Exploring Thermal Discomfort during Mediterranean Heatwaves through Softscape and Hardscape ENVI-Met Simulation Scenarios
<p>Map and aerial view (google maps) of the selected case study, in the refugee enclave of the Kapodistrian Municipality of Nikaia; source of background AutoCAD map: Laboratory of Spatial Planning and GIS, School of Architecture NTUA, 2013.</p> "> Figure 2
<p>Methodology scheme.</p> "> Figure 3
<p>Scenario 1 (baseline) 2D and 3D ENVI-met models.</p> "> Figure 4
<p>Scenario 2, ENVI-met model, with coating materials.</p> "> Figure 5
<p>Scenario 3, 2D and 3D ENVI-met models.</p> "> Figure 6
<p>Scenario 4, 2D and 3D ENVI-met models.</p> "> Figure 7
<p>Scenario 5, 2D and 3D ENVI-met models.</p> "> Figure 8
<p>(<b>a</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., potential air temperature. (<b>b</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., PET. (<b>c</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., UTCI.</p> "> Figure 8 Cont.
<p>(<b>a</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., potential air temperature. (<b>b</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., PET. (<b>c</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., UTCI.</p> "> Figure 9
<p>(<b>a</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, potential air temperature, 15:00 p.m. (<b>b</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, PET, 15:00 p.m. (<b>c</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, UTCI, 15:00 p.m.</p> "> Figure 10
<p>(<b>a</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, potential air temperature, 20:00 p.m. (<b>b</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023 PET, 20:00 p.m. (<b>c</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, UTCI, 20:00 p.m.</p> "> Figure 10 Cont.
<p>(<b>a</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, potential air temperature, 20:00 p.m. (<b>b</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023 PET, 20:00 p.m. (<b>c</b>) Scenario 1, Simulation using ENVI-met, 23 July 2023, UTCI, 20:00 p.m.</p> "> Figure 11
<p>(<b>a</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., potential air temperature. (<b>b</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., PET. (<b>c</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., UTCI.</p> "> Figure 12
<p>(<b>a</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., potential air temperature. (<b>b</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., PET. (<b>c</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., UTCI.</p> "> Figure 13
<p>(<b>a</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., potential air temperature. (<b>b</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., PET. (<b>c</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., UTCI.</p> "> Figure 13 Cont.
<p>(<b>a</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., potential air temperature. (<b>b</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., PET. (<b>c</b>) Scenario 2, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., UTCI.</p> "> Figure 14
<p>(<b>a</b>) Scenario 3, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., potential air temperature. (<b>b</b>) Scenario 3, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., PET. (<b>c</b>) Scenario 3, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., UTCI.</p> "> Figure 15
<p>(<b>a</b>) Scenario 3, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., potential air temperature. (<b>b</b>) Scenario 3, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., PET. (<b>c</b>) Scenario 3, Simulation using ENVI-23 July 2023, 15:00 p.m., UTCI.</p> "> Figure 16
<p>(<b>a</b>) Scenario 3, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., potential air temperature. (<b>b</b>) Scenario 3, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., PET. (<b>c</b>) Scenario 3, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., UTCI.</p> "> Figure 17
<p>(<b>a</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., potential air temperature. (<b>b</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., PET. (<b>c</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., UTCI.</p> "> Figure 17 Cont.
<p>(<b>a</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., potential air temperature. (<b>b</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., PET. (<b>c</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 10:00 a.m., UTCI.</p> "> Figure 18
<p>(<b>a</b>)Scenario 4, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., potential air temperature. (<b>b</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., PET. (<b>c</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., UTCI.</p> "> Figure 18 Cont.
