Synergistic Impact of Internet of Things and Big-Data-Driven Supply Chain on Sustainable Firm Performance
Abstract
:1. Introduction
- How does the IOT adoption influence firm performance through the mediating effects of GSCM practices and CE practices?
- How does the moderation of BDSC further strengthen the influence of IOT, GSCM practices and CE practices on firm performance within CE supply chain?
2. Theoretical Background
2.1. Internet of Things
2.2. Big-Data-Driven Supply Chain
2.3. Green Supply Chain Management Practices
2.4. Circular Economy Practices
2.5. Firm Performance for CE Supply Chain
2.6. Framework
3. Hypotheses Development
3.1. Internet of Things and GSCM Practices
3.2. Internet of Things and CE Practices
3.3. GSCM Practices and CE Practices
3.4. GSCM and Firm Performance for CE Supply Chain
3.5. CE Practices and Firm Performance for CE Supply Chain
3.6. Big-Data-Driven Supply Chains, GSCM Practices and Firm Performance
3.7. Big-Data-Driven Supply Chains, CE Practices and Firm Performance
4. Research Methodology
4.1. Context Section
4.2. Operationalization of Constructs
4.3. Sampling Strategy and Data Collection
5. Data Analysis and Results
5.1. Common Method Bias and Descriptive Analysis
5.2. Endogeneity Test
5.3. Measurement Model
5.4. Structural Model
5.5. Mediation Analysis
6. Discussion
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Policy Implication
7. Conclusions
Limitations and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte Global Warming of 1.5 °C. Available online: https://api.semanticscholar.org/CorpusID:135204600 (accessed on 8 February 2021).
- Niinimäki, K.; Peters, G.; Dahlbo, H.; Perry, P.; Rissanen, T.; Gwilt, A. The Environmental Price of Fast Fashion. Nat. Rev. Earth Environ. 2020, 1, 189–200. [Google Scholar] [CrossRef]
- Berg, A.; Granskog, A.; Lee, L.; Magnus, K. Fashion on Climate: How the Fashion Industry Can Urgently Act to Reduce Its Greenhouse Gas Emissions. Available online: www.mckinsey.com/industries/retail/our-insights/fashion-on-climate (accessed on 2 January 2022).
- Chien, F.S.; Chau, K.Y.; Sadiq, M. Impact of Climate Mitigation Technology and Natural Resource Management on Climate Change in China. Resour. Policy 2023, 81, 103367. [Google Scholar] [CrossRef]
- Yale Despite Pledges to Cut Emissions, China Goes on a Coal Spree. Available online: https://e360.yale.edu/features/despite-pledges-to-cut-emissions-china-goes-on-a-coal-spree (accessed on 24 March 2022).
- Statista China: Apparel Production Volume 2022|Statista. Available online: https://www.statista.com/statistics/1202677/china-apparel-production-volume/ (accessed on 18 December 2022).
- Filho, W.L.; Perry, P.; Heim, H.; Dinis, M.A.P.; Moda, H.; Ebhuoma, E.; Paço, A. An Overview of the Contribution of the Textiles Sector to Climate Change. Front. Environ. Sci. 2022, 10, 973102. [Google Scholar]
- Fleck, A. The World’s Biggest Exporters of Clothes|Statista. Available online: https://www.statista.com/chart/29845/worlds-biggest-exporters-of-clothes/ (accessed on 30 April 2023).
