Unraveling the Valorization Potential of Pineapple Waste to Obtain Value-Added Products towards a Sustainable Circular Bioeconomy
Abstract
:1. Introduction
2. Pineapple Waste
3. Nutritional Composition of Pineapple Waste
3.1. Protein
3.2. Lipids
3.3. Carbohydrates
3.4. Minerals
4. Value-Added Product of Pineapple Waste
4.1. Fibers
Uses of Fibers
4.2. Phenolic Compounds
4.3. Enzymes
5. Biological Properties of Value-Added Products
5.1. Antioxidant Capacity
5.2. Antimicrobial Activity
5.3. Anticancer Activity
5.4. Antidiabetic Activity
5.5. Anti-Inflammatory Activity
6. Bioeconomy
6.1. Bioremediation
6.2. Biofuels
6.3. Products of Solid and Submerged Fermentation
6.3.1. Solid Fermentation
6.3.2. Submerged Fermentation
7. Technological Perspective
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kavuthodi, B.; Sebastian, D. Biotechnological valorization of pineapple stem for pectinase production by Bacillus subtilis BKDS1: Media formulation and statistical optimization for submerged fermentation. Biocatal. Agric. Biotechnol. 2018, 16, 715–722. [Google Scholar] [CrossRef]
- FAOSTAT. Cultivos. 2022. FAO Statistics, Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 13 February 2022).
- Castañeda Torres, S.; Rodriguez Miranda, J.P. Modelo de aprovechamiento sustentable de residuos sólidos orgánicos en Cundinamarca, Colombia. Univ. Salud 2017, 19, 116. [Google Scholar] [CrossRef]
- Ferronato, N.; Moresco, L.; Guisbert Lizarazu, G.E.; Gorritty Portillo, M.A.; Conti, F.; Torretta, V. Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: Focus on a Latin American developing context. Waste Manag. 2021, 128, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.F.; Cortés, C.F.; Zapata, P.; Jiménez, C. Extraction and identification of endopeptidases in convection dried papaya and pineapple residues: A methodological approach for application to higher scale. Waste Manag. 2018, 78, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Hamann, K.T.; Grundmann, P. Enhancing circular bioeconomy in Europe: Sustainable valorization of residual grassland biomass for emerging bio-based value chains. Sustain. Prod. Consum. 2024, 45, 265–280. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef]
- Rashad, M.M.; Mahmoud, A.E.; Ali, M.M.; Nooman, M.U.; Al-Kashef, A.S. Antioxidant and anticancer agents produced from pineapple waste by solid state fermentation. Int. J. Toxicol. Pharmacol. Res. 2015, 7, 287–296. [Google Scholar]
- Pereira, P.H.F.; Ornaghi, H.L.; Arantes, V.; Cioffi, M.O.H. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydr. Res. 2021, 499, 108227. [Google Scholar] [CrossRef]
- Zain, N.A.M.; Aziman, S.N.; Suhaimi, M.S.; Idris, A. Optimization of L(+) Lactic Acid Production from Solid Pineapple Waste (SPW) by Rhizopus oryzae NRRL 395. J. Polym. Environ. 2020, 29, 230–249. [Google Scholar] [CrossRef]
- Vega-Castro, O.; Contreras-Calderon, J.; León, E.; Segura, A.; Arias, M.; Pérez, L.; Sobral, P.J. Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. J. Biotechnol. 2016, 231, 232–238. [Google Scholar] [CrossRef]
- Ochieng, E.; Kiplimo, R.; Mutwiwa, U. Heliyon Optimization of anaerobic digestion parameters for biogas production from pineapple wastes co-digested with livestock wastes. Heliyon 2023, 9, e14041. [Google Scholar] [CrossRef]
- Astuti, W.; Sulistyaningsih, T.; Kusumastuti, E.; Thomas, G.Y.R.S.; Kusnadi, R.Y. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour. Technol. 2019, 287, 121426. [Google Scholar] [CrossRef] [PubMed]
- Paz-Arteaga, S.L.; Ascacio-Valdes, J.A.; Aguilar, C.N.; Cadena-Chamorro, E.; Serna-Cock, L.; Aguilar-Gonzalez, M.A.; Ramirez-Guzman, N.; Torres-Leon, C. Bioprocessing of pineapple waste for sustainable production of bioactive compounds using solid-state fermentation. Innov. Food Sci. Emerg. Technol. 2023, 85, 103313. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Chen, Y.-J.; Chou, C.-Y.; Wen, C.-C.; Cheng, C.-C. UV-protective activities of pineapple leaf extract in zebrafish embryos. Res. Chem. Intermed. 2019, 45, 65–75. [Google Scholar] [CrossRef]
- Hu, J.; Lin, H.; Shen, J.; Lan, J.; Ma, C.; Zhao, Y.; Lei, F.; Xing, D.; Du, L. Developmental toxicity of orally administered pineapple leaf extract in rats. Food Chem. Toxicol. 2011, 49, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Şehirli, A.Ö.; Sayiner, S.; Savtekin, G.; Velioğlu-Öğünç, A. Protective effect of bromelain on corrosive burn in rats. Burns 2020, 47, 6–12. [Google Scholar] [CrossRef]
- Laftah, W.A.; Wan Abdul Rahman, W.A. Pulping Process and the Potential of Using Non-Wood Pineapple Leaves Fiber for Pulp and Paper Production: A Review. J. Nat. Fibers 2016, 13, 85–102. [Google Scholar] [CrossRef]
- Dungani, R.; Karina, M.; Subyakto; Sulaeman, A.; Hermawan, D.; Hadiyane, A. Agricultural waste fibers towards sustainability and advanced utilization: A review. Asian J. Plant Sci. 2016, 15, 42–55. [Google Scholar] [CrossRef]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E.; Deng, Y. A review on pineapple leaves fibre and its composites. Int. J. Polym. Sci. 2015, 2015, 950567. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers—A review of potential eco-friendly applications to the construction industry. Sustain. Mater. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Campelo, P.H.; Ana, A.S.S.; Teresa, M.; Silva, P. ScienceDirect Starch nanoparticles: Production methods, structure, and properties for food applications. Curr. Opin. Food Sci. 2020, 33, 136–140. [Google Scholar] [CrossRef]
