Tracking Evapotranspiration Patterns on the Yinchuan Plain with Multispectral Remote Sensing
<p>Location of the meteorological stations and Landsat images that were used to illustrate the land cover conditions in the Yinchuan Plain area.</p> "> Figure 2
<p>Comparison between meteorological stations with large ET and geeSEBAL ET. Diamond-shaped points represent outliers lying outside the 150% inter-quartile range.</p> "> Figure 3
<p>Comparison between ET<sub>p</sub> and geeSEBAL ET (<b>a</b>–<b>d</b>). Compared with large-scale evapotranspiration, R<sup>2</sup> has significantly improved, indicating that the model correlation is influenced by external factors.</p> "> Figure 4
<p>Comparison between small ET and geeSEBAL ET ((<b>a</b>–<b>f</b>) presents different meteorological stations in the Yinchuan Plain).</p> "> Figure 5
<p>Seasonal ET<sub>a</sub> changes in the Yinchuan Plain. (<b>a</b>) Spring ET distribution; (<b>b</b>) Summer ET distribution; (<b>c</b>) Autum ET distribution; (<b>d</b>) Winter ET distribution.</p> "> Figure 6
<p>Trends in ET<sub>a</sub> on the Yinchuan Plain from 1987 to 2020.</p> "> Figure 7
<p>Area of Yinchuan Plain land use types.</p> "> Figure 8
<p>ET<sub>a</sub> in different subsurface types.</p> "> Figure 9
<p>Comparison of remote sensing imagery (<b>a</b>), land use classification (<b>b</b>), and ET imagery (<b>c</b>) on the Yinchuan Plain.</p> "> Figure 10
<p>Impervious areas misclassified in some intersecting land types. water bodies are identified as impervious areas (red color).</p> "> Figure 11
<p>ET<sub>a</sub> contribution of different subsurface types.</p> "> Figure 12
<p>geeSEBAL with the batch image estimation mode.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. The geeSEBAL Algorithm
2.3.2. Hot and Cold Endmembers: Automated Calibration
2.3.3. Statistical Analysis
2.3.4. Mann–Kendall Trend Analysis
3. Results
3.1. geeSEBAL ET Validation
3.2. Changing Patterns of Evapotranspiration in Yinchuan Plain
3.2.1. Changing Trend of ET
3.2.2. Contribution of Soil Evaporation and Transpiration to ET Change
4. Discussion
4.1. The Effects on ET Trends
4.2. The Uncertainty Analysis of geeSEBAL
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Priestley, C.H.B.; Taylor, R.H. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Resenberg, N.J.; Blad, B.L.; Verma, S.B. Microclimate: The Biological Environment of Plants; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Chen, H.; Yang, D.W.; Lv, H.F. Comparison of temporal extrapolation methods for evapotranspiration over variant underlying croplands. Trans. Chin. Soc. Agric. Eng. 2013, 29, 73–81. [Google Scholar]
- Kahan, D.S.; Xue, Y.; Allen, S.J. The impact of vegetation and soil parameters in simulations of surface energy and water balance in the semi-arid Sahel: A case study using SEBEX and HAPEX-Sahel data. J. Hydrol. 2006, 320, 238–259. [Google Scholar] [CrossRef]
- Sridhar, V.; Wedin, D.A. Hydrological behaviour of grasslands of the Sandhills of Nebraska: Water and energy-balance assessment from measurements, treatments, and modelling. Ecohydrol. Ecosyst. Land Water Process Interact. Ecohydrogeomorphol. 2009, 2, 195–212. [Google Scholar] [CrossRef]
- Brown, K.W.; Rosenberg, N.J. A resistance model to predict evapotranspiration and its application to a sugar beet field 1. Agron. J. 1973, 65, 341–347. [Google Scholar] [CrossRef]
- Paniconi, C.; Putti, M. Physically based modeling in catchment hydrology at 50 Survey and outlook. Water Resour. Res. 2015, 51, 7090–7129. [Google Scholar] [CrossRef]
- Gao, Y.C.; Long, D. Progress in Models for Evapotranspiration Estimation Using Remotely Sensed Data. Natl. Remote Sens. Bull. 2008, 12, 515–528. [Google Scholar]
- Li, X.Y.; Yu, D.Y. Progress on Evapotranspiration Estimation Methods and Driving Forces in Arid and Semiarid Regions. Arid Zone Res. 2020, 37, 26–36. [Google Scholar]
