Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent
<p>SEM images of (<b>a</b>) SBA15–NH–PMIDA powder and (<b>b</b>) SBA15–NH–PMIDA granule.</p> "> Figure 2
<p>Validation of single solute Eu breakthrough curve for granular SBA15–NH–PMIDA with LDFAM. (Bed height = 0.1 m, linear flow rate = 0.637 m/h, R<sup>2</sup> = 0.95).</p> "> Figure 3
<p>Validation of simulation LDFAM for inlet concentration of 3 mg/L (Bed Height = 0.1 m, velocity = 0.637 m/h, R<sup>2</sup> = 0.92).</p> "> Figure 4
<p>Validation of simulation LDFAM for linear filtration of 0.955 m/h (Inlet concentration = 3 mg/L, bed height = 0.1 m, R<sup>2</sup> = 0.94).</p> "> Figure 5
<p>Validation of simulation LDFAM for adsorbent medium depth of 0.125 m (inlet Eu concentration = 3 mg/L, linear filtration rate = 0.637 m/h, R<sup>2</sup> = 0.91).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. SBA15–NH–PMIDA Synthesis Process
2.1.1. Amine Grafting on SBA15
2.1.2. Synthesis of SBA15–NH–PMIDA
2.2. Granular SBA15–NH–PMIDA
2.3. Characterization of Granules
2.4. Equilibrium Adsorption Studies
2.5. Kinetic Study
2.6. Column Experiment
2.7. Column Model
3. Results and Discussion
3.1. Characterization of Granules
3.2. Adsorption Equilibrium
3.3. Adsorption Kinetic
3.4. Column Experiment for Eu Adsorption Using Granulated SBA15–NH–PMIDA
3.4.1. Mathematical Modeling of Dynamic Column Behavior
3.4.2. Effect of Initial Concentration
3.4.3. Effect of Flowrate
3.4.4. Effect of Adsorbent Medium Depth
3.5. Adsorbent Reusability Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Ambaye, T.G.; Vaccari, M.; Castro, F.D.; Prasad, S.; Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: A review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. 2020, 27, 36052–36074. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Felipe, E.C.B.; Batista, K.A.; Ladeira, A.C.Q. Recovery of rare earth elements from acid mine drainage by ion exchange. Environ. Technol. 2020, 42, 2721–2732. [Google Scholar] [CrossRef] [PubMed]
- Fonseka, C.; Ryu, S.; Choo, Y.; Naidu, G.; Foseid, L.; Thiruvenkatachari, R.; Kandasamy, J.; Ratnaweera, H.; Vigneswaran, S. Selective Recovery of Europium from real acid mine drainage by using novel SBA15-NH–PMIDA adsorbent and membrane distillation system. J. Water Proc. Eng. 2023, 56, 104551. [Google Scholar] [CrossRef]
- Zhao, F.; Cong, Z.; Sun, H.; Ren, D. The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai coal mine, Shanxi Province, North China. Int. J. Coal Geol. 2007, 70, 184–192. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Rim, K. Effects of rare earth elements on the environment and human health: A literature review. J. Environ. Health Sci. Eng. 2016, 8, 189–200. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Tripathy, S.; Equeenuddin, S.M.; Panigrahi, M.K. Geochemical characteristics of coal mine discharge vis-à-vis behavior of rare earth elements at Jaintia Hills coalfield, northeastern India. J. Geochem. Explor. 2012, 112, 235–243. [Google Scholar] [CrossRef]
- Miekeley, N.; Coutinho de Jesus, H.; Porto da Silveira, C.L.; Linsalata, P.; Morse, R. Rare-earth elements in groundwaters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil. J. Geochem. Explor. 1992, 45, 365–387. [Google Scholar] [CrossRef]