- Verma, D. Bagasse Fiber Composites: A Review Bagasse Fiber Composites—A Review; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Verma, M.; Kaur Brar, S.; Sarma, S.J.; Ajila, C.M.; Antzak, C.; Gassara, F. La quitina y el quitosano como floculantes naturales para la clarificación de la cerveza. J. Food Eng. 2015, 166, 80–85. [Google Scholar]
- Aditiya, H.B.; Chong, W.T.; Mahlia, T.M.I.; Sebayang, A.H.; Berawi, M.A.; Nur, H. Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: A review. Waste Manag. 2016, 47, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Kringel, D.H.; Dias, A.R.G.; Zavareze, E.D.R.; Gandra, E.A. Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch-Staerke 2020, 72, 1900200. [Google Scholar] [CrossRef]
- Roda, A.; Lambri, M. Food uses of pineapple waste and by-products: A review. Int. J. Food Sci. Technol. 2019, 54, 1009–1017. [Google Scholar] [CrossRef]
- Moreno-González, M.; Ottens, M. A Structured Approach to Recover Valuable Compounds from Agri-food Side Streams. Food Bioprocess Technol. 2021, 14, 1387–1406. [Google Scholar] [CrossRef]
- Ong, K.L.; Kaur, G.; Pensupa, N.; Uisan, K.; Lin, C.S.K. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresour. Technol. 2018, 248, 100–112. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of fruit industrial by-products—A case study on circular economy approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef]
- Campos, D.A.; Ribeiro, T.B.; Teixeira, J.A.; Pastrana, L.; Pintado, M.M. Integral valorization of pineapple (Ananas comosus L.) By-products through a green chemistry approach towards Added Value Ingredients. Foods 2020, 9, 60. [Google Scholar] [CrossRef]
- Banerjee, S.; Patti, A.F.; Ranganathan, V.; Arora, A. Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food Bioprod. Process. 2019, 117, 38–50. [Google Scholar] [CrossRef]
- Singh, Y.; Kumar, J.; Pramod Naik, T.; Pabla, B.S.; Singh, I. Processing and characterization of pineapple fiber reinforced recycled polyethylene composites. Mater. Today Proc. 2021, 44, 2153–2157. [Google Scholar] [CrossRef]
- Chaudhary, S.; Singh, B. Pineapple by-products utilization: Progress towards the circular economy. Food Humanit. 2024, 2, 100243. [Google Scholar] [CrossRef]
- Paz-Arteaga, S.L.; Cadena-Chamorro, E.; Serna-Cock, L.; Torres-Castañeda, H.; Pab, O.V.; Agudelo-Morales, C.E.; Ram, N.; Ascacio-Vald, J.A.; Aguilar, N.; Torres-Le, C. Dual Emerging Applications of Solid-State Fermentation (SSF) with Aspergillus niger and Ultrasonic-Assisted Extraction (UAE) for the Obtention of Antimicrobial Polyphenols from Pineapple Waste. Fermentation 2023, 9, 706. [Google Scholar] [CrossRef]
- Hamzah, A.F.A.; Hamzah, M.H.; Man, H.C.; Jamali, N.S.; Siajam, S.I.; Ismail, M.H. Recent Updates on the Conversion of Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives and Challenges. Agronomy 2021, 11, 2221. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Singh, A.K.; Srivastava, R.K.; Gupta, V.K. Recent Progress and Future Perspectives for Zero Agriculture Waste Technologies: Pineapple Waste as a Case Study. Sustainability 2023, 15, 3575. [Google Scholar] [CrossRef]
- Dhar, P.; Nickhil, C.; Pandiselvam, R.; Deka, S.C. Pineapple waste-based-biorefinery for sustainable generation of value-added products. Biomass Convers. Biorefin. 2023, 3, 1–22. [Google Scholar] [CrossRef]
- Banerjee, S.; Ranganathan, V.; Patti, A.; Arora, A. Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci. Technol. 2018, 82, 60–70. [Google Scholar] [CrossRef]
- Chen, A.; Guan, Y.J.; Bustamante, M.; Uribe, L.; Uribe-Lorío, L.; Roos, M.M.; Liu, Y. Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica. Biomass Bioenerg. 2020, 141, 105675. [Google Scholar] [CrossRef]
- Rodríguez, R.; Becquer, R.; Pino, Y.; López, D.; Rodríguez, R.C.; González, G.Y.L.; Izquierdo, R.E. Fruits production of pineapple (Ananas comosus (L.) Merr.) MD-2 from vitroplants. Cultiv. Trop. 2016, 37, 40–49. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, J.; Chen, J.; Fei, P. Modified pineapple bran cellulose by potassium permanganate as a copper ion adsorbent and its adsorption kinetic and adsorption thermodynamic. Food Bioprod. Process. 2020, 122, 82–88. [Google Scholar] [CrossRef]
- Oculi, J.; Bua, B.; Ocwa, A. Reactions of pineapple cultivars to pineapple heart rot disease in central Uganda. Crop Prot. 2020, 135, 105213. [Google Scholar] [CrossRef]
- Kiriga, A.W.; Haukeland, S.; Kariuki, G.M.; Coyne, D.L.; Beek, N.V. Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biol. Control 2018, 119, 27–32. [Google Scholar] [CrossRef]
- Hernandez-Rodriguez, L.; Ramos-Gonzalez, P.L.; Garcia-Garcia, G.; Zamora, V.; Peralta-Martin, A.M.; Peña, I.; Perez, J.M.; Ferriol, X. Geographic distribution of mealybug wilt disease of pineapple and genetic diversity of viruses infecting pineapple in Cuba. Crop Prot. 2014, 65, 43–50. [Google Scholar] [CrossRef]
- Monge, M. Guía para la Identificación de las Principales plagas y Enfermedades en el Cultivo de Piña; Instituto Nacional de Innovación y Transferencia de Tecnología: Apodaca, NL, Mexico, 2018; pp. 1–46.
