COVID-19 requires expanding free trade and improving energy efficiency. Sci. Total Environ. 2020, 746, 141158. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Cai, Q.; Oda, T.; Zeng, N.; Shan, Y.; Lin, X.; Liu, D. Assessing the recent impact of COVID-19 on carbon emissions from China using domestic economic data. Sci. Total Environ. 2021, 750, 141688. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, S.; Li, R.; Jiang, F. Underestimated impact of the COVID-19 on carbon emission reduction in developing countries—A novel assessment based on scenario analysis. Environ. Res. 2022, 204, 111990. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Peters, G.P.; Marland, G.; Le Quéré, C.; Boden, T.; Canadell, J.G.; Raupach, M.R. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Chang. 2012, 2, 2–4. [Google Scholar] [CrossRef]
- Freeman, R.B. Unionism comes to the public sector. J. Econ. Lit. 1986, 3, 41–86. [Google Scholar] [CrossRef]
- Huynh, T.D.; Xia, Y. Climate Change News Risk and Corporate Bond Returns. J. Financ. Quant. Anal. 2021, 56, 1985–2009. [Google Scholar] [CrossRef]
- Bannier, C.E.; Bofinger, Y.; Rock, B. Corporate social responsibility and credit risk. Financ. Res. Lett. 2022, 44, 102052. [Google Scholar] [CrossRef]
- Leins, S. ‘Responsible investment’: ESG and the post-crisis ethical order. Econ. Soc. 2020, 49, 71–91. [Google Scholar] [CrossRef]
- Wong, S.L. The impact of female representation and ethnic diversity in committees on environmental, social and governance performance in Malaysia. Soc. Bus. Rev. 2024, 19, 207–229. [Google Scholar] [CrossRef]
- Huang, M.; Li, M.; Li, X. Do non-local CEOs affect environmental, social and governance performance? Manag. Decis. 2023, 61, 2354–2373. [Google Scholar] [CrossRef]
- He, F.; Guo, X.; Yue, P. Media coverage and corporate ESG performance: Evidence from China. Int. Rev. Financ. Anal. 2024, 91, 103003. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Li, S.; Wan, J. Do institutional investors’ corporate site visits improve ESG performance? Evidence from China. Pac.-Basin Financ. J. 2022, 76, 101884. [Google Scholar] [CrossRef]
- Cheng, J.; Yi, J.; Dai, S.; Xiong, Y. Can low-carbon city construction facilitate green growth? Evidence from China’s pilot low-carbon city initiative. J. Clean. Prod. 2019, 231, 1158–1170. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Blyth, P.L. Energy and environmental attitudes in the green state of Denmark: Implications for energy democracy, low carbon transitions, and energy literacy. Environ. Sci. Policy 2015, 54, 304–315. [Google Scholar] [CrossRef]
- Homroy, S. GHG emissions and firm performance: The role of CEO gender socialization. J. Bank. Financ. 2023, 148, 106721. [Google Scholar] [CrossRef]
- Barahona, N.; Gallego, F.A.; Montero, J.P. Vintage-specific driving restrictions. Rev. Econ. Stud. 2020, 87, 1646–1682. [Google Scholar] [CrossRef]
- Tina Dacin, M.; Goodstein, J.; Richard Scott, W. Institutional theory and institutional change: Introduction to the special research forum. Acad. Manag. J. 2002, 45, 45–56. [Google Scholar] [CrossRef]
- Shu, H.; Tan, W. Does carbon control policy risk affect corporate ESG performance? Econ. Model. 2023, 120, 106148. [Google Scholar] [CrossRef]
- Elster, J. Social norms and economic theory. J. Econ. Perspect. 1989, 3, 99–117. [Google Scholar] [CrossRef]
- John, K.; Knyazeva, A.; Knyazeva, D. Does geography matter? Firm location and corporate payout policy. J. Financ. Econ. 2011, 101, 533–551. [Google Scholar] [CrossRef]
- Coval, J.D.; Moskowitz, T.J. Home bias at home: Local equity preference in domestic portfolios. J. Financ. 1999, 54, 2045–2073. [Google Scholar] [CrossRef]
