Spatial Heterogeneity of Sustainable Land Use in the Guangdong–Hong Kong–Macao Greater Bay Area in the Context of the Carbon Cycle: GIS-Based Big Data Analysis
<p>Elliptic diagram of standard deviation of sustainable land use spatial distribution in the Greater Bay Area.</p> "> Figure 2
<p>Comprehensive Evaluation of Sustainable Land Use in the Guangdong–Hong Kong–Macao Greater Bay Area (2010–2021): (<b>a</b>) In 2010; (<b>b</b>) In 2015; (<b>c</b>) In 2018; (<b>d</b>) In 2021.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Construction of Evaluation Index System
3. Evaluation of Sustainable Land Use in Guangdong–Hong Kong–Macao Greater Bay Area from the Perspective of Circular Economy
3.1. Data Standardization
- (1)
- Positive indicators:
- (2)
- Negative indicators:
- (1)
- Calculate the Contribution Pij of the i-th Evaluation Unit Data under the j-th Single Indicator to this Indicator
- (2)
- Calculate the Entropy Value ej of the j-th Index
- (3)
- Calculate the Information Entropy Redundancy dj
- (4)
- Calculate the Weight wj of the j-th Single Indicator
3.2. ArcGIS Superposition Analysis
3.3. Standard Deviation Ellipse and Center of Gravity
3.4. Calculate the Overall Evaluation Value
4. Result Analysis
4.1. Results and Analysis of Spatio-Temporal Evolution of Land Sustainable Development
4.1.1. In Terms of Time Characteristics, the Level of Sustainable Land Development in the Greater Bay Area Continues to Improve
4.1.2. In Terms of Spatial Characteristics, the Center of Gravity of the Horizontal Space of Sustainable Land Use Shifted from North to South
4.2. Regional Difference Analysis of Comprehensive Evaluation of Sustainable Land Utilization
4.3. Analysis of Regional Differences in Criterion Layer
5. Conclusions
- (1)
- Regional differences and uneven development levels are considered in the comprehensive evaluation of sustainable land use in the Guangdong–Hong Kong–Macao Greater Bay Area. Shenzhen, Guangzhou, Hong Kong, Foshan, Dongguan, Zhuhai, and Macao are above the average level of sustainable land use. These cities have a high level of sustainable land use (an average level of 0.0621), while the rest of the regions have a low level of sustainable land use.
- (2)
- Through the analysis of the seven criteria layers, it is found that the difference in cities in the Greater Bay Area in land ecological environment protection is relatively small, while the difference between cities in the other six aspects is large, among which the difference between land output is the largest, indicating that there are great differences in the degree of social and economic development among federation-level cities in the Guangdong–Hong Kong–Macao Greater Bay Area.
- (3)
- In terms of time characteristics, sustainable land use showed a steady upward trend in the 11 years from 2010 to 2021.
- (4)
- In terms of spatial characteristics, entropy weight analysis and superposition analysis were used to establish the evaluation index system of sustainable land use in the GIS model. It is verified that the center of gravity model is used to calculate the deviation track of the center of gravity of the horizontal space of land for sustainable use in the Guangdong–Hong Kong–Macao Greater Bay Area. From 2010 to 2021, the horizontal gravity center of sustainable land use in the Guangdong–Hong Kong–Macao Greater Bay Area changed dimensionally, and the spatial gravity center shifted from north to south.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fonseca, L.M.; Domingues, J.P.; Pereira, M.T.; Martins, F.F.; Zimon, D. Assessment of circular economy within Portuguese organizations. Sustainability 2018, 10, 2521. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.; Skene, K.; Haynes, K. The circular economy: An interdisciplinary exploration of the concept and application in a global context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Saidani, M.; Yannou, B.; Leroy, Y.; Cluzel, F.; Kendall, A. A taxonomy of circular economy indicators. J. Clean. Prod. 2019, 207, 542–559. [Google Scholar] [CrossRef] [Green Version]
- Hughes, A.C.; Tougeron, K.; Martin, D.A.; Menga, F.; Rosado, B.H.; Villasante, S.; Madgulkar, S.; Gonçalves, F.; Geneletti, D.; Diele-Viegas, L.M.; et al. Smaller human populations are neither a necessary nor sufficient condition for biodiversity conservation. Biol. Conserv. 2023, 277, 109841. [Google Scholar] [CrossRef]