- FAO. Food Loss and Food Waste: Causes and Solutions; Food and Agriculture Organization: Rome, Italy, 2011; ISBN 9781788975391. [Google Scholar]
- Abdullah, A. Solid and Liquid Pineapple Waste Utilization for Lactic Acid Fermentation. Reaktor 2007, 11, 50–52. [Google Scholar] [CrossRef]
- Seguí, L.; Fito Maupoey, P. An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J. Clean. Prod. 2018, 172, 1224–1231. [Google Scholar] [CrossRef]
- Burton-Freeman, B. Dietary composition and obesity: Do we need to look beyond dietary fat? J. Nutr. 2000, 130 (Suppl. 2), 272–275. [Google Scholar] [CrossRef]
- Micanquer-Carlosama, A.; Cortés-Rodríguez, M.; Serna-Cock, L. Formulation of a fermentation substrate from pineapple and sacha inchi wastes to grow Weissella cibaria. Heliyon 2020, 6, e03790. [Google Scholar] [CrossRef]
- Rani, D.S.; Nand, K. Ensilage of pineapple processing waste for methane generation. Waste Manag. 2004, 24, 523–528. [Google Scholar] [CrossRef]
- Bardiya, N.; Somayaji, D.; Khanna, S. Biomethanation of banana peel and pineapple waste. Bioresour. Technol. 1996, 58, 73–76. [Google Scholar] [CrossRef]
- Dibanda Romelle, F.; Ashwini, R.P.; Manohar, R.S. Chemical composition of some selected fruit peels. Eur. J. Food Sci. Technol. 2016, 4, 12–21. [Google Scholar]
- Aruna, T.E. Production of value-added product from pineapple peels using solid state fermentation. Innov. Food Sci. Emerg. Technol. 2019, 57, 102193. [Google Scholar] [CrossRef]
- Kodagoda, K.; Marapana, R. Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties KHGK Kodagoda and RAUJ Marapana. J. Pharmacogn. Phytochem. 2017, 6, 492–497. [Google Scholar]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Matsushita, M.; Visentainer, J.V. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- Sánchez Pardo, M.E.; Ramos Cassellis, M.E.; Mora Escobedo, R.; Jiménez García, E. Chemical Characterisation of the Industrial Residues of the Pineapple (Ananas comosus). J. Agric. Chem. Environ. 2014, 3, 53–56. [Google Scholar] [CrossRef]
- Mabel, M.; Guidolin, S.; Brazaca, C.; Tadeu, C.; Ratnayake, W.S.; Flores, R.A.; Bianchini, A. Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem. 2014, 163, 23–30. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Alwani, M.S.; Omar, A.K.M. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 2006, 1, 220–232. [Google Scholar] [CrossRef]
- Saha, S.C.; Das, B.K.; Ray, P.K.; Pandey, S.N.; Goswami, K. SEM Studies of the Surface and Fracture Morphology of Pineapple Leaf Fibers. Text. Res. J. 1990, 60, 726–731. [Google Scholar] [CrossRef]
- Banerjee, R.; Chintagunta, A.D.; Ray, S. A cleaner and eco-friendly bioprocess for enhancing reducing sugar production from pineapple leaf waste. J. Clean. Prod. 2017, 149, 387–395. [Google Scholar] [CrossRef]
- Abdullah, A.; Mat, H. Characterisation of Solid and Liquid Pineapple Waste. Reaktor 2008, 12, 48. [Google Scholar] [CrossRef]
- Nakthong, N.; Wongsagonsup, R.; Amornsakchai, T. Industrial Crops & Products Characteristics and potential utilizations of starch from pineapple stem waste. Ind. Crops Prod. 2017, 105, 74–82. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- El-Demerdash, F.M.; Baghdadi, H.H.; Ghanem, N.F.; Mhanna, A.B.A. Nephroprotective role of bromelain against oxidative injury induced by aluminium in rats. Environ. Toxicol. Pharmacol. 2020, 80, 103509. [Google Scholar] [CrossRef] [PubMed]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Aurelio, R.H.; Mextlisol, C.V.S.; Páramo-Calderón, D.E.; Acevedo-Gómez, R.; Gerardo, G.G.; Nolasco-Hipolito, C.; Eduardo, B.G.J.; Carlos, C.A.J.; Alejandro, A.S. Functionality and characterization of modified starch films with pineapple leaf fibers. Int J. Biol. Macromol. 2023, 246, 125611. [Google Scholar] [CrossRef]
- Jaramillo, N.; Hoyos, D.; Santa, J.F. Composites with pineapple-leaf fibers manufactured by layered compression molding. Ing. Compet. 2016, 18, 151–162. [Google Scholar]
- Laftah, W.A.; Abdul Rahaman, W.A.W. Chemical pulping of waste pineapple leaves fiber for kraft paper production. J. Mater. Res. Technol. 2015, 4, 254–261. [Google Scholar] [CrossRef]