- Zhang, R.H.; Sun, X.M.; Liu, J.Y. Regional variations in crop transpiration and soil water utilization by quantitative remote sensing inversion. Sci. Sin. Terrae 2001, 11, 959–968. [Google Scholar]
- Zhao, T.W.; Zhu, W.B.; Pei, L. Remote Sensing Estimation of Terrestrial Evapotranspiration and Analysis of Its Temporal-spatial Distribution Characteristics over the Three-River Headwater Region. Remote Sens. Technol. Appl. 2022, 37, 137–147. [Google Scholar]
- Jaksa, W.T.; Sridhar, V.; Huntington, J.L.; Khanal, M. Evaluation of the complementary relationship using Noah Land Surface Model and North American Regional Reanalysis (NARR) data to estimate evapotranspiration in semiarid ecosystems. J. Hydrometeorol. 2013, 14, 345–359. [Google Scholar] [CrossRef]
- Carlson, T.N.; Capehart, W.J.; Gillies, R.R. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sens. Environ. 1995, 54, 161–167. [Google Scholar] [CrossRef]
- Seguin, B.; Itier, B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. Int. J. Remote Sens. 1983, 4, 371–383. [Google Scholar] [CrossRef]
- Zhang, R.H.; Sun, X.M.; Zhu, Z.L. Differential thermal inertia-based full remote sensing information model of surface evaporation and its validation in Shapotou area, Gansu, China. Sci. Sin. Terrae 2002, 12, 1041–1050. [Google Scholar]
- Engman, E.T. Recent advances in remote sensing in hydrology. Rev. Geophys. 1995, 33, 967–975. [Google Scholar] [CrossRef]
- Menenti, M.; Choudhury, B.J. Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range. In Proceedings of the International Symposium, Yokohama, Japan, 13–16 July 1993. [Google Scholar]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Al, E. A remote sensing surface energy balance algorithm for land (SEBAL). Part 2 Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Jin, K.L.; Hao, L. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model. Remote Sens. Nat. Resour. 2020, 32, 204–212. [Google Scholar]
- Gong, Z.N.; Lu, L.; Jin, D.D.; Ackermann, K. Remote sensing estimation of evapotranspiration and ecological water demand in Zhalong wetland under land use/cover change. Acta Ecol. Sin. 2021, 41, 3572–3587. [Google Scholar]
- Li, X.L.; Yang, L.X.; Xue, X.X. Analysis of evapotranspiration pattern by SEBAL model during the growing season in the agro-pastoral ecotone in Northwest China. Acta Ecol. Sin. 2020, 40, 2175–2185. [Google Scholar]
- Su, Z.; Schmugge, T.; Kustas, W.P. An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere. J. Appl. Meteorol. Clim. 2001, 40, 1933–1951. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, Z.; Feng, T.; Chen, Z.; Wang, F.; Huang, K. Analysis of evapotranspiration estimation and its spatial-temporal characteristics: Taking Zhanghe irrigation district as an example. Bull. Surv. Mapp. 2022, 12, 57–63. [Google Scholar]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets a New Parameterization for the SSEB Approach. Jawra J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Bhattarai, N.; Shaw, S.B.; Quackenbush, L.J. Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. Int. J. Appl. Earth Obs. 2016, 49, 75–86. [Google Scholar] [CrossRef]
- Tasumi, M.; Trezza, R.; Allen, R.G.; Al, E. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid US. Irrig. Drain. Syst. 2005, 19, 355–379. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Al, E. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Laipelt, L.; Ruhoff, A.L.; Fleischmann, A.S. Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest–savanna transition in Brazil. Remote Sens. 2020, 12, 1108. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P.; Li, Z.L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J. Geophys. Res. 2011, 116, D21. [Google Scholar] [CrossRef]