- Protano, G.; Riccobono, F. High contents of rare earth elements (REEs) in stream waters of a Cu–Pb–Zn mining area. Environ. Pollut. 2002, 117, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Vass, C.R.; Noble, A.; Ziemkiewicz, P.F. The Occurrence and Concentration of Rare Earth Elements in Acid Mine Drainage and Treatment By-products: Part 1—Initial Survey of the Northern Appalachian Coal Basin. Min. Metall. Explor. 2019, 36, 903–916. [Google Scholar] [CrossRef]
- Lecomte, K.L.; Sarmiento, A.M.; Borrego, J.; Nieto, J.M. Rare earth elements mobility processes in an AMD-affected estuary: Huelva Estuary (SW Spain). Mar. Pollut. Bull. 2017, 121, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Olías, M.; Cánovas, C.R.; Basallote, M.D.; Lozano, A. Geochemical behaviour of rare earth elements (REE) along a river reach receiving inputs of acid mine drainage. Chem. Geol. 2018, 493, 468–477. [Google Scholar] [CrossRef]
- Fee, J.A.; Gaudette, H.E.; Lyons, W.B.; Long, D.T. Rare-earth element distribution in Lake Tyrrell groundwaters, Victoria, Australia. Chem. Geol. 1992, 96, 67–93. [Google Scholar] [CrossRef]
- Research, G.V. Rare Earth Elements Market Size, Share & Trends Analysis Report by Product (Cerium, Dysprosium, Erbium), by Application (Magnets, Catalyst), by Region, and Segment Forecasts, 2019–2025; Grand View Research: San Francisco, CA, USA, 2019; p. 208. [Google Scholar]
- Anastopoulos, I.; Bhatnagar, A.; Lima, E.C. Adsorption of rare earth metals: A review of recent literature. J. Mol. Liq. 2016, 221, 954–962. [Google Scholar] [CrossRef]
- Commission, E. Report on Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on Defining Critical Raw Materials; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Commission, E. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- United States Department of the Interior. Final List of Critical Minerals; United States Department of the Interior, Office of the Federal Register, National Archives and Records Administration: Washington, DC, USA, 2018; Volume 83, pp. 23295–23296. [Google Scholar]
- Hatch, G.P. Dynamics in the Global Market for Rare Earths. Elements 2012, 8, 341. [Google Scholar] [CrossRef]
- Kumari, A.; Jha, M.K.; Pathak, D.D.; Chakravarty, S.; Lee, J.C. Processes developed for the separation of europium (Eu) from various resources. Sep. Pur. Rev. 2019, 48, 91–121. [Google Scholar] [CrossRef]
- Chen, T.; Yan, B.; Lei, C.; Xiao, X. Pollution control and metal resource recovery for acid mine drainage. Hydrometallurgy 2014, 147–148, 112–119. [Google Scholar] [CrossRef]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Sampaio, R.M.M.; Timmers, R.A.; Xu, Y.; Keesman, K.J.; Lens, P.N.L. Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor. J. Hazard Mater. 2009, 165, 256–265. [Google Scholar] [CrossRef]
- Ambiado, K.; Bustos, C.; Schwarz, A.; Bórquez, R. Membrane technology applied to acid mine drainage from copper mining. Water Sci. Technol. 2016, 75, 705–715. [Google Scholar] [CrossRef]
- Das, N.; Das, D. Recovery of rare earth metals through biosorption: An overview. J. Rare Earths 2013, 31, 933–943. [Google Scholar] [CrossRef]
- Hu, Y.; Drouin, E.; Larivière, D.; Kleitz, F.; Fontaine, F.-G. Highly Efficient and Selective Recovery of Rare Earth Elements Using Mesoporous Silica Functionalized by Preorganized Chelating Ligands. ACS Appl. Mater. Interfaces 2017, 9, 38584–38593. [Google Scholar] [CrossRef] [PubMed]