<p>(<b>a</b>)Scenario 4, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., potential air temperature. (<b>b</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., PET. (<b>c</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., UTCI.</p> "> Figure 19
<p>(<b>a</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., potential air temperature. (<b>b</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., PET. (<b>c</b>) Scenario 4, Simulation using ENVI-met, 23 July 2023, 20:00 p.m., UTCI.</p> "> Figure 20
<p>(<b>a</b>) Scenario 5, Simulation using ENVI-met, 23 July 2023, 10:00 p.m., potential air temperature. (<b>b</b>) Scenario 5, Simulation using ENVI-met, 23 July 2023, 10:00 p.m., PET. (<b>c</b>) Scenario 5, Simulation using ENVI-met, 23 July 2023, 10:00 p.m., UTCI.</p> "> Figure 21
<p>(<b>a</b>) Scenario 5, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., potential air temperature. (<b>b</b>) Scenario 5, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., PET. (<b>c</b>) Scenario 5, Simulation using ENVI-met, 23 July 2023, 15:00 p.m., UTCI.</p> "> Figure 22
<p>(<b>a</b>) Simulation using ENVI-met, 23 July 2023, 20:00 p.m., potential air temperature. (<b>b</b>) Simulation using ENVI-met, 23 July 2023, 20:00 p.m., PET. (<b>c</b>) Simulation using ENVI-met, 23 July 2023, 20:00 p.m., UTCI.</p> ">
Abstract
:1. Introduction
1.1. Elements of Landscape Design: Softscape and Hardscape
1.2. Evaluation of Different Landscape Scenarios via ENVI-Met
- Softscaping Techniques
- Hardscaping Techniques
2. Materials and Methods
3. Results
3.1. Scenario 1: Existing Spatial Arrangement (Baseline)
3.2. Combined Softscaping Techniques—Scenario 2: Emphasis on Soil Surfaces
3.3. Combined Softscaping Techniques—Scenario 3: Emphasis on Grass Surfaces
3.4. Increased Number of Adult Trees as a Softscaping Technique—Scenario 4
3.5. Hardscaping Techniques—Scenario 5: High-Albedo Materials
3.6. Comparing and Contrasting the Five Design Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UN | United Nations |
SDG | Sustainable Development Goals |
UTCI | Universal Thermal Climate Index |
PET | Physiologically Equivalent Temperature |
LST | Local Standard Time |
UHI | Urban Heat Island |
References
- UN DESA. The Sustainable Development Goals Report 2022; DESA Publications: New York, NY, USA, 2022. Available online: https://desapublications.un.org/publications/sustainable-development-goals-report-2022 (accessed on 21 June 2024).
- Filho, W.L.; Wall, T.; Salvia, A.L.; Dinis, M.A.P.; Mifsud, M. The Central Role of Climate Action in Achieving the United Nations’ Sustainable Development Goals. Sci. Rep. 2023, 13, 20582. [Google Scholar] [CrossRef] [PubMed]
- Kalfas, D.; Kalogiannidis, S.; Chatzitheodoridis, F.; Toska, E. Urbanization and Land Use Planning for Achieving the Sustainable Development Goals (SDGs): A Case Study of Greece. Urban Sci. 2023, 7, 43. [Google Scholar] [CrossRef]
- Marx, W.; Haunschild, R.; Bornmann, L. Heat Waves: A Hot Topic in Climate Change Research. Theor. Appl. Climatol. 2021, 146, 781–800. [Google Scholar] [CrossRef] [PubMed]
- Dailidienė, I.; Servaitė, I.; Dailidė, R.; Vasiliauskienė, E.; Rapolienė, L.; Povilanskas, R.; Valiukas, D. Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities). Sustainability 2023, 15, 14281. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Climate Change Impacts on Air Quality. Available online: https://www.epa.gov/climateimpacts/climate-change-impacts-air-quality (accessed on 3 June 2024).
- Martínez-Austria Polioptro, F.; Bandala Erick, R. Heat Waves: Health Effects, Observed Trends and Climate Change. In Extreme Weather; IntechOpen: London, UK, 2018; ISBN 978-1-78923-613-2. [Google Scholar]
- Huang, K.; Lee, X.; Stone, B., Jr.; Knievel, J.; Bell, M.L.; Seto, K.C. Persistent Increases in Nighttime Heat Stress From Urban Expansion Despite Heat Island Mitigation. J. Geophys. Res. Atmos. 2021, 126, e2020JD033831. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre. Advance Report on Wildfires in Europe, Middle East and North Africa 2021; Publications Office: Luxembourg, 2022.