- Chu, N. The Paradoxes of Creativity in Guangzhou, China’s Wholesale Market for Fast Fashion. Cult. Theory Crit. 2018, 59, 178–192. [Google Scholar] [CrossRef]
- McDowall, W.; Geng, Y.; Huang, B.; Barteková, E.; Bleischwitz, R.; Türkeli, S.; Kemp, R.; Doménech, T. Circular Economy Policies in China and Europe. J. Ind. Ecol. 2017, 21, 651–661. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, P.; Côté, R.P.; Fujita, T. Assessment of the National Eco-Industrial Park Standard for Promoting Industrial Symbiosis in China. J. Ind. Ecol. 2009, 13, 15–26. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H. Progress Toward a Circular Economy in China. J. Ind. Ecol. 2011, 15, 435–457. [Google Scholar] [CrossRef]
- Liu, N.; Liu, C.; Xia, Y.; Ren, Y.; Liang, J. Examining the Coordination Between Green Finance and Green Economy Aiming for Sustainable Development: A Case Study of China. Sustainability 2020, 12, 3717. [Google Scholar] [CrossRef]
- Dong, L.; Yang, X.; Li, H. The Belt and Road Initiative and the 2030 Agenda for Sustainable Development: Seeking Linkages for Global Environmental Governance. Chin. J. Popul. Resour. Environ. 2018, 16, 203–210. [Google Scholar] [CrossRef]
- Esther Whieldon Lauren Costello Simone Rossi Fast on Fashion, Slow on Sustainability: Clothing Companies and the Circular Economy. Available online: https://www.spglobal.com/esg/insights/fast-on-fashion-slow-on-sustainability-clothing-companies-and-the-circular-economy (accessed on 21 December 2023).
- Koty, A.C. Sustainable Fashion in China: An Emerging Trend in the Apparel Industry. Available online: https://www.china-briefing.com/news/sustainable-fashion-in-china-an-emerging-trend-in-the-apparel-industry/ (accessed on 21 April 2022).
- Pesce, M.; Tamai, I.; Guo, D.; Critto, A.; Brombal, D.; Wang, X.; Cheng, H.; Marcomini, A. Circular Economy in China: Translating Principles into Practice. Sustainability 2020, 12, 832. [Google Scholar] [CrossRef]
- Rejeb, A.; Suhaiza, Z.; Rejeb, K.; Seuring, S.; Treiblmaier, H. The Internet of Things and the Circular Economy: A Systematic Literature Review and Research Agenda. J. Clean. Prod. 2022, 350, 13143–13149. [Google Scholar] [CrossRef]
- Rejeba, A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things Research in Supply Chain Management and Logistics: A Bibliometric Analysis. Internet Things 2020, 12, 10013–10018. [Google Scholar] [CrossRef]
- Ogbuke, N.J.; Yusuf, Y.Y.; Dharma, K.; Mercangoz, B.A. Big Data Supply Chain Analytics: Ethical, Privacy and Security Challenges Posed to Business, Industries and Society. Prod. Plan. Control. 2022, 33, 123–137. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Wernerfelt, B. A Resource-Based View of the Firm. Strateg. Manag. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Manavalan, E.; Jayakrishna, K. A Review of Internet of Things (IoT) Embedded Sustainable Supply Chain for Industry 4.0 Requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Pratap, S.; Jauhar, S.K.; Gunasekaran, A.; Kamble, S.S. Optimizing the IoT and Big Data Embedded Smart Supply Chains for Sustainable Performance. Comput. Ind. Eng. 2023, 2024, 10982–10988. [Google Scholar] [CrossRef]
- Voulgaridis, K.; Lagkas, T.; Angelopoulos, C.M.; Nikoletseas, S.E. IoT and Digital Circular Economy: Principles, Applications, and Challenges. Comput. Netw. 2022, 219, 109456. [Google Scholar] [CrossRef]
- Biswas, B.; Gupta, R. Analysis of Barriers to Implement Blockchain in Industry and Service Sectors. Comput. Ind. Eng. 2019, 136, 225–241. [Google Scholar] [CrossRef]