- Xiaoqi, S.; Huimin, L.; Mahurin, S.M.; Rui, L.; Xisen, H.; Sheng, D. Adsorption of rare earth ions using carbonized polydopamine nano carbon shells. J. Rare Earths 2016, 34, 77–82. [Google Scholar]
- Zhang, H.; McDowell, R.G.; Martin, L.R.; Qiang, Y. Selective Extraction of Heavy and Light Lanthanides from Aqueous Solution by Advanced Magnetic Nanosorbents. ACS Appl. Mater. Interfaces 2016, 8, 9523. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, C.; Dai, J.; Shi, W.; Yan, Y. Design of Mesoporous Silica Hybrid Materials as Sorbents for the Selective Recovery of Rare Earth Metals. J. Mater. Chem. A 2015, 3, 10327. [Google Scholar] [CrossRef]
- Lèbre, É.; Corder, G.; Golev, A. The role of the mining industry in a circular economy: A framework for resource management at the mine site level. J. Ind. Ecol. 2017, 21, 662–672. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, X.; Azhar, M.R.; Sun, H.; Fang, X.; Wang, S. Selective adsorption of rare earth ions from aqueous solution on metal-organic framework HKUST-1. Chem. Engin. J. Adv. 2020, 1, 100009. [Google Scholar] [CrossRef]
- Fonseka, C.; Ryu, S.; Choo, Y.; Mullett, M.; Thiruvenkatachari, R.; Naidu, G.; Vigneswaran, S. Selective Recovery of Rare Earth Elements from Mine Ore by Cr-MIL Metal–Organic Frameworks. ACS Sustain. Chem. Eng. 2021, 9, 16896–16904. [Google Scholar] [CrossRef]
- Abdel-Magied, A.F.; Abdelhamid, H.N.; Ashour, R.M.; Zou, X.; Forsberg, K. Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements. Microporous Mesoporous Mater. 2019, 278, 175–184. [Google Scholar] [CrossRef]
- Rivas-Sanchez, A.; Cruz-Cruz, A.; Gallareta-Olivares, G.; González-González, R.B.; Parra-Saldívar, R.; Iqbal, H.M. Carbon-based nanocomposite materials with multifunctional attributes for environmental remediation of emerging pollutants. Chemosphere 2022, 303, 135054. [Google Scholar] [CrossRef]
- Chang, F.-Y.; Chao, K.-J.; Cheng, H.-H.; Tan, C.-S. Adsorption of CO2 onto amine-grafted mesoporous silicas. Sep. Purif. Technol. 2009, 70, 87–95. [Google Scholar] [CrossRef]
- Ryu, S.; Naidu, G.; Moon, H.; Vigneswaran, S. Selective copper extraction by multi-modified mesoporous silica material, SBA-15. Sci. Total Environ. 2019, 697, 134070. [Google Scholar] [CrossRef]
- Ryu, S.C.; Kim, J.Y.; Hwang, M.J.; Moon, H. Recovery of nitrate from water streams using amine-grafted and magnetized SBA-15. Korean J. Chem. Eng. 2018, 35, 489–497. [Google Scholar] [CrossRef]
- Shahbazi, A.; Younesi, H.; Badiei, A. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem. Eng. J. 2011, 168, 505–518. [Google Scholar] [CrossRef]
- Da’na, E.; Sayari, A. Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: Applications to real water samples. Desalination 2012, 285, 62–67. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Yu, K.; Ravi, S.; Ahn, W.-S. Selective adsorption of rare earth elements over functionalized Cr-MIL-101. ACS Appl. Mater. Interfaces 2018, 10, 23918–23927. [Google Scholar] [CrossRef]
- Ryu, S.; Fonseka, C.; Naidu, G.; Loganathan, P.; Moon, H.; Kandasamy, J.; Vigneswaran, S. Recovery of rare earth elements (Lu, Y) by adsorption using functionalized SBA-15 and MIL-101 (Cr). Chemosphere 2021, 281, 130869. [Google Scholar] [CrossRef]