- Hazarika, D.; Gogoi, N.; Jose, S.; Das, R.; Basu, G. Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. J. Clean. Prod. 2017, 141, 580–586. [Google Scholar] [CrossRef]
- Justice, M.; Puseletso, J.; Mpho, M.; Mngomezulu, M.; Tywabi-ngeva, Z. Heliyon Chemical, thermal and morphological properties of polybutylene succinate-waste pineapple leaf fibres composites. Heliyon 2023, 9, e21238. [Google Scholar] [CrossRef]
- Gnanasekaran, S.; Nordin, N.I.A.A.; Jamari, S.S.; Shariffuddin, J.H. Effect of Steam-Alkaline coupled treatment on N36 cultivar pineapple leave fibre for isolation of cellulose. Mater. Today Proc. 2021, 48, 753–760. [Google Scholar] [CrossRef]
- Putra, A.; Or, K.H.; Selamat, M.Z.; Nor, M.J.M.; Hassan, M.H.; Prasetiyo, I. Sound absorption of extracted pineapple-leaf fibres. Appl. Acoust. 2018, 136, 9–15. [Google Scholar] [CrossRef]
- Anindya, A.L.; Oktaviani, R.D.; Praevina, B.R.; Damayanti, S.; Kurniati, N.F.; Riani, C.; Rachmawati, H. Xylan from Pineapple Stem Waste: A Potential Biopolymer for Colonic Targeting of Anti-inflammatory Agent Mesalamine. AAPS PharmSciTech 2019, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Stevanic, J.S.; Joly, C.; Mikkonen, K.S.; Pirkkalainen, K.; Serimaa, R.; Rémond, C.; Toriz, G.; Gatenholm, P.; Tenkanen, M.; Salmén, L. Bacterial Nanocellulose-Reinforced Arabinoxylan Films. J. Appl. Polym. Sci. 2011, 122, 1030–1039. [Google Scholar] [CrossRef]
- Prasad, S.; Singh, A.; Joshi, H.C. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 2007, 50, 1–39. [Google Scholar] [CrossRef]
- Kim, M.; Day, D.F. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J. Ind. Microbiol. Biotechnol. 2011, 38, 803–807. [Google Scholar] [CrossRef]
- Steingass, C.B.; Glock, M.P.; Schweiggert, R.M.; Carle, R. Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L.] Merr.) infructescence by HPLC-DAD-ESI-MSn and GC-MS analysis. Anal. Bioanal. Chem. 2015, 407, 6463–6479. [Google Scholar] [CrossRef]
- Brito, T.; Lima, L.R.; Santos, M.B.; Moreira, R.A.; Cameron, L.; Fai, A.C.; Ferreira, M.S. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MSE. Food Chem. 2021, 339, 127882. [Google Scholar] [CrossRef]
- Li, T.; Shen, P.; Liu, W.; Liu, C.; Liang, R.; Yan, N.; Chen, J. Major polyphenolics in pineapple peels and their antioxidant interactions. Int. J. Food Prop. 2014, 17, 1805–1817. [Google Scholar] [CrossRef]
- Correia, R.T.P.; McCue, P.; Magalhães, M.M.A.; Macêdo, G.R.; Shetty, K. Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochem. 2004, 39, 2167–2172. [Google Scholar] [CrossRef]
- Hossain, M.A.; Rahman, S.M.M. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res. Int. 2011, 44, 672–676. [Google Scholar] [CrossRef]
- Lizardi-Jiménez, M.A.; Hernández-Martínez, R. Solid state fermentation (SSF): Diversity of applications to valorize waste and biomass. 3 Biotech 2017, 7, 44. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Li, H.; Deng, Z.; Tsao, R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci. Technol. 2020, 105, 347–362. [Google Scholar] [CrossRef]
- Coelho Silvestre, M.P.; Linhares Carreira, R.; Ramalho Silva, M.; Campos Corgosinho, F.; Pereira Monteiro, M.R.; Aley Morais, H. Effect of pH and Temperature on the Activity of Enzymatic Extracts from Pineapple Peel. Food Bioprocess Technol. 2012, 5, 1824–1831. [Google Scholar] [CrossRef]
- Ketnawa, S.; Chaiwut, P.; Rawdkuen, S. Pineapple wastes: A potential source for bromelain extraction. Food Bioprod. Process. 2012, 90, 385–391. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Schmidt, E.M.; Bonafe, E.G.; Eberlin, M.N.; Sawaya, A.C.H.F.; Visentainer, J.V. Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Romaní, A.; Aguilar, C.N.; Teixeira, J. Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innov. Food Sci. Emerg. Technol. 2018, 47, 38–45. [Google Scholar] [CrossRef]