- Tran, H.M.; Tsai, F.-J.; Lee, Y.-L.; Chang, J.-H.; Chang, L.-T.; Chang, T.-Y.; Chung, K.F.; Kuo, H.-P.; Lee, K.-Y.; Chuang, K.-J.; et al. The Impact of Air Pollution on Respiratory Diseases in an Era of Climate Change: A Review of the Current Evidence. Sci. Total Environ. 2023, 898, 166340. [Google Scholar] [CrossRef] [PubMed]
- Arsad, F.S.; Hod, R.; Ahmad, N.; Ismail, R.; Mohamed, N.; Baharom, M.; Osman, Y.; Radi, M.F.M.; Tangang, F. The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 16356. [Google Scholar] [CrossRef]
- Demirtaş, M. High impact heat waves over the Euro-Mediterranean region and Turkey—In concert with atmospheric blocking and large dynamical and physical anomalies. Anadolu Univ. J. Sci. Technol.—Appl. Sci. Eng. 2017, 18, 97–114. [Google Scholar] [CrossRef]
- Gilabert, J.; Ventura, S.; Segura, R.; Martilli, A.; Badia, A.; Llasat, C.; Corbera, J.; Villalba, G. Abating Heat Waves in a Coastal Mediterranean City: What Can Cool Roofs and Vegetation Contribute? Urban Clim. 2021, 37, 100863. [Google Scholar] [CrossRef]
- Stone, B., Jr.; Mallen, E.; Rajput, M.; Gronlund, C.J.; Broadbent, A.M.; Krayenhoff, E.S.; Augenbroe, G.; O’Neill, M.S.; Georgescu, M. Compound Climate and Infrastructure Events: How Electrical Grid Failure Alters Heat Wave Risk. Environ. Sci. Technol. 2021, 55, 6957–6964. [Google Scholar] [CrossRef] [PubMed]
- Pechan, A.; Eisenack, K. The Impact of Heat Waves on Electricity Spot Markets. Energy Econ. 2014, 43, 63–71. [Google Scholar] [CrossRef]
- Agulles, M.; Melo-Aguilar, C.; Jordà, G. Risk of Loss of Tourism Attractiveness in the Western Mediterranean under Climate Change. Front. Clim. 2022, 4, 1019892. [Google Scholar] [CrossRef]
- Heatwave. Available online: https://wmo.int/topics/heatwave (accessed on 3 June 2024).
- Kutiel, H. Climatic Uncertainty in the Mediterranean Basin and Its Possible Relevance to Important Economic Sectors. Atmosphere 2019, 10, 10. [Google Scholar] [CrossRef]
- Bush, J.; Doyon, A. Building Urban Resilience with Nature-Based Solutions: How Can Urban Planning Contribute? Cities 2019, 95, 102483. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising Green and Bluespace to Mitigate Urban Heat Island Intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Khraiwesh, M.M.; Genovese, P.V. Outdoor Thermal Comfort Integrated with Energy Consumption for Urban Block Design Optimization: A Study of the Hot-Summer Mediterranean City of Irbid, Jordan. Sustainability 2023, 15, 8412. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Peng, Y.; Liu, Q.; He, Q. Neglected Green Street Landscapes: A Re-Evaluation Method of Green Justice. Urban For. Urban Green. 2019, 41, 344–353. [Google Scholar] [CrossRef]
- Anwar, M.M.; Hashim, M.; Aziz, A.; Stocco, A.; Abdo, H.G.; Almohamad, H.; Al Dughairi, A.A.; Al-Mutiry, M. Urban Green Spaces Distribution and Disparities in Congested Populated Areas: A Geographical Assessment from Pakistan. Sustainability 2023, 15, 8059. [Google Scholar] [CrossRef]