- Huang, Z.-W.; Li, Z.-J.; Zheng, L.-R.; Wu, W.-S.; Chai, Z.-F.; Shi, W.-Q. Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation. Environ. Pollut. 2019, 248, 82–89. [Google Scholar] [CrossRef]
- Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J. Taiwan Inst. Chem. Eng. 2016, 60, 174–184. [Google Scholar] [CrossRef]
- Dousti, Z.; Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. Adsorption of Eu (III), Th (IV), and U (VI) by mesoporous solid materials bearing sulfonic acid and sulfamic acid functionalities. Sep. Sci. Technol. 2019, 54, 2609–2624. [Google Scholar] [CrossRef]
- Tan, X.; Fang, M.; Li, J.; Lu, Y.; Wang, X. Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid. J. Hazard. Mater. 2009, 168, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, C.; Tan, X.; Shao, D.; Li, J.; Zhao, G.; Yang, S.; Wang, Q.; Wang, X. Retracted Article: Enhanced adsorption of Eu (III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans. 2012, 41, 13388–13394. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M. Adsorption Engineering; Elsevier Science and Technology: Kodansha, Amsterdam, 1990; pp. 56–62. ISBN I 0444988025. [Google Scholar]
- Souza, P.R.; Dotto, G.L.; Salau, N.P.G. Detailed numerical solution of pore volume and surface diffusion model in adsorption systems. Chem. Eng. Res. Des. 2017, 122, 298–307. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Fyrillas, M.M.; Park, J. Variable diffusivity homogeneous surface diffusion model and analysis of merits and fallacies of simplified adsorption kinetics equations. J. Hazard. Mater. 2019, 367, 224–245. [Google Scholar] [CrossRef] [PubMed]
- Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AICHE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- García-Mateos, F.J.; Ruiz-Rosas, R.; Marqués, M.D.; Cotoruelo, L.M.; Rodríguez-Mirasol, J.; Cordero, T. Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chem. Eng. J. 2015, 279, 18–30. [Google Scholar] [CrossRef]
- Lin, X.; Huang, Q.; Qi, G.; Shi, S.; Xiong, L.; Huang, C.; Chen, X. Estimation of fixed-bed column parameters and mathematical modeling of breakthrough behaviors for adsorption of levulinic acid from aqueous solution using SY-01 resin. Sep. Sci. Technol. 2017, 174, 222–231. [Google Scholar] [CrossRef]
- Wakao, N.; Funazkri, T. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of Sherwood numbers. Chem. Engin. Sci. 1978, 33, 1375–1384. [Google Scholar] [CrossRef]
- Gomaa, E.A.; Negm, A.; Tahoon, M.A. Conductometric and volumetric study of copper sulphate in aqueous ethanol solutions at different temperatures. J. Taibah Univ. Sci. 2017, 11, 741–748. [Google Scholar] [CrossRef]
- Fonseka, C. Metals from Mining Wastewater by Membrane/Adsorption Hybrid Systems. Ph.D. Thesis, University of Technology Sydney, Sydney, Australia, 2023. [Google Scholar]
Dissolved Ions | Na | Mg | Al | S | Ca | Cr | Mn | Fe | Ni | Cu | Zn | Eu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (mg/L) | 36 | 218 | 168 | 1275 | 187 | 0.38 | 6.29 | 618 | 0.51 | 62 | 39 | 3.1 |
Location | pH | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Total REE | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jaintia Hills INDIA | 3.0 | 91.8 | 284.9 | 38.4 | 121.0 | 38.4 | 9.1 | 44.2 | 7.3 | 34.4 | 8.8 | 15.7 | 3.6 | 13.2 | 3.4 | 714.7 | [10] |