- Diaz-Vela, J.; Totosaus, A.; Cruz-Guerrero, A.E.; De Lourdes Pérez-Chabela, M. In vitro evaluation of the fermentation of added-value agroindustrial by-products: Cactus pear (Opuntia ficus-indica L.) peel and pineapple (Ananas comosus) peel as functional ingredients. Int. J. Food Sci. Technol. 2013, 48, 1460–1467. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Venkateswarlu, K.; Megharaj, M. Examining the polyphenol content, antioxidant activity and fatty acid composition of twenty-one different wastes of fruits, vegetables, oilseeds and beverages. SN Appl. Sci. 2020, 2, 673. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Manuel Domínguez, J.; Sineiro, J.; Domínguez, H.; Núñez, M.J.; Carlos Parajó, J. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Gnanasaraswathi, M.; Lakshmipraba, S.; Rajadurai, R.P.; Abhinayashree, M.; Fathima, B.; Lakshmipriya, A.; Kamatchi, S. Potent anti-oxidant behaviour of citrus fruit peels and their bactericidal activity against multi drug resistant organism Pseudomonas aeruginosa. J. Chem. Pharm. Sci. 2014, 2, 139–144. [Google Scholar]
- Upadhyay, A.; Lama, J.P.; Tawata, S. Utilization of Pineapple Waste: A Review. J. Food Sci. Technol. Nepal 2010, 6, 10–18. [Google Scholar] [CrossRef]
- Bhattacharyya, B.K. Bromelain: An overview. Indian J. Nat. Prod. Resour. 2008, 7, 359–363. [Google Scholar]
- Ghanbari, R.; Ebrahimpour, A. Separation and identification of bromelain-generated antibacterial peptides from Actinopyga lecanora. Food Sci. Biotechnol. 2018, 27, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Shanbhag, T.; Kothare, A. Applications of bromelain from pineapple waste towards acne. Saudi J. Biol. Sci. 2021, 28, 1001–1009. [Google Scholar] [CrossRef]
- Dutta, S.; Bhattacharyya, D. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. J. Ethnopharmacol. 2013, 150, 451–457. [Google Scholar] [CrossRef]
- Rollas, S.; Küçükgüzel, Ş.G. Biological activities of hydrazone derivatives. Molecules 2007, 12, 1910–1939. [Google Scholar] [CrossRef]
- Pauzi, A.Z.M.; Yeap, S.K.; Abu, N.; Lim, K.L.; Omar, A.R.; Aziz, S.A.; Chow, A.L.T.; Subramani, T.; Tan, S.G.; Alitheen, N.B. Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro. Chin. Med. 2016, 11, 46. [Google Scholar] [CrossRef]
- Beuth, J.; Braun, J.M. Modulation of murine tumor growth and colonization by bromelaine, an extract of the pineapple plant (Ananas comosum L.). In Vivo 2005, 19, 483–486. [Google Scholar]
- Xie, W.; Wang, W.; Su, H.; Xing, D.; Pan, Y.; Du, L. Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 143, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Xing, D.; Sun, H.; Wang, W.; Ding, Y.; Du, L. The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. Am. J. Chin. Med. 2005, 33, 95–105. [Google Scholar] [CrossRef]
- Wu, L.; Parhofer, K.G. Diabetic dyslipidemia. Metabolism 2014, 63, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Hale, L.P.; Greer, P.K.; Trinh, C.T.; Gottfried, M.R. Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clin. Immunol. 2005, 116, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Bhattacharya, S.; Pandey, J.; Biswas, M. Evaluation of acute anti-inflammatory effect of ananas comosus leaf extracts in rats. Pharmacologyonline 2011, 1315, 1312–1315. [Google Scholar]
- Secor, E.R.; Carson IV, W.F.; Cloutier, M.M.; Guernsey, L.A.; Schramm, C.M.; Wu, C.A.; Thrall, R.S. Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell. Immunol. 2005, 237, 68–75. [Google Scholar] [CrossRef]
- Yafetto, L.; Odamtten, G.T.; Wiafe-Kwagyan, M. Valorization of agro-industrial wastes into animal feed through microbial fermentation: A review of the global and Ghanaian case. Heliyon 2023, 9, e14814. [Google Scholar] [CrossRef]
- Mir-Cerdà, A.; Nuñez, O.; Granados, M.; Sentellas, S.; Saurina, J. An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. TrAC—Trends Anal. Chem. 2023, 161, 116994. [Google Scholar] [CrossRef]
- Grilli, G.; Cantillo, T.; Turner, K.; Erazo, J.; Murcia López, M.A.; Valle Parra, J.S.; Cardona, F.G.; Ferrini, S. A decision support procedure for the bioeconomy transition: A Colombian case study. J. Environ. Manag. 2024, 352, 120042. [Google Scholar] [CrossRef]