- Kshetri, N. 1 Blockchain’s Roles in Meeting Key Supply Chain Management Objectives. Int. J. Inf. Manag. 2018, 39, 80–89. [Google Scholar] [CrossRef]
- Khoo, B. RFID—From Tracking to the Internet of Things: A Review of Developments. In Proceedings of the 2010 IEEE/ACM International Conference on Green Computing and Communications GreenCom 2010 & 2010 IEEE/ACM International Conference on Cyber, Physical and Social Computing, CPSCom, Hangzhou, China, 18–20 December 2010; pp. 533–538. [Google Scholar] [CrossRef]
- Bi, Z.; Jin, Y.; Maropoulos, P.; Zhang, W.J.; Wang, L. Internet of Things (IoT) and Big Data Analytics (BDA) for Digital Manufacturing (DM). Int. J. Prod. Res. 2023, 61, 4004–4021. [Google Scholar] [CrossRef]
- Qi, Q.; Xu, Z.; Rani, P. Big Data Analytics Challenges to Implementing the Intelligent Industrial Internet of Things (IIoT) Systems in Sustainable Manufacturing Operations. Technol. Forecast. Soc. Change 2023, 190, 122401. [Google Scholar] [CrossRef]
- Del Giudice, M.; Chierici, R.; Mazzucchelli, A.; Fiano, F. Supply Chain Management in the Era of Circular Economy: The Moderating Effect of Big Data. Int. J. Logist. Manag. 2020, 32, 337–356. [Google Scholar] [CrossRef]
- Li, J.; Herdem, M.S.; Nathwani, J.; Wen, J.Z. Methods and Applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in Smart Energy Management. Energy AI 2023, 11, 100208. [Google Scholar] [CrossRef]
- Liao, H.T.; Wang, Z. Sustainability and Artificial Intelligence: Necessary, Challenging, and Promising Intersections. In Proceedings of the 2020 Management Science Informatization and Economic Innovation Development Conference (MSIEID), Guangzhou, China, 18–20 December 2020; pp. 360–363. [Google Scholar] [CrossRef]
- Karmaker, C.L.; Al Aziz, R.; Ahmed, T.; Misbauddin, S.M.; Moktadir, M.A. Impact of Industry 4.0 Technologies on Sustainable Supply Chain Performance: The Mediating Role of Green Supply Chain Management Practices and Circular Economy. J. Clean. Prod. 2023, 419, 13824–13829. [Google Scholar] [CrossRef]
- Bag, S.; Dhamija, P.; Bryde, D.J.; Singh, R.K. Effect of Eco-Innovation on Green Supply Chain Management, Circular Economy Capability, and Performance of Small and Medium Enterprises. J. Bus. Res. 2022, 141, 60–72. [Google Scholar] [CrossRef]
- Wamba, S.F.; Dubey, R.; Gunasekaran, A.; Akter, S. The Performance Effects of Big Data Analytics and Supply Chain Ambidexterity: The Moderating Effect of Environmental Dynamism. Int. J. Prod. Econ. 2020, 222, 107498. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ashfaq, K.; Bresciani, S.; Giacosa, E.; Mueller, J. Nexus among Intellectual Capital, Interorganizational Learning, Industrial Internet of Things Technology and Innovation Performance: A Resource-Based Perspective. J. Intellect. Cap. 2023, 24, 509–534. [Google Scholar] [CrossRef]
- Paiola, M.; Schiavone, F.; Grandinetti, R.; Chen, J. Digital Servitization and Sustainability through Networking: Some Evidences from IoT-Based Business Models. J. Bus. Res. 2021, 132, 507–516. [Google Scholar] [CrossRef]
- Tseng, M.L.; Tan, R.R.; Chiu, A.S.F.; Chien, C.F.; Kuo, T.C. Circular Economy Meets Industry 4.0: Can Big Data Drive Industrial Symbiosis? Resour. Conserv. Recycl. 2018, 131, 146–147. [Google Scholar] [CrossRef]
- Meriton, R.; Bhandal, R.; Graham, G.; Brown, A. An Examination of the Generative Mechanisms of Value in Big Data-Enabled Supply Chain Management Research. Int. J. Prod. Res. 2021, 59, 7283–7310. [Google Scholar] [CrossRef]