- Wei, G.; Cao, J.; Xie, H.; Xie, H.; Yang, Y.; Wu, C.; Cui, Y.; Luo, Y. Spatial-temporal variation in paddy evapotranspiration in subtropical climate regions based on the SEBAL model: A case study of the Ganfu Plain irrigation system, southern China. Remote Sens. 2022, 14, 1201. [Google Scholar] [CrossRef]
- Huang, D.; Wang, J.; Khayatnezhad, M. Estimation of actual evapotranspiration using soil moisture balance and remote sensing. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 2779–2786. [Google Scholar] [CrossRef]
- Sahnoun, F.; Abderrahmane, H.; Kaddour, M.; Abdelkader, K.; Mohamed, B.; Castro, T.A.H.D. Application of SEBAL and Ts/VI trapezoid models for estimating actual evapotranspiration in the Algerian semi-arid environment to improve agricultural water management. Rev. Bras. De Meteorol. 2021, 36, 219–236. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Gurney, R.J.; Hsu, A.Y. FIFE The variation in energy partition at surface flux sites. IAHS Publ. 1989, 186, 523–534. [Google Scholar]
- Shuttleworth, W.J. Macrohydrology—The new challenge for process hydrology. J. Hydrol. 1988, 100, 31–56. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Gurney, R.J. The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Q. J. R. Meteorol. Soc. 1990, 116, 497–519. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Park, S.; Al, E. Downscaling of MODIS one kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sens. 2016, 8, 215. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Al, E. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Al, E. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Terrestrial Hydrometeorology; John Wiley and Sons: West Sussex, UK, 2012. [Google Scholar]
- Laipelt, L.; Kayser, R.H.B.; Fleischmann, A.S. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. Isprs J. Photogramm. Remote Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Al, E. FAO Irrigation and drainage paper No. 56. Rome Food Agric. Organ. United Nations 1998, 56, e156. [Google Scholar]
- Ren, G.; Guo, J. Change in pan evaporation and the influential factors over China 1956-2000. J. Nat. Resour. 2006, 21, 31–44. [Google Scholar]
- GB/T 35230-2017; Specification for Surface Meteorological Observations—Evaporation. China Meteorological Administration: Beijing, China, 2017.
- Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–29. [Google Scholar]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- IFS Documentation CY41R2; IFS Documentation CY41R2—Part VII: ECMWF Wave Model. European Centre for Medium-Range Weather Forecasts: Reading, UK, 2016.
- Buck, A.L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 1981, 20, 1527–1532. [Google Scholar] [CrossRef]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. Clim. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Allen, R.G.; Burnett, B.; Kramber, W.; Al, E. Automated calibration of the metric-landsat evapotranspiration process. Jawra J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Sung, J.H.; Chung, E.S.; Kim, Y.; Al, E. Meteorological hazard assessment based on trends and abrupt changes in rainfall characteristics on the Korean peninsula. Theor. Appl. Clim. 2017, 127, 305–326. [Google Scholar] [CrossRef]
- Hao, X.; Chen, Y.; Xu, C. Impacts of climate change and human activities on the surface runoff in the Tarim River Basin over the last fifty years. Water Resour. Manag. 2008, 22, 1159–1171. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, X.; Xue, Y. Satellite-based analysis of regional evapotranspiration trends in a semi-arid area. Int. J. Remote Sens. 2019, 40, 3267–3288. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Zhu, M.; Wang, L.; Alizadeh, M.R.; Adamowski, J.F.; Wen, X.; Yin, Z. Variation in actual evapotranspiration and its ties to climate change and vegetation dynamics in northwest China. J. Hydrol. 2022, 607, 127533. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Feng, Q.; Li, Z.; Qin, Y. Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins. Hydrol. Earth Syst. Sci. 2021, 25, 3455–3469. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Su, B.; Zhai, J.; Gemmer, M. Trends of Calculated and Simulated Actual Evaporation in the Yangtze River Basin. J Clim. 2011, 24, 4494–4507. [Google Scholar] [CrossRef]