- Ajayi, V.A.; Lateef, A. Biotechnological valorization of agrowastes for circular bioeconomy: Melon seed shell, groundnut shell and groundnut peel. Clean. Circ. Bioecon. 2023, 4, 100039. [Google Scholar] [CrossRef]
- Mishra, K.; Siwal, S.S.; Nayaka, S.C.; Guan, Z.; Thakur, V.K. Waste-to-chemicals: Green solutions for bioeconomy markets. Sci. Total Environ. 2023, 887, 164006. [Google Scholar] [CrossRef]
- Dai, H.; Huang, Y.; Zhang, Y.; Zhang, H.; Huang, H. Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption. Cellulose 2019, 26, 3825–3844. [Google Scholar] [CrossRef]
- Veeramalai, S.; Nasya, N.; Ibnu, H. Industrial Crops & Products Development of organic porous material from pineapple waste as a support for enzyme and dye adsorption. Ind. Crops Prod. 2022, 181, 114823. [Google Scholar] [CrossRef]
- Paudyal, H.; Adhikari, S.; Nath, K.; Gyawali, D. Results in Chemistry Synthesis, characterization and cation exchange performance of chemically modified pineapple waste biomass for the removal of Fe (II) from water. Results Chem. 2022, 4, 100608. [Google Scholar] [CrossRef]
- Van Tran, T.; Nguyen, D.T.C.; Nguyen, T.T.T.; Nguyen, D.H.; Alhassan, M.; Jalil, A.A.; Nabgan, W.; Lee, T. A critical review on pineapple (Ananas comosus) wastes for water treatment, challenges and future prospects towards circular economy. Sci. Total Environ. 2023, 856, 158817. [Google Scholar] [CrossRef]
- Namsree, P.; Suvajittanont, W.; Puttanlek, C.; Uttapap, D.; Rungsardthong, V. Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor. J. Environ. Manag. 2012, 110, 40–47. [Google Scholar] [CrossRef]
- Casabar, J.T.; Unpaprom, Y.; Ramaraj, R. Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Convers. Biorefin. 2019, 9, 761–765. [Google Scholar] [CrossRef]
- de la Rosa, O.; Múñiz-Marquez, D.B.; Contreras-Esquivel, J.C.; Wong-Paz, J.E.; Rodríguez-Herrera, R.; Aguilar, C.N. Improving the fructooligosaccharides production by solid-state fermentation. Biocatal. Agric. Biotechnol. 2020, 27, 101704. [Google Scholar] [CrossRef]
- da Silva, C.N.; Bronzato, G.R.F.; Cesarino, I.; Leão, A.L. Second-generation ethanol from pineapple leaf fibers. J. Nat. Fibers 2020, 17, 113–121. [Google Scholar] [CrossRef]
- Ahmad, W.A.; Venil, C.K.; Aruldass, C.A. Production of Violacein by Chromobacterium violaceum Grown in Liquid Pineapple Waste: Current Scenario. In Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas; Springer: Cham, Switzerland, 2015; pp. 45–58. [Google Scholar] [CrossRef]
- Sukruansuwan, V.; Napathorn, S.C. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol. Biofuels 2018, 11, 202. [Google Scholar] [CrossRef]
- Cano y Postigo, L.O.; Jacobo-Velázquez, D.A.; Guajardo-Flores, D.; Garcia Amezquita, L.E.; García-Cayuela, T. Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Biosci. 2021, 41, 100926. [Google Scholar] [CrossRef]
- Umesh, M.; Suresh, S.; Santosh, A.S.; Prasad, S.; Chinnathambi, A.; Al Obaid, S.; Jhanani, G.; Shanmugam, S. Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environ. Res. 2023, 229, 115973. [Google Scholar] [CrossRef]
- Mardawati, E.; Maulida, D.; Rachmadona, N.; Satoto, R.; Karina, M. Heliyon Pineapple core from the canning industrial waste for bacterial cellulose production by Komagataeibacter xylinus. Heliyon 2023, 9, e22010. [Google Scholar] [CrossRef]
- Omana, R.; Sreevidya, N.; Akhila, S.; Krishnan, T.; Dileep, N.R.; Júlio, C.; Porto, L.; Vandenberghe, D.S.; Ricardo, C.; Sindhu, R.; et al. Bioresource Technology Whole-cell synthesis of 2,5-furandicarboxylic acid from pineapple waste under various fermentation strategies. Bioresour. Technol. 2023, 386, 129545. [Google Scholar] [CrossRef]
- Roda, A.; De Faveri, D.M.; Dordoni, R.; Lambri, M. Vinegar production from pineapple wastes-preliminary saccharification trials. Chem. Eng. Trans. 2014, 37, 607–612. [Google Scholar] [CrossRef]
- Subramaniyan, S.; Paramasivam, S.; Kannaiyan, M.; Chinnaiyan, U. Utilization of Fruit Waste f or the Production of Citric Acid by using. J. Drug Deliv. Ther. 2019, 9, 9–14. [Google Scholar]
- Jianlong, W. Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresour. Technol. 2000, 75, 245–247. [Google Scholar] [CrossRef]