- Ayala-Azcarraga, C.; Diaz, D.; Fernandez, T.; Cordova-Tapia, F.; Zambrano, L. Uneven Distribution of Urban Green Spaces in Relation to Marginalization in Mexico City. Sustainability 2023, 15, 12652. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Hayden, M.H. Connecting People and Place: A New Framework for Reducing Urban Vulnerability to Extreme Heat. Environ. Res. Lett. 2010, 5, 014021. [Google Scholar] [CrossRef]
- Guardaro, M.; Hondula, D.M.; Ortiz, J.; Redman, C.L. Adaptive Capacity to Extreme Urban Heat: The Dynamics of Differing Narratives. Clim. Risk Manag. 2022, 35, 100415. [Google Scholar] [CrossRef]
- Li, M. Research on the Effects of Extreme Heat Exposure on Human Health. Theor. Nat. Sci. 2024, 29, 194–199. [Google Scholar] [CrossRef]
- Jelks, N.O.; Jennings, V.; Rigolon, A. Green Gentrification and Health: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 907. [Google Scholar] [CrossRef] [PubMed]
- Jerin Shibu, E.M.; Nathan, R.; Ramachandran, M.; Sathiyaraj, C.; Vidhya, P. Exploring Various Landscape Design and Its Characteristics. Sustain. Archit. Build. Mater. 2022, 1, 32–42. [Google Scholar] [CrossRef]
- Tan, C.L.; Wong, N.H.; Jusuf, S.K. Plant Selection and Placement Criteria for Landscape Design. In Sustainable Building and Built Environments to Mitigate Climate Change in the Tropics: Conceptual and Practical Approaches; Karyono, T.H., Vale, R., Vale, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 249–260. ISBN 978-3-319-49601-6. [Google Scholar]
- ENH1156/EP416: Right Plant, Right Place: The Art and Science of Landscape Design—Plant Selection and Siting. Available online: https://edis.ifas.ufl.edu/publication/EP416 (accessed on 3 June 2024).
- Roloff, A.; Korn, S.; Gillner, S. The Climate-Species-Matrix to Select Tree Species for Urban Habitats Considering Climate Change. Urban For. Urban Green. 2009, 8, 295–308. [Google Scholar] [CrossRef]
- Russ, T.H. Site Planning and Design Handbook, 2nd ed.; McGraw-Hill: New York, NY, USA, 2009; ISBN 978-0-07-160558-8. [Google Scholar]
- Qin, Y. Urban Canyon Albedo and Its Implication on the Use of Reflective Cool Pavements. Energy Build. 2015, 96, 86–94. [Google Scholar] [CrossRef]
- Advisor, N.F.B. Understanding Landscape Design: Exploring the Essence of Hardscape and Softscape Elements. Available online: https://www.needforbuild.com/understanding-landscape-design-exploring-the-essence-of-hardscape-and-softscape-elements/ (accessed on 3 June 2024).
- Santamouris, M. (Ed.) Energy and Climate in the Urban Built Environment; Routledge: London, UK, 2013; ISBN 978-1-315-07377-4. [Google Scholar]
- Alves, F.M.; Gonçalves, A.; del Caz-Enjuto, M.R. The Use of Envi-Met for the Assessment of Nature-Based Solutions’ Potential Benefits in Industrial Parks—A Case Study of Argales Industrial Park (Valladolid, Spain). Infrastructures 2022, 7, 85. [Google Scholar] [CrossRef]
- Błazejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An Introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef]
- The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment. Available online: https://www.jstage.jst.go.jp/article/indhealth/51/1/51_2012-0098/_article (accessed on 3 June 2024).