Sitai Coal Mine CHINA | 3.6 | 7.7 | 19.3 | 2.7 | 12.9 | 2.9 | 0.8 | 3.7 | 0.7 | 4.0 | 0.8 | 2.4 | 0.3 | 1.9 | 0.3 | 61.2 | [6] |
Osamu Utsumi Mine BRAZIL | 4.4 | 567.0 | 124.0 | 0.0 | 250.0 | 28.5 | 7.7 | 22.6 | 0.0 | 23.2 | 5.2 | 12.2 | 0.0 | 5.5 | 0.5 | 1046.7 | [11] |
Metalliferous Hills ITALY | 3.1 | 185.0 | 389.5 | 45.7 | 172.2 | 34.8 | 8.6 | 40.1 | 5.0 | 23.6 | 4.1 | 10.5 | 1.2 | 7.0 | 0.9 | 928.83 | [12] |
West Virginia USA | 4.2 | 11.4 | 41.5 | 7.0 | 39.1 | 13.9 | 3.9 | 19.2 | 3.0 | 16.5 | 2.9 | 7.7 | 1.2 | 5.5 | 1.0 | 174.39 | [13] |
Huelva Estuary | 1.6 | 1780 | 4480 | 590.0 | 2580 | 614.0 | 65.4 | 554.0 | 54.7 | 253.0 | 37.2 | 85.9 | 10.2 | 61.7 | 7.6 | 11173 | [14] |
Odiel Rive Spain | 4.5 | 331.2 | 977.2 | 120.2 | 545.4 | 137.3 | 25.4 | 152.9 | 21.1 | 110.3 | 19.5 | 48.0 | 5.8 | 33.7 | 4.6 | 2532.9 | [15] |
Lake Tyrell, Victoria Australia | 3.7 | 90.0 | 279.2 | 39.5 | 153.0 | 31.9 | 7.9 | 50.2 | 5.4 | 40.5 | 4.6 | 13.7 | 1.8 | 6.9 | 0.7 | 725.7 | [16] |
References | Equation | Equation. # | Parameters | Boundary Conditions |
---|---|---|---|---|
García-Mateos et al. [54] | (6) | C = Eu concentration = superficial velocity = axial dispersion coefficient L = length of column = bed porosity | Lin et al. [55] | |
Wakao and Funazkri [56] | (7) | Re = Reynold’s number Sc = Schmidt number = superficial velocity = viscosity of fluid (0.00089 kgm−1 s−1) = density of fluid (1000 kg/m3). | ||
Wilke and Chang [53], Gomaa et al. [57] | | (8) | = molecular weight of Eu = association factor T = temperature (K) = molecular volume at boiling temperature M = molarity of solute (mol/kg) m = relative molar mass (kg/mol) = density of solution (g/mL) = density of solvent (g/mL). |
Qm (mg/g) | b (L/mg) | R2 | |
---|---|---|---|
Granulated | 57.47 | 0.97 | 0.99 |
Adsorbent | Initial Con. Eu | Surface Diffusion Model | ||
---|---|---|---|---|
Ks (m/s) | Ds (m2/s) | R2 | ||
Granular SBA15–NH–PMIDA | 10 mg/L | 5.50 × 10−5 | 4.00 × 10−17 | 0.99 |
20 mg/L | 0.99 |
Parameters | Unit | Value |
---|---|---|
Bed height | m | 0.10 |
Bed diameter | m | 0.01 |
Bed surface area | m2 | 7.85 × 10−5 |
Flow rate | m3/s | 1.39 × 10−8 |
Linear velocity | m/s | 1.77 × 10−4 |
kf | m/s | 5.50 × 10−5 |
Ds | m2/s | 4.00 × 10−17 |
DL (axial dispersion coefficient) | m2/s | 3.00 × 10−6 |
C0 | mg/L | 1.04 |
Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Adsorption Capacity (% of original) | 100 | 98 | 97 | 96 | 95 | 94 | 93 | 92 | 90 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseka, C.; Ryu, S.; Kandasamy, J.; Ratnaweera, H.; Vigneswaran, S. Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent. Sustainability 2024, 16, 5636. https://doi.org/10.3390/su16135636
Fonseka C, Ryu S, Kandasamy J, Ratnaweera H, Vigneswaran S. Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent. Sustainability. 2024; 16(13):5636. https://doi.org/10.3390/su16135636
Chicago/Turabian StyleFonseka, Charith, Seongchul Ryu, Jaya Kandasamy, Harsha Ratnaweera, and Saravanamuthu Vigneswaran. 2024. "Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent" Sustainability 16, no. 13: 5636. https://doi.org/10.3390/su16135636
APA StyleFonseka, C., Ryu, S., Kandasamy, J., Ratnaweera, H., & Vigneswaran, S. (2024). Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent. Sustainability, 16(13), 5636. https://doi.org/10.3390/su16135636