- Rattu, G.; Krishna, M. Enzyme-free colorimetric nanosensor for the rapid detection of lactic acid in food quality analysis. J. Agric. Food Res. 2022, 7, 100268. [Google Scholar] [CrossRef]
- Sangkharak, K.; Wangsirikul, P.; Pichid, N.; Yunu, T.; Prasertsan, P. Partitioning of bromelain from pineapple stem (Smooth cayenne) by aqueous two phase system and its application for recovery and purification of polyhydroxyalkanoate. Chiang Mai J. Sci. 2016, 43, 794–807. [Google Scholar]
- Santos, D.I.; Martins, C.F.; Amaral, R.A.; Saraiva, J.A.; Vicente, A.; Mold, M. Pineapple (Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules 2021, 26, 3216. [Google Scholar] [CrossRef]
- Rathnakumar, K.; Anal, A.; Lakshmi, K. Optimization of Ultrasonic Assisted Extraction of Bioactive components from different Parts of Pineapple WasteOptimization of Ultrasonic Assisted Extraction of Bioactive components from different Parts of Pineapple WasteOptimization of Ultrasonic Assisted. Int. J. Agric. Environ. Biotechnol. 2017, 10, 553. [Google Scholar] [CrossRef]
- Nor, S.; Anis, S.; Ching, W.; Mohd, A.; Idayu, I.; Hui, S.; Zahran, A. Microwave-assisted green synthesis of silver nanoparticles using pineapple leaves waste. Clean. Eng. Technol. 2023, 15, 100660. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Anis, S.; Sukri, M.; Andu, Y.; Tuan, Z.; Sarijan, S.; Naim, M.; Pauzi, F.; Seong, L.; Dawood, M.A.O.; Abdul, Z. Saudi Journal of Biological Sciences Effect of feeding pineapple waste on growth performance, texture quality and flesh colour of nile tilapia (Oreochromis niloticus) fingerlings. Saudi J. Biol. Sci. 2022, 29, 2514–2519. [Google Scholar] [CrossRef]
Source | Protein (%) | Lipids (%) | Total Carbohydrates (%) | Ashes (%) | References |
---|---|---|---|---|---|
Peel | |||||
Colombia (Gold MD2) | 0.80 | 6.65 | [51] | ||
Colombia (Gold MD2) | 0.63 | 0.21 | 27.08 | [11] | |
India | 3.13 | 3.88 | [52] | ||
India | 35.00 | 10.60 | [53] | ||
India (Indian Kew) | 3.90 | 5.90 | [39] | ||
India (Smooth Cayenne) | 5.11 | 5.31 | 55.52 | 4.39 | [54] |
Nigeria (Smooth Cayenne) | 2.85 | 74.08 | 6.80 | [55] | |
Sri lanka (Mauritius) | 5.04 | 2.78 | 43.95 | [56] | |
Brazil | 8.80 | 1.10 | 1.50 | [57] | |
Mexico | 0.75 | 2.00 | 1.50 | [58] | |
Core | |||||
Colombia (Gold MD2) | 0.40 | 7.21 | [51] | ||
Sri lanka (Mauritius) | 3.67 | 2.35 | 83.03 | [56] | |
Mexico | 0.85 | 3.17 | 1.30 | [58] | |
Crown | |||||
Mexico | 0.70 | 3.50 | 7.37 | [58] | |
Brazil | 5.20 | [9] | |||
Pomace | |||||
Costa Rica (Gold MD2) | 4.71 | 0.61 | 43.46 | 2.24 | [59] |
Leaf | |||||
Costa Rica | 6.90 | 3.00 | 6.10 | [40] | |
Malaysia | 2.00 | [60] | |||
India | 0.90 | [61] |
Source | Total Fiber (%) | Lignin (%) | Hemicellulos (%) | Cellulose (%) | Pectin (%) | References |
---|---|---|---|---|---|---|
Peel | ||||||
India | 11.52 | 7.00 | 11.20 | 6.70 | [52] | |
India | 11.70 | 19.80 | [53] | |||
India (Indian Kew) | 10.4 | 31.80 | 20.90 | [32] | ||
India (Smooth Cayenne) | 14.80 | [54] | ||||
Nigeria (Smooth Cayenne) | 13.96 | [55] | ||||
Sri lanka (Mauritius) | 42.02 | [56] | ||||
Brazil | 16.30 | [57] | ||||
Mexico | 65.00 | 10.01 | 28.69 | 40.55 | 2.49 | [58] |
Core | ||||||
Sri lanka (Mauritius) | 9.14 | [56] | ||||
Mexico | 47.60 | 5.78 | 28.53 | 24.53 | 1.58 | [58] |
Crown | ||||||
Mexico | 62.50 | 13.88 | 21.88 | 43.53 | 2.32 | [58] |
Brazil | 24.30 | 19.10 | 17.40 | [9] | ||
India (Giant Kew) | 21.00 | 41.10 | [62] | |||
Leaf | ||||||
Costa Rica | 7.30 | 26.10 | 22.60 | [40] | ||
Malaysia | 10.50 | 73.40 | [60] | |||
India | 6.04 | 68.50 | 1.10 | [61] |
Rt (min) | N b (m/z) | Compounds | Parts of the Fruit | |
---|---|---|---|---|
Peel | Crown | |||
8.1 | 472 | Glutathione derivative | ● | |
13.0 | 371 | Caffeoyl aldarate | ● | ● |
11.4 | 355 | p-Coumaroyl aldaratec | ● | ● |
12.2 | 289 | 4-Hydroxy-2,5-dimethyl-3(2H)-furanone-hexoside | ● | |
14.6 | 385 | Feruloyl aldarate | ● | ● |
15.5 | 360 | 1-(1H-Pyrrole-2-carboxyl)-glucuronosylglycerol | ● | ● |
16.1 | 341 | Caffeoyl hexoside | ● | |
20.7 | 331 | Galloyl hexoside | ● | |