- Bag, S.; Pretorius, J.H.C.; Gupta, S.; Dwivedi, Y.K. Role of Institutional Pressures and Resources in the Adoption of Big Data Analytics Powered Artificial Intelligence, Sustainable Manufacturing Practices and Circular Economy Capabilities. Technol. Forecast. Soc. Change 2021, 163, 120420. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Mikalef, P.; Blomsma, F.; Li, J. Towards a Business Analytics Capability for the Circular Economy. Technol. Forecast. Soc. Change 2021, 171, 120957. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, Y. Integrating Product-Service Innovation into Green Supply Chain Management from a Life Cycle Perspective: A Systematic Review and Future Research Directions. Technovation 2023, 126, 102825. [Google Scholar] [CrossRef]
- Liu, S.Y.H.; Napier, E.; Runfola, A.; Cavusgil, S.T. MNE-NGO Partnerships for Sustainability and Social Responsibility in the Global Fast-Fashion Industry: A Loose-Coupling Perspective. Int. Bus. Rev. 2020, 29, 101736. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Esposito, E.; Passaro, R.; Shashi. Determinants of the Transition towards Circular Economy in SMEs: A Sustainable Supply Chain Management Perspective. Int. J. Prod. Econ. 2021, 242, 108297. [Google Scholar] [CrossRef]
- Triguero, Á.; Cuerva, M.C.; Sáez-Martínez, F.J. Closing the Loop through Eco-Innovation by European Firms: Circular Economy for Sustainable Development. Bus. Strategy Environ. 2022, 31, 2337–2350. [Google Scholar] [CrossRef]
- Abbate, S.; Centobelli, P.; Cerchione, R. From Fast to Slow: An Exploratory Analysis of Circular Business Models in the Italian Apparel Industry. Int. J. Prod. Econ. 2023, 260, 108824. [Google Scholar] [CrossRef]
- Sudusinghe, J.I.; Seuring, S. Supply Chain Collaboration and Sustainability Performance in Circular Economy: A Systematic Literature Review. Int. J. Prod. Econ. 2022, 245, 108402. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Cuevas-Romo, A.; Chowdhury, S.; Díaz-Acevedo, N.; Albores, P.; Despoudi, S.; Malesios, C.; Dey, P. The Role of Circular Economy Principles and Sustainable-Oriented Innovation to Enhance Social, Economic and Environmental Performance: Evidence from Mexican SMEs. Int. J. Prod. Econ. 2022, 248, 108495. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Luo, Z.; Wambo, S.F.; Roubaud, D.; Foropon, C. Examining the Role of Big Data and Predictive Analytics on Collaborative Performance in Context to Sustainable Consumption and Production Behaviour. J. Clean. Prod. 2018, 196, 1508–1521. [Google Scholar] [CrossRef]
- Kachouei, M.A.; Kaushik, A.; Ali, M.A. Internet of Things-Enabled Food and Plant Sensors to Empower Sustainability. Adv. Intell. Syst. 2023, 5, 2300321. [Google Scholar] [CrossRef]
- Roy, V. Contrasting Supply Chain Traceability and Supply Chain Visibility: Are They Interchangeable? Int. J. Logist. Manag. 2021, 32, 942–972. [Google Scholar] [CrossRef]
- Meng, K.; Cao, Y.; Peng, X.; Prybutok, V.; Youcef-Toumi, K. Smart Recovery Decision-Making for End-of-Life Products in the Context of Ubiquitous Information and Computational Intelligence. J. Clean. Prod. 2020, 272, 122804. [Google Scholar] [CrossRef]
- de Oliveira, R.T.; Ghobakhloo, M.; Figueira, S. Industry 4.0 towards Social and Environmental Sustainability in Multinationals: Enabling Circular Economy, Organizational Social Practices, and Corporate Purpose. J. Clean. Prod. 2023, 430, 139712. [Google Scholar] [CrossRef]