- Qiu, G.Y. Water and Energy: Evapotranspiration, Thermal Environment, and Energy Balance; Science Press: Beijing, China, 2014. [Google Scholar]
- Tang, R.; Li, Z.L.; Chen, K.S.; Jia, Y.; Li, C.; Sun, X. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agric. For. Meteorol. 2013, 174, 28–42. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Kong, J.L.; Li, Y.; Zhang, Z.Y.; Liu, H.H.; Jiang, Y.Z.; Zhong, Y.L.; Zhang, J.Y. An analysis of spatio-temporal characteristics and influencing factors of surface evapotranspiration in the Yinchuan Plain based on MOD16 data. Hydrogeol. Eng. Geol. 2021, 48, 53–61. [Google Scholar]
Meteorological Stations | Latitude | Longitude | Altitude(m) | Measured Instruments | Measured Time Series |
---|---|---|---|---|---|
53518 | 3904 | 10635 | 1126.9 | L | 1991–2018 |
S | 1991–2014 | ||||
53519 | 3921 | 10676 | 1092.2 | L | 1991–2018 |
S | 1991–2014 | ||||
53610 | 3856 | 10634 | 1106.0 | S | 1991–2014 |
53614 | 3847 | 10621 | 1111.6 | L | 1991–2018 |
S | 1991–2014 | ||||
53615 | 3881 | 10670 | 1101.0 | L | 1991–2018 |
S | 1991–2014 | ||||
53618 | 3822 | 10620 | 1118.4 | S | 1991–2014 |
53619 | 3812 | 10630 | 1115.7 | S | 1991–2014 |
Season | Image Data | NDVIcold | Tscold | NDVIhot | Tshot |
---|---|---|---|---|---|
Spring | LC08_129034_20200306 | 5% | 20% | 10% | 10% |
Summer | LC08_129033_20200813 | 5% | 20% | 10% | 20% |
Autum | LC08_129033_20201016 | 5% | 20% | 10% | 20% |
Winter | LC08_129033_20140117 | 5% | 10% | 1% | 10% |
Remote Sensing Image | NDVIcold | Tscold | NDVIhot | Tshot |
---|---|---|---|---|
LT05_129033_19870920 | 5% | 20% | 10% | 20% |
LT05_129033_19890824 | 5% | 20% | 10% | 20% |
LT05_129033_19910830 | 5% | 20% | 10% | 1% |
LT05_129033_19920816 | 5% | 20% | 10% | 20% |
LT05_129033_19930616 | 5% | 20% | 10% | 20% |
LT05_129033_19940822 | 5% | 20% | 10% | 20% |
LT05_129033_19960811 | 5% | 20% | 10% | 1% |
LT05_129033_19990820 | 5% | 20% | 10% | 1% |
LT05_129033_20010809 | 5% | 20% | 10% | 1% |
LT05_129033_20020625 | 5% | 20% | 10% | 1% |
LT05_129033_20060908 | 5% | 20% | 10% | 1% |
LT05_129033_20070709 | 5% | 10% | 1% | 10% |
LC08_129034_20140728 | 5% | 20% | 10% | 20% |
LC08_129033_20170906 | 5% | 20% | 10% | 20% |
LC08_129033_20180824 | 5% | 10% | 1% | 10% |
LC08_129034_20190811 | 5% | 20% | 10% | 20% |
LC08_129033_20200813 | 5% | 10% | 1% | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; Yang, X.; Li, Z.; Zhao, G.; He, P.; Xuan, Y.; Wang, Y. Tracking Evapotranspiration Patterns on the Yinchuan Plain with Multispectral Remote Sensing. Sustainability 2024, 16, 8025. https://doi.org/10.3390/su16188025
Meng J, Yang X, Li Z, Zhao G, He P, Xuan Y, Wang Y. Tracking Evapotranspiration Patterns on the Yinchuan Plain with Multispectral Remote Sensing. Sustainability. 2024; 16(18):8025. https://doi.org/10.3390/su16188025
Chicago/Turabian StyleMeng, Junzhen, Xiaoquan Yang, Zhiping Li, Guizhang Zhao, Peipei He, Yabing Xuan, and Yunfei Wang. 2024. "Tracking Evapotranspiration Patterns on the Yinchuan Plain with Multispectral Remote Sensing" Sustainability 16, no. 18: 8025. https://doi.org/10.3390/su16188025
APA StyleMeng, J., Yang, X., Li, Z., Zhao, G., He, P., Xuan, Y., & Wang, Y. (2024). Tracking Evapotranspiration Patterns on the Yinchuan Plain with Multispectral Remote Sensing. Sustainability, 16(18), 8025. https://doi.org/10.3390/su16188025