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Tseliou, A.; Tsiros, I.X. Modeling Urban Microclimate to Ameliorate Thermal Sensation Conditions in Outdoor Areas in Athens (Greece). Build. Simul. 2016, 9, 251–267. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor Thermal Comfort and Outdoor Activities: A Review of Research in the Past Decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Heat Stress in Greece. Int. J. Biometeorol. 1997, 41, 34–39. [Google Scholar] [CrossRef]
- Manneh, A.; Taleb, H. Vegetation Impact on Microclimate in Hot Climate Zones. In Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering (CSEE’17), Barcelona, Spain, 2–4 April 2017. [Google Scholar]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive Effects of Vegetation: Urban Heat Island and Green Roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Lasantha, V.; Oki, T.; Tokuda, D. Data-Driven versus Köppen–Geiger Systems of Climate Classification. Adv. Meteorol. 2022, 2022, 3581299. [Google Scholar] [CrossRef]
- Chernila, A.; Tousi, E. The Issue of Post-Industrial Brownfields in Piraeus, Greece: Suggesting International Best Practices in the Era of Globalization. J. Sustain. Archit. Civ. Eng. 2022, 30, 19–31. [Google Scholar] [CrossRef]
- Tousi, E. A Retrospect on Social Housing in Greece: The Case of Refugee Dwellings. Des. Princ. Pract. Int. J.—Annu. Rev. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Sinou, M.; Skalkou, K.; Perakaki, R.; Jacques, S.; Kanetaki, Z. Holistic Strategies Based on Heritage, Environmental, Sensory Analysis and Mapping for Sustainable Coastal Design. Sustainability 2023, 15, 9953. [Google Scholar] [CrossRef]
- DeKay, M. Daylighting and Urban Form: An Urban Fabric of Light. J. Archit. Plan. Res. 2010, 27, 35–56. [Google Scholar]
- Aisyah, F.; Rahmah, N. Comparative Study of Soft-Scape Element Significance in Improving the Walkability of Urban Corridor. IOP Conf. Ser. Earth Environ. Sci. 2020, 532, 012009. [Google Scholar] [CrossRef]
- Tseliou, A.; Koletsis, I.; Pantavou, K.; Thoma, E.; Lykoudis, S.; Tsiros, I.X. Evaluating the Effects of Different Mitigation Strategies on the Warm Thermal Environment of an Urban Square in Athens, Greece. Urban Clim. 2022, 44, 101217. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Alzate-Gaviria, S.; Diz-Mellado, E.; Rivera-Gomez, C.; Galan-Marin, C. Albedo Influence on the Microclimate and Thermal Comfort of Courtyards under Mediterranean Hot Summer Climate Conditions. Sustain. Cities Soc. 2022, 81, 103872. [Google Scholar] [CrossRef]
PET (°C) | Thermal Sensation | Heat Stress Assessment | PET (°C) |
---|---|---|---|
Original Scale | Mediterranean Scale | ||
<4.1 | Very cold | Extreme cold stress | |
4.1–8.0 | Cold | Strong cold stress | <0.7 |
8.1–13.0 | Cool | Moderate cold stress | 0.7–5.2 |
13.1–18.0 | Slightly cool | Slight cold stress | 5.2–14.8 |
18.1–23.0 | Comfortable | No thermal stress | 14.8–23.8 |
23.1–29.0 | Slightly warm | Slight heat stress | 23.8–31.2 |
29.1–35.0 | Warm | Moderate heat stress | 31.2–39.1 |
35.1–41.0 | Hot | Strong heat stress | >39.1 |
>41.0 | Very hot | Extreme heat stress |
UTCI (°C) | Heat Stress Assessment | |
---|---|---|
Original Scale | Mediterranean Scale | |
<−40.0 | <20.2 | Extreme cold stress |
−27.0 to −40.0 | 20.2–21.5 | Very strong cold stress |