- Mishra, J.L.; Chiwenga, K.D.; Ali, K. Collaboration as an Enabler for Circular Economy: A Case Study of a Developing Country. Manag. Decis. 2019, 59, 1784–1800. [Google Scholar] [CrossRef]
- Burke, H.; Zhang, A.; Wang, J.X. Integrating Product Design and Supply Chain Management for a Circular Economy. Prod. Plan. Control. 2023, 34, 1097–1113. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, A.; Luthra, S.; Joshi, S.; Upadhyay, A. The Impact of Environmental Dynamism on Low-Carbon Practices and Digital Supply Chain Networks to Enhance Sustainable Performance: An Empirical Analysis. Bus. Strategy Environ. 2022, 31, 1776–1788. [Google Scholar] [CrossRef]
- Borges, A.F.S.; Laurindo, F.J.B.; Spínola, M.M.; Gonçalves, R.F.; Mattos, C.A. The Strategic Use of Artificial Intelligence in the Digital Era: Systematic Literature Review and Future Research Directions. Int. J. Inf. Manag. 2021, 57, 102225. [Google Scholar] [CrossRef]
- Kusi-Sarpong, S.; Orji, I.J.; Gupta, H.; Kunc, M. Risks Associated with the Implementation of Big Data Analytics in Sustainable Supply Chains. Omega 2021, 105, 102502. [Google Scholar] [CrossRef]
- Bag, S.; Wood, L.C.; Xu, L.; Dhamija, P.; Kayikci, Y. Big Data Analytics as an Operational Excellence Approach to Enhance Sustainable Supply Chain Performance. Resour. Conserv. Recycl. 2020, 153, 104559. [Google Scholar] [CrossRef]
- Benzidia, S.; Makaoui, N.; Bentahar, O. The Impact of Big Data Analytics and Artificial Intelligence on Green Supply Chain Process Integration and Hospital Environmental Performance. Technol. Forecast. Soc. Change 2021, 165, 120557. [Google Scholar] [CrossRef]
- Gupta, S.; Chen, H.; Hazen, B.T.; Kaur, S.; Santibañez Gonzalez, E.D.R. Circular Economy and Big Data Analytics: A Stakeholder Perspective. Technol. Forecast. Soc. Change 2019, 144, 466–474. [Google Scholar] [CrossRef]
- Awan, U.; Shamim, S.; Khan, Z.; Zia, N.U.; Shariq, S.M.; Khan, M.N. Big Data Analytics Capability and Decision-Making: The Role of Data-Driven Insight on Circular Economy Performance. Technol. Forecast. Soc. Change 2021, 168, 120766. [Google Scholar] [CrossRef]
- Gao, C.; Kuah-Pearce, K.E. The Garment Industry in South China. China Perspect. 2015, 2015, 25–32. [Google Scholar] [CrossRef]
- Liu, G. Comparative Study on the Pathways of Industrial Parks towards Sustainable Development between China and Canada. Resour. Conserv. Recycl. 2018, 128, 417–425. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, X.; Xiao, X.; Zhou, Z. Institutional Pressures, Sustainable Supply Chain Management, and Circular Economy Capability: Empirical Evidence from Chinese Eco-Industrial Park Firms. J. Clean. Prod. 2017, 155, 54–65. [Google Scholar] [CrossRef]
- Jain, N.K.; Panda, A.; Choudhary, P. Institutional Pressures and Circular Economy Performance: The Role of Environmental Management System and Organizational Flexibility in Oil and Gas Sector. Bus. Strategy Environ. 2020, 28, 3509–3525. [Google Scholar] [CrossRef]
- Maroufkhani, P.; Tseng, M.-L.; Iranmanesh, M.; Ismail, W.K.W.; Khalid, H. Big Data Analytics Adoption: Determinants and Performances among Small to Mediumisized Enterprises. Int. J. Inf. Manag. 2020, 54, 102–190. [Google Scholar] [CrossRef]
- National Bureau of statistics of China Statistical Communiqué of the People’s Republic of China on the 2021 National Economic and Social Development. Available online: https://www.stats.gov.cn/english/PressRelease/202202/t20220227_1827963.html (accessed on 16 December 2023).