- Kaustia, M.; Rantala, V. Social learning and corporate peer effects. J. Financ. Econ. 2015, 117, 653–669. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, X.; Long, R.; Zhao, J. Green credit, financial constraint, and capital investment: Evidence from China’s energy-intensive enterprises. Environ. Manag. 2020, 66, 1059–1071. [Google Scholar] [CrossRef]
- Fazzari, S.M.; Petersen, B.C. Working capital and fixed investment: New evidence on financing constraints. RAND J. Econ. 1993, 24, 328–342. [Google Scholar] [CrossRef]
- Yu, C.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Hu, G.; Wang, X.; Wang, Y. Can the green credit policy stimulate green innovation in heavily polluting enterprises? Evidence from a quasi-natural experiment in China. Energy Econ. 2021, 98, 105134. [Google Scholar] [CrossRef]
- Wang, Y.C.; Feng, Z.Y.; Huang, H.W. Corporate carbon dioxide emissions and the cost of debt financing: Evidence from the global tourism industry. Int. J. Tour. Res. 2021, 23, 56–69. [Google Scholar] [CrossRef]
- Fan, L.; Yang, K.; Liu, L. New media environment, environmental information disclosure and firm valuation: Evidence from high-polluting enterprises in China. J. Clean. Prod. 2020, 277, 123253. [Google Scholar] [CrossRef]
- Bednar, M.K.; Boivie, S.; Prince, N.R. Burr under the saddle: How media coverage influences strategic change. Organ. Sci. 2013, 24, 910–925. [Google Scholar] [CrossRef]
- Saxton, G.D.; Ren, C.; Guo, C. Responding to diffused stakeholders on social media: Connective power and firm reactions to CSR-related Twitter messages. J. Bus. Ethics 2021, 172, 229–252. [Google Scholar] [CrossRef]
- Gibson, R.; Glossner, S.; Krueger, P.; Matos, P.; Steffen, T. Responsible Institutional Investing around the World (No. 20-13); Swiss Finance Institute: Zürich, Switzerland, 2020. [Google Scholar]
- Zhang, L.; Xie, Y.; Xu, D. Green Investor Holdings and Corporate Green Technological Innovation. Sustainability 2024, 16, 4292. [Google Scholar] [CrossRef]
- Sangiorgi, I.; Schopohl, L. Why do institutional investors buy green bonds: Evidence from a survey of European asset managers. Int. Rev. Financ. Anal. 2021, 75, 101738. [Google Scholar] [CrossRef]
- Porter, M.E.; Kramer, M.R. Creating shared value: How to reinvent capitalism—And unleash a wave of innovation and growth. In Managing Sustainable Business: An Executive Education Case and Textbook; Springer: Dordrecht, The Netherlands, 2018; pp. 323–346. Available online: http://hbr.org/2011/01/the-big-idea-creating-shared-value/ar/pr (accessed on 3 June 2024).
- Piñeiro-Chousa, J.; López-Cabarcos, M.Á.; Caby, J.; Šević, A. The influence of investor sentiment on the green bond market. Technol. Forecast. Soc. Chang. 2021, 162, 120351. [Google Scholar] [CrossRef]
- Bharath, S.T.; Jayaraman, S.; Nagar, V. Exit as governance: An empirical analysis. J. Financ. 2013, 68, 2515–2547. [Google Scholar] [CrossRef]
- Xu, J.; Guan, Y.; Oldfield, J.; Guan, D.; Shan, Y. China carbon emission accounts 2020–2021. Appl. Energy 2024, 360, 122837. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, J. How does green credit affect carbon emissions in China? A theoretical analysis framework and empirical study. Environ. Sci. Pollut. Res. 2022, 29, 59712–59726. [Google Scholar] [CrossRef]
Type | Variable | Symbol | Definition |
---|---|---|---|
Explained variable | Corporate ESG performance | According to the Hua Zheng ESG rating, the ESG index has nine levels: the lowest level is 1, and the highest level is 9 | |
Explanatory variables | Regional carbon emission reduction | Carbon emission reduction level per unit regional gross domestic product | |