- Kirchherr, J.; Piscicelli, L.; Bour, R.; Kostense-Smit, E.; Muller, J.; Huibrechtse-Truijens, A.; Hekkert, M. Barriers to the circular economy: Evidence from the European Union (EU). Ecol. Econ. 2018, 150, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Sarkis, J.; Zhu, Q. Environmental sustainability and production: Taking the road less travelled. Int. J. Prod. Res. 2018, 56, 743–759. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Hurni, H. Assessing sustainable land management (SLM). Agric. Ecosyst. Environ. 2000, 81, 83–92. [Google Scholar] [CrossRef]
- Yeh, A.G.; Li, X. Sustainable land development model for rapid growth areas using GIS. Int. J. Geogr. Inf.Sci. 1998, 12, 169–189. [Google Scholar] [CrossRef]
- Couto, E.V.D.; Oliveira, P.B.; Vieira, L.M.; Schmitz, M.H.; Ferreira, J.H.D. Integrating environmental, geographical and social data to assess sustainability in hydrographic basins: The ESI approach. Sustainability 2020, 12, 3057. [Google Scholar] [CrossRef]
- Vieira, L.; Pessoa, L.A.; Carvalho Pereira, V.E.; Gois, K.S.; Couto, E.V.D. Integrating water, sediments, and land use analysis for pollution assessment in a countryside urban-farming watershed landscape in Southern Brazil. Int. J. River Basin Manag. 2022, 1, 1–14. [Google Scholar] [CrossRef]
- Bouma, J. Land quality indicators of sustainable land management across scales. Agric. Ecosyst. Environ. 2002, 88, 129–136. [Google Scholar] [CrossRef]
- Gonzalez-Roglich, M.; Zvoleff, A.; Noon, M.; Liniger, H.; Fleiner, R.; Harari, N.; Garcia, C. Synergizing global tools to monitor progress towards land degradation neutrality: Trends. Earth and the World Overview of Conservation Approaches and Technologies sustainable land management database. Environ. Sci. Policy 2019, 93, 34–42. [Google Scholar] [CrossRef]
- Baskent, E.Z. Assessment and improvement strategies of sustainable land management (SLM) planning initiative in Turkey. Sci. Total Environ. 2021, 797, 149183. [Google Scholar] [CrossRef] [PubMed]
- Giger, M.; Liniger, H.; Sauter, C.; Schwilch, G. Economic benefits and costs of sustainable land management technologies: An analysis of WOCAT’s global data. Land Degrad. Dev. 2018, 29, 962–974. [Google Scholar] [CrossRef]
- Salvati, L.; Kosmas, C.; Kairis, O.; Karavitis, C.; Acikalin, S.; Belgacem, A.; Solé-Benet, A.; Chaker, M.; Fassouli, V.; Gokceoglu, C.; et al. Assessing the effectiveness of sustainable land management policies for combating desertification: A data mining approach. J. Environ. Manag. 2016, 183, 754–762. [Google Scholar] [CrossRef]
- Fohrer, N.; Haverkamp, S.; Frede, H.G. Assessment of the effects of land use patterns on hydrologic landscape functions: Development of sustainable land use concepts for low mountain range areas. Hydrol. Process. Int. J. 2005, 19, 659–667. [Google Scholar] [CrossRef]
- Liu, X.; Song, G. Quantitative analysis and Evaluation of Sustainable Land Use after administrative zoning adjustment: A case study of Acheng City in Harbin, Heilongjiang Province. Land Resour. Inf. 2008, 12, 6–11. [Google Scholar]
- Liu, F.; Zhang, H. Evaluation of sustainable land use in the main producing areas of agricultural products. J. Nat. Resour. 2012, 7, 1138–1153. [Google Scholar]
- Liu, D.; Zhou, W.; He, W.; Luo, T. Evaluation and diagnosis of sustainable land use: A case study of Anhui Province. Acta Agric. Jiangxi 2018, 30, 129–134. [Google Scholar]
- Zhao, X.; Ye, J.; Xue, S. Evaluation of Urban land Sustainable use in Hunan Province Based on improved Grey correlation Analysis. Bull. Soil Water Conserv. 2013, 33, 265–269. [Google Scholar]
- Liu, Q.; Chen, L. Comprehensive evaluation and spatial zoning of sustainable land use in Changzhutan Area. Trans. Chin. Soc. Agric. Eng. 2013, 29, 245–253. [Google Scholar]
- Sun, Y.; Liu, Y. Evaluation of sustainable land use based on fragmentation: A case study of Fenyi County, Jiangxi Province. J. Nat. Resour. 2010, 5, 802–810. [Google Scholar]
- Chen, S.; Zhou, F.; Wu, X. Evaluation of regional land use sustainability based on performance model. Trans. Chin. Soc. Agric. Eng. 2009, 6, 249–253. [Google Scholar]
- Fu, B.; Chen, L.; Ma, C. Index system and method of land sustainable use evaluation. J. Nat. Resour. 1997, 12, 112–118. [Google Scholar]
- Fang, J.; Peng, T.; Lu, L.; Bi, D.; Chen, Z. The evolution characteristics and influencing