- Khan, S.A.R.; Qianli, D. Impact of Green Supply Chain Management Practices on Firms’ Performance: An Empirical Study from the Perspective of Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 16829–16844. [Google Scholar] [CrossRef]
- Mathiyazhagan, K.; Agarwal, V.; Appolloni, A.; Saikouk, T.; Gnanavelbabu, A. Integrating Lean and Agile Practices for Achieving Global Sustainability Goals in Indian Manufacturing Industries. Technol. Forecast. Soc. Change 2021, 171, 120982. [Google Scholar] [CrossRef]
- Asgary, N.; Li, G. Corporate Social Responsibility: Its Economic Impact and Link to the Bullwhip Effect. J. Bus. Ethics 2016, 135, 665–681. [Google Scholar] [CrossRef]
- Nayal, K.; Kumar, S.; Raut, R.D.; Queiroz, M.M.; Priyadarshinee, P.; Narkhede, B.E. Supply Chain Firm Performance in Circular Economy and Digital Era to Achieve Sustainable Development Goals. Bus. Strategy Environ. 2022, 31, 1058–1073. [Google Scholar] [CrossRef]
- Patwa, N.; Sivarajah, U.; Seetharaman, A.; Sarkar, S.; Maiti, K.; Hingorani, K. Towards a Circular Economy: An Emerging Economies Context. J. Bus. Res. 2021, 122, 725–735. [Google Scholar] [CrossRef]
- Liu, P. Pricing Policies and Coordination of Low-Carbon Supply Chain Considering Targeted Advertisement and Carbon Emission Reduction Costs in the Big Data Environment. J. Clean. Prod. 2019, 210, 343–357. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the Future of Sustainable Supply Chain Management in Industry 4.0. Resour. Conserv. Recycl. 2020, 163, 105064. [Google Scholar] [CrossRef]
- Sestino, A.; Prete, M.I.; Piper, L.; Guido, G. Internet of Things and Big Data as Enablers for Business Digitalization Strategies. Technovation 2020, 98, 102173. [Google Scholar] [CrossRef]
- Côrte-Real, N.; Ruivo, P.; Oliveira, T. Leveraging Internet of Things and Big Data Analytics Initiatives in European and American Firms: Is Data Quality a Way to Extract Business Value? Inf. Manag. 2020, 57, 103141. [Google Scholar] [CrossRef]
Participant | Participant (In Number) | Participant (In Percentage) | |
---|---|---|---|
Experience (years) | Below 5 | 49 | 15.75 |
5 to 10 | 64 | 20.58 | |
10 to 20 | 61 | 19.61 | |
Above 20 | 137 | 44.05 | |
Designation | General Manager | 38 | 12.21 |
Senior Manager | 94 | 30.22 | |
Manager | 131 | 42.12 | |
Deputy Manager | 48 | 15.43 | |
Other | 0 | 0.00 | |
Highest Degree | Metriculation | 0 | 0.00 |
Intermediate | 61 | 19.60 | |
Bachelor | 168 | 54.01 | |
Master | 8 | 26.36 | |
Other | 0 | 0.00 | |
Firm Age (years) | Below 5 | 0 | 0.00 |
5 to 10 | 107 | 34.40 | |
10 to 20 | 75 | 24.11 | |
Above 20 | 129 | 41.47 | |
No. of Employees | Below 50 | 30 | 9.64 |
50–250 | 36 | 11.57 | |
Above 250 | 245 | 78.77 | |
Annual Turnover (Million RMB) | Below 5 | 30 | 9.64 |