Dummy variable, assigned a value of 1 if carbon emission intensity decreases and 0 otherwise (this variable is used for robustness testing) | |||
Province-level control variables | Human capital | Enrollment in higher education institutions/total population | |
Transportation infrastructure level | The natural logarithm of freight volume | ||
Energy structure | Regional electricity consumption/national electricity consumption | ||
Level of informatization | Total postal and telecommunications services volume/regional gross domestic product | ||
Firm-level control variables | Corporate size | The natural logarithm of the total number of assets | |
Corporate age | The natural logarithm of years that the company has been in existence | ||
Company performance | Net profit/operating income | ||
Operating revenue growth rate | (Current operating income − previous operating income)/previous operating income | ||
Board size | The natural logarithm of the number of directors | ||
Equity checks and balances | The combined shareholdings of the second to fifth largest shareholders/the shareholding of the largest shareholder | ||
Proportion of independent directors | Number of independent directors/total number of board of directors | ||
Management expense ratio | Operating expenses/operating revenue | ||
Dual positions | Dummy variable, which equals 1 if the CEO also serves as chairman and 0 otherwise | ||
Institutional investor shareholding ratio | The total number of shares held by institutional investors/the total outstanding shares of the company | ||
Property rights nature | Assign a value of 1 to state-owned enterprises and a value of 0 to non-state-owned enterprises based on the nature of the actual controlling entity | ||
Year fixed effects | Year dummy variables | ||
Industry fixed effects | Industry dummy variables |
Variables | N | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
30,349 | 5.758 | 0.874 | 3.250 | 5.500 | 7.750 | |
390 | −0.090 | 0.181 | −1.140 | −0.042 | 0.173 | |
390 | 0.877 | 0.329 | 0.000 | 1.000 | 1.000 | |
30,349 | 0.020 | 0.005 | 0.012 | 0.020 | 0.036 | |
30,349 | 11.940 | 0.834 | 9.907 | 12.170 | 12.940 | |
30,349 | 0.051 | 0.030 | 0.011 | 0.038 | 0.097 | |
30,349 | 0.064 | 0.046 | 0.017 | 0.046 | 0.195 | |
30,349 | 22.220 | 1.284 | 19.940 | 22.040 | 26.210 | |
30,349 | 2.880 | 0.336 | 1.792 | 2.944 | 3.497 | |
30,349 | 0.067 | 0.121 | −0.550 | 0.072 | 0.358 | |
30,349 | 0.178 | 0.399 | −0.540 | 0.114 | 2.486 | |
30,349 | 2.132 | 0.198 | 1.609 | 2.197 | 2.708 | |
30,349 | 0.348 | 0.284 | 0.009 | 0.263 | 0.994 | |
30,349 | 0.375 | 0.053 | 0.333 | 0.357 | 0.571 | |
30,349 | 0.086 | 0.066 | 0.008 | 0.070 | 0.395 | |
30,349 | 0.266 | 0.442 | 0.000 | 0.000 | 1.000 | |
30,349 | 0.398 | 0.234 | 0.002 | 0.407 | 0.883 | |
30,349 | 0.394 | 0.489 | 0.000 | 0.000 | 1.000 |
Variables | (1) ESG | (2) ESG | (3) ESG |
---|---|---|---|
0.238 ** | 0.247 *** | 0.297 *** | |
(2.503) | (2.823) | (3.475) | |
−2.391 | −8.062 *** | ||
(−0.752) | (−2.980) | ||
−0.076 *** | −0.067 *** | ||
(−3.423) | (−3.579) | ||
−0.227 | 0.111 | ||
(−0.424) | (0.243) | ||
−0.861 ** | −1.044 *** | ||
(−2.080) | (−2.872) | ||
0.187 *** | 0.184 *** | ||
(20.923) | (20.526) | ||
−0.040 | −0.034 | ||
(−1.250) | (−1.077) | ||
1.150 *** | 1.161 *** | ||
(19.751) | (20.112) | ||
−0.092 *** | −0.093 *** | ||
(−8.803) | (−8.847) | ||
0.077 | 0.078 | ||
(1.397) | (1.409) | ||
0.001 | 0.005 | ||
(0.042) | (0.167) | ||
0.335 * | 0.316 * | ||
(1.919) | (1.817) | ||
−0.021 | −0.073 | ||
(−0.146) | (−0.516) | ||
−0.004 | −0.003 | ||
(−0.231) | (−0.183) | ||
0.176 *** | 0.177 *** | ||
(4.745) | (4.781) | ||
0.212 *** | 0.205 *** | ||
(8.455) | (8.127) | ||
6.363 *** | 0.964 *** | 1.970 *** | |