22.5 | 353 | 5-Caffeoylquinic acid (chlorogenic acid) | ● | |
23.1 | 355 | Feruloyl hexoside | ● | ● |
24.5 | 385 | Sinapoyl hexoside | ● | |
24.6 | 253 | Caffeoylglycerol | ● | |
26.0 | 660 | S-Sinapylglutathione derivative | ● | |
29.4 | 438 | S-p-Coumarylglutathione | ● | |
32.5 | 337 | p-Coumaroylisocitrate or quinic acid | ● | ● |
33.1 | 411 | N-L-γ-Glutamyl-S-coniferyl-L-cysteine | ● | |
33.9 | 441 | N-L-γ-Glutamyl-S-sinapyl-L-cysteine | ● | |
34.0 | 367 | Feruloylisocitrate or quinic acid | ● | ● |
36.6 | 625 | Quercetin dihexoside | ● | |
37.6 | 579 | Syringaresinol hexoside | ● | |
40.0 | 463 | Quercetin hexoside | ● | |
43.8 | 623 | Isorhametin rhamosyl-hexoside | ● | |
44.8 | 415 | Dicaffeoylglycerol | ● | ● |
47.2 | 399 | p-Coumaroyl-caffeoylglycerol | ● | |
47.4 | 429 | Feruloyl-caffeoylglycerol | ● | ● |
49.4 | 413 | p-Coumaroyl-feruloylglycerol | ● | ● |
By-Products | Total Phenols a | DPPH. | ABTS.+ | References |
---|---|---|---|---|
Pulp, peel, core, and crown | 1.12 | 86.00 b | [8] | |
Peel and crown | 120.90 | 4.80 c | 7.70 c | [67] |
Pulp, peel, core, and crown | 3.00 | 86.90 b | [82] | |
Crown | 5.80 | 0.05 c | 0.10 c | [80] |
Peel | 4.30 | [88] | ||
Peel and Core | 27.40 b | 57.10 b | [89] | |
Peel | 3.00 | 209.60 d | [31] | |
Core | 1.57 | 93.40 d | ||
Peel | 69.00 b | [90] | ||
Peel | 68.30 | 78.10 b | [91] |
Solid Fermentation | |||||
---|---|---|---|---|---|
Waste | Microorganism | Product | Unfermented Material | Fermented Material | References |
Pulp, peel, core, and crown | Kluyveromyces marxianus | Phenolic compounds (mg GAE/g) | 1.12 | 1.20 | [8] |
Pulp, peel, core, and crown | Rhizopus oligosporus | Phenolic compounds (mg GAE/g) | 3.00 | 5.20 | [82] |
Peel | Trichoderma viride ATCC 36316 | Crude protein (%) | 4.53 | 14.89 | [55] |
Peel | Ralsthonia eutropha | Polyhydroxyalkanoates (mg/100 g) | 44 | [11] | |
Pulp, peel, core, and crown | Rhizopus oryzae NRRL 395 | Lactic acid (mg/g) | 103.69 | [10] | |
Peel | Aspergillus oryzae | Fructooligosaccharides (g/L) | 4.15 | [122] | |
Submerged Fermentation | |||||
Stem | Bacillus subtilis BKDS1 | Pectinase (U/mL) | 1508.50 | [1] | |
Leaf | Saccharomyces cerevisiae (SA-1) | Bioethanol (g/L) | 15.24 | [123] | |
Peel | Saccharomyces cerevisiae | Bioetanol (g/L) | 30.77 | [121] | |
Peel | Lactobacillus rhamnosus GG | Lactic acid (g/L) | 2.63 | [90] | |
Pediococcus pentosaceus UAM22 | Acetic acid (g/L) | 0.49 | |||
Propionic acid (g/L) | 0.15 | ||||
Pulp, peel, core, and crown | Lactobacillus delbrueckii subsp. delbrueckii ATCC 9649 | Lactic acid (g/L) | 13.10 | [48] | |
Pulp, peel, core, and crown | Chromobacterium violaceum | Violacein (mg/L) | 5790 | [124] | |
Peel and core | Cupriavidus necator cepa A-04 | Polyhydroxybutyrate (g/L) | 57.20 | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paz-Arteaga, S.L.; Cadena-Chamorro, E.; Goméz-García, R.; Serna-Cock, L.; Aguilar, C.N.; Torres-León, C. Unraveling the Valorization Potential of Pineapple Waste to Obtain Value-Added Products towards a Sustainable Circular Bioeconomy. Sustainability 2024, 16, 7236. https://doi.org/10.3390/su16167236
Paz-Arteaga SL, Cadena-Chamorro E, Goméz-García R, Serna-Cock L, Aguilar CN, Torres-León C. Unraveling the Valorization Potential of Pineapple Waste to Obtain Value-Added Products towards a Sustainable Circular Bioeconomy. Sustainability. 2024; 16(16):7236. https://doi.org/10.3390/su16167236
Chicago/Turabian StylePaz-Arteaga, Sarah L., Edith Cadena-Chamorro, Ricardo Goméz-García, Liliana Serna-Cock, Cristóbal N. Aguilar, and Cristian Torres-León. 2024. "Unraveling the Valorization Potential of Pineapple Waste to Obtain Value-Added Products towards a Sustainable Circular Bioeconomy" Sustainability 16, no. 16: 7236. https://doi.org/10.3390/su16167236
APA StylePaz-Arteaga, S. L., Cadena-Chamorro, E., Goméz-García, R., Serna-Cock, L., Aguilar, C. N., & Torres-León, C. (2024). Unraveling the Valorization Potential of Pineapple Waste to Obtain Value-Added Products towards a Sustainable Circular Bioeconomy. Sustainability, 16(16), 7236. https://doi.org/10.3390/su16167236