5–50 | 36 | 11.57 | |
Above 50 | 245 | 78.77 |
λ | Alpha | CR | AVE | VIF | |
---|---|---|---|---|---|
IoT1 | 0.826 | 0.847 | 0.891 | 0.839 | 2.122 |
IoT2 | 0.855 | 1.786 | |||
IoT3 | 0.838 | 1.906 | |||
IoT4 | 0.889 | 2.169 | |||
GSCM1 | 0.812 | 0.805 | 0.885 | 0.823 | 1.508 |
GSCM 2 | 0.759 | 1.859 | |||
GSCM 3 | 0.783 | 1.874 | |||
GSCM 4 | 0.761 | 2.012 | |||
GSCM 5 | 0.805 | 2.068 | |||
CE1 | 0.800 | 0.901 | 0.923 | 0.805 | 1.992 |
CE2 | 0.777 | 2.022 | |||
CE3 | 0.810 | 2.197 | |||
CE4 | 0.775 | 1.951 | |||
CE5 | 0.845 | 2.653 | |||
CE6 | 0.741 | 1.608 | |||
CE7 | 0.866 | 2.878 | |||
FP1 | 0.810 | 0.894 | 0.919 | 0.810 | 2.130 |
FP2 | 0.789 | 2.197 | |||
FP3 | 0.874 | 1.886 | |||
FP4 | 0.810 | 1.996 | |||
FP5 | 0.813 | 2.089 | |||
FP6 | 0.848 | 2.458 | |||
FP7 | 0.874 | 2.044 | |||
FP8 | 0.825 | 2.306 | |||
FP9 | 0.845 | 2.196 | |||
FP10 | 0.793 | 2.028 | |||
FP11 | 0.810 | 1.996 | |||
FP12 | 0.805 | 2.056 | |||
FP13 | 0.874 | 1.780 | |||
FP14 | 0.831 | 2.258 | |||
BDSC1 | 0.776 | 0.899 | 0.906 | 0.863 | 1.902 |
BDSC2 | 0.782 | 2.060 | |||
BDSC3 | 0.778 | 2.023 | |||
BDSC4 | 0.798 | 2.302 |
IOT | GSCM | CE | FP | BDSC | |
---|---|---|---|---|---|
IoT1 | 0.812 | 0.681 | 0.362 | 0.500 | 0.295 |
IoT2 | 0.814 | 0.658 | 0.383 | 0.467 | 0.298 |
IoT3 | 0.875 | 0.635 | 0.362 | 0.419 | 0.382 |
IoT4 | 0.855 | 0.656 | 0.361 | 0.452 | 0.364 |
GSCM1 | 0.333 | 0.805 | 0.331 | 0.379 | 0.520 |
GSCM 2 | 0.374 | 0.761 | 0.437 | 0.465 | 0.383 |
GSCM 3 | 0.384 | 0.783 | 0.395 | 0.454 | 0.370 |
GSCM 4 | 0.311 | 0.805 | 0.291 | 0.365 | 0.448 |
GSCM 5 | 0.333 | 0.806 | 0.331 | 0.379 | 0.520 |
CE1 | 0.309 | 0.224 | 0.855 | 0.301 | 0.404 |
CE2 | 0.380 | 0.340 | 0.741 | 0.433 | 0.328 |
CE3 | 0.469 | 0.442 | 0.810 | 0.450 | 0.471 |
CE4 | 0.387 | 0.501 | 0.775 | 0.408 | 0.281 |
CE5 | 0.335 | 0.468 | 0.866 | 0.360 | 0.289 |
CE6 | 0.438 | 0.493 | 0.845 | 0.429 | 0.353 |
CE7 | 0.464 | 0.529 | 0.810 | 0.432 | 0.419 |
FP1 | 0.506 | 0.409 | 0.508 | 0.755 | 0.301 |
FP2 | 0.532 | 0.352 | 0.418 | 0.784 | 0.532 |
FP3 | 0.523 | 0.361 | 0.372 | 0.772 | 0.355 |
FP4 | 0.375 | 0.270 | 0.460 | 0.755 | 0.752 |
FP5 | 0.417 | 0.359 | 0.451 | 0.775 | 0.499 |
FP6 | 0.576 | 0.524 | 0.565 | 0.825 | 0.511 |
FP7 | 0.352 | 0.294 | 0.472 | 0.802 | 0.672 |
FP8 | 0.392 | 0.304 | 0.502 | 0.792 | 0.632 |
FP9 | 0.409 | 0.418 | 0.506 | 0.848 | 0.600 |
FP10 | 0.352 | 0.373 | 0.506 | 0.831 | 0.644 |
FP11 | 0.361 | 0.300 | 0.532 | 0.805 | 0.508 |
FP12 | 0.469 | 0.442 | 0.450 | 0.810 | 0.471 |
FP13 | 0.380 | 0.340 | 0.433 | 0.741 | 0.328 |
FP14 | 0.307 | 0.236 | 0.434 | 0.800 | 0.436 |
BDSC1 | 0.565 | 0.417 | 0.524 | 0.307 | 0.791 |
BDSC2 | 0.451 | 0.316 | 0.359 | 0.316 | 0.771 |
BDSC3 | 0.472 | 0.576 | 0.294 | 0.309 | 0.777 |
BDSC4 | 0.506 | 0.352 | 0.355 | 0.380 | 0.761 |