−27.0 to −13.0 | 21.5–23.0 | Strong cold stress |
−13.0–0.0 | 23–24.6 | Moderate cold stress |
−9.0 | 24.6–27.0 | Slight cold stress |
9.0–26.0 | 27.0–34.0 | No thermal stress |
26.0–32.0 | 34.0–36.8 | Moderate heat stress |
32.0–38.0 | 36.8–38.3 | Strong heat stress |
38.0–46.0 | 38.3–39.9 | Very strong heat stress |
>46 | >39.9 | Extreme heat stress |
Scenarios | Grass (m2) | % | Soil (m2) | % | Hardsc. (m2) | % | Trees (Nr) | |
---|---|---|---|---|---|---|---|---|
5 m h | 15 m h | |||||||
Scenario 1 | 20.3 | 1.45 | 343 | 24.5 | 1036 | 74 | 21 | 3 |
Scenario 2 | 205 | 14.60 | 845 | 60.3 | 350 | 25 | 21 | 3 |
Scenario 3 | 1097 | 78.30 | 70 | 5 | 233.8 | 16.7 | 23 | 3 |
Scenario 4 | 20.3 | 1.45 | 343 | 24.5 | 1036 | 74 | 21 | 3 |
Scenario 5 | 20.3 | 1.45 | 343 | 24.5 | 1036 | 74 | 47 | 10 |
10:00 a.m. | Mean Air Temp. °C | Mean PET °C | Mean UTCI °C | |||
---|---|---|---|---|---|---|
Streets | Inner Block | Streets | Inner Block | Streets | Inner Block | |
Scenario 1 | 38.10 | 37.70 | 49.63 | 50.81 | 45.19 | 40.80 |
Scenario 2 | 39.10 | 38.00 | 42.75 | 42.00 | 48.30 | 42.15 |
Scenario 3 | 38.40 | 37.10 | 54.50 | 47.20 | 47.80 | 41.90 |
Scenario 4 | 37.20 | <34.90 | 47.60 | 40.00 | 42.50 | 36.01 |
Scenario 5 | 36.90 | 36.00 | 54.00 | 44.50 | 45.00 | 39.20 |
15:00 p.m. | Mean air temp. °C | Mean PET | Mean UTCI | |||
Streets | Inner block | Streets | Inner block | Streets | Inner block | |
Scenario 1 | 41.30 | 40.00 | 49.8 | 43.80 | 47.40 | 42.10 |
Scenario 2 | 41.00 | 40.00 | 49.40 | 42.00 | 47.00 | 39.50 |
Scenario 3 | 42.00 | 40.00 | 50.25 | 45.00 | 49.15 | 42.00 |
Scenario 4 | 40.00 | <38.00 | 46.45 | <38.90 | 44.00 | <36.92 |
Scenario 5 | 40.60 | 39.40 | 49.00 | 43.50 | 46.60 | 38.50 |
20:00 p.m. | Mean air temp. °C | Mean PET | Mean UTCI | |||
Streets | Inner block | Streets | Inner block | streets | Inner block | |
Scenario 1 | 36.90 | 36.40 | 38.90 | 38.35 | 36.22 | 35.13 |
Scenario 2 | 36.80 | 36.10 | 38.20 | 37.00 | 35.70 | 34.70 |
Scenario 3 | 36.50 | 36.00 | 40.15 | 39.20 | 37.40 | 36.40 |
Scenario 4 | 35.70 | 34.75 | 37.55 | <35.90 | 34.45 | 33.80 |
Scenario 5 | 36.70 | 36.00 | 39.00 | 37.30 | 35.39 | 34.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tousi, E.; Tseliou, A.; Mela, A.; Sinou, M.; Kanetaki, Z.; Jacques, S. Exploring Thermal Discomfort during Mediterranean Heatwaves through Softscape and Hardscape ENVI-Met Simulation Scenarios. Sustainability 2024, 16, 6240. https://doi.org/10.3390/su16146240
Tousi E, Tseliou A, Mela A, Sinou M, Kanetaki Z, Jacques S. Exploring Thermal Discomfort during Mediterranean Heatwaves through Softscape and Hardscape ENVI-Met Simulation Scenarios. Sustainability. 2024; 16(14):6240. https://doi.org/10.3390/su16146240
Chicago/Turabian StyleTousi, Evgenia, Areti Tseliou, Athina Mela, Maria Sinou, Zoe Kanetaki, and Sébastien Jacques. 2024. "Exploring Thermal Discomfort during Mediterranean Heatwaves through Softscape and Hardscape ENVI-Met Simulation Scenarios" Sustainability 16, no. 14: 6240. https://doi.org/10.3390/su16146240
APA StyleTousi, E., Tseliou, A., Mela, A., Sinou, M., Kanetaki, Z., & Jacques, S. (2024). Exploring Thermal Discomfort during Mediterranean Heatwaves through Softscape and Hardscape ENVI-Met Simulation Scenarios. Sustainability, 16(14), 6240. https://doi.org/10.3390/su16146240