(19.879) | (3.132) | (5.030) | |
YES | YES | YES | |
YES | YES | YES | |
N | 30,349 | 30,349 | 30,349 |
adj. R2 | 0.247 | 0.372 | 0.374 |
Variables | (1) 1st Stage CER | (2) 2nd Stage ESG |
---|---|---|
0.293 *** | ||
(3.058) | ||
−19.774 *** | ||
(−20.167) | ||
0.021 *** | ||
(5.326) | ||
−3.818 *** | 1.969 *** | |
(−25.163) | (5.048) | |
Control variables | YES | YES |
YES | YES | |
YES | YES | |
N | 30,349 | 30,349 |
adj. R2 | 0.855 | 0.377 |
Variables | Entire Sample | Financing Costs | Credit Availability | Implementation of the “Green Credit Guidelines” | |||
---|---|---|---|---|---|---|---|
(1) ESG | (2) Low ESG | (3) High ESG | (4) Low ESG | (5) High ESG | (6) Pre- ESG | (7) Post- ESG | |
0.283 *** | 0.158 | 0.400 *** | 0.143 | 0.371 *** | 0.122 | 0.302 *** | |
(20.202) | (1.559) | (3.565) | (1.284) | (3.188) | (1.277) | (2.705) | |
0.522 *** | 1.764 *** | 1.786 *** | 1.424 *** | 1.445 ** | 2.043 *** | 1.825 *** | |
(7.488) | (3.499) | (3.581) | (2.818) | (2.472) | (3.216) | (4.273) | |
Control variables | YES | YES | YES | YES | YES | YES | YES |
YES | YES | YES | YES | YES | YES | YES | |
YES | YES | YES | YES | YES | YES | YES | |
N | 30,349 | 15,164 | 15,164 | 11,005 | 11,004 | 6129 | 24,220 |
adj. R2 | 0.323 | 0.402 | 0.370 | 0.353 | 0.368 | 0.220 | 0.401 |
Variables | Entire Sample | Number of Securities Analysts | |
---|---|---|---|
(1) ESG | (2) Low ESG | (3) High ESG | |
0.223 *** | 0.345 *** | 0.160 | |
(3.778) | (3.307) | (0.996) | |
−4.922 *** | 2.562 *** | 0.503 | |
(−10.538) | (5.156) | (0.801) | |
Control variables | YES | YES | YES |
YES | YES | YES | |
YES | YES | YES | |
N | 21,422 | 14,083 | 7559 |
adj. R2 | 0.337 | 0.328 | 0.339 |
Variables | Entire Sample | Executives with Environmental Employment Backgrounds | |
---|---|---|---|
(1) ESG | (2) Without ESG | (3) Have ESG | |
0.163 ** | 0.291 *** | 0.218 | |
(2.297) | (2.635) | (1.132) | |
−5.257 *** | 1.562 *** | 1.888 *** | |
(−22.588) | (3.023) | (2.704) | |
Control variables | YES | YES | YES |
YES | YES | YES | |
YES | YES | YES | |
N | 25,742 | 18,999 | 6743 |
adj. R2 | 0.346 | 0.394 | 0.391 |
Variables | (1) ESG |
---|---|
0.016 *** | |
(3.041) | |
1.884 *** | |
(4.827) | |
Control variables | YES |
YES | |
YES | |
30,349 | |
0.374 |
Variables | Regional Carbon Emission Reduction | |||||
---|---|---|---|---|---|---|
(1) High TobinQ | (2) Low TobinQ | (3) High NCSKEW | (4) Low NCSKEW | (5) High DUVOL | (6) Low DUVOL | |
0.033 *** | 0.020 | −0.023 *** | −0.009 | −0.014 *** | −0.001 | |
(1.486) | (−2.926) | (−1.227) | (−2.776) | (−0.100) | ||
10.211 *** | 9.878 *** | −0.261 | 0.361 | 0.222 | 0.468 ** | |
(10.106) | (14.952) | (−0.905) | (1.280) | (1.133) | (2.470) | |
Control variables | YES | YES | YES | YES | YES | YES |
YES | YES | YES | YES | YES | YES | |
YES | YES | YES | YES | YES | YES | |
12,525 | 12,683 | 10,953 | 12,683 | 10,953 | ||
0.379 | 0.053 | 0.057 | 0.063 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, J. The Impact of Regional Carbon Emission Reduction on Corporate ESG Performance in China. Sustainability 2024, 16, 5802. https://doi.org/10.3390/su16135802
Chen X, Wang J. The Impact of Regional Carbon Emission Reduction on Corporate ESG Performance in China. Sustainability. 2024; 16(13):5802. https://doi.org/10.3390/su16135802
Chicago/Turabian StyleChen, Xiaoqiu, and Jinxiang Wang. 2024. "The Impact of Regional Carbon Emission Reduction on Corporate ESG Performance in China" Sustainability 16, no. 13: 5802. https://doi.org/10.3390/su16135802
APA StyleChen, X., & Wang, J. (2024). The Impact of Regional Carbon Emission Reduction on Corporate ESG Performance in China. Sustainability, 16(13), 5802. https://doi.org/10.3390/su16135802