IoT | GSCM | CE | FP | BDSC | |
---|---|---|---|---|---|
IoT | 0.839 | ||||
GSCM | 0.760 | 0.817 | |||
CE | 0.445 | 0.529 | 0.797 | ||
FP | 0.535 | 0.688 | 0.588 | 0.809 | |
BDSC | 0.521 | 0.455 | 0.512 | 0.566 | 0.847 |
Test | Results |
---|---|
Average R-squared (ARS) | 0.525, p < 0.001 |
Average adjusted R-squared (AARS) | 0.536, p < 0.001 |
Average path coefficient (APC) | 0.337, p < 0.001 |
Average full collinearity VIF (AFVIF) | 3.13, acceptable if less than equal to 5, ideally if less than or equal to 3.3 |
Average block VIF (AVIF) | 1.395, acceptable if less than equal to 5, ideally if less than or equal to 3.3 |
Tenenhaus Goodness of Fit (GoF) | 0.57, large >= 0.36, medium >= 0.25, small >= 0.1 |
Test | Results |
---|---|
R-squared contribution ratio | 1.000, acceptable if greater than or equal to 0.9, ideally equal to 1 |
Sympson’s paradox ratio | 1.000, acceptable if greater than or equal to 0.7, ideally equal to 1 |
Non-linear bivariate causality direction ratio | 0.900, acceptable if greater than or equal to 0.7 |
Statistical suppression ratio | 1.000, acceptable if greater than or equal to 0.7 |
β | t | p | |
---|---|---|---|
H1: IoT → GSCM | 0.414 | 7.285 | 0.000 |
H2: IoT → CE | 0.154 | 2.879 | 0.004 |
H3: GSCM → CE | 0.245 | 3.294 | 0.001 |
H4: GSCM → FP | 0.123 | 1.814 | 0.067 |
H5: CE → FP | 0.497 | 5.977 | 0.000 |
H6a: GSCM*BDSC → FP | 0.279 | 4.178 | 0.000 |
H6b: CE*BDSC → FP | 0.301 | 4.210 | 0.000 |
β | t | p | |
---|---|---|---|
H7a: IoT → GSCM → FP | 0.162 | 2.978 | 0.004 |
H7b: IoT → CE → FP | 0.302 | 4.230 | 0.000 |
H7c: IoT → GSCM → CE → FP | 0.501 | 6.123 | 0.000 |
H7d: IoT → GSCM*BDSC → FP | 0.402 | 10.554 | 0.000 |
H7e: IoT → CE*BDSC → FP | 0.680 | 18.810 | 0.000 |
H7f: IoT → GSCM → CE*BDSC → FP | 0.337 | 8.220 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Ullah, A.; Ashraf, S.; Abdullah, M. Synergistic Impact of Internet of Things and Big-Data-Driven Supply Chain on Sustainable Firm Performance. Sustainability 2024, 16, 5717. https://doi.org/10.3390/su16135717
Zhang Q, Ullah A, Ashraf S, Abdullah M. Synergistic Impact of Internet of Things and Big-Data-Driven Supply Chain on Sustainable Firm Performance. Sustainability. 2024; 16(13):5717. https://doi.org/10.3390/su16135717
Chicago/Turabian StyleZhang, Qingyu, Aman Ullah, Sana Ashraf, and Muhammad Abdullah. 2024. "Synergistic Impact of Internet of Things and Big-Data-Driven Supply Chain on Sustainable Firm Performance" Sustainability 16, no. 13: 5717. https://doi.org/10.3390/su16135717
APA StyleZhang, Q., Ullah, A., Ashraf, S., & Abdullah, M. (2024). Synergistic Impact of Internet of Things and Big-Data-Driven Supply Chain on Sustainable Firm Performance. Sustainability, 16(13), 5717. https://doi.org/10.3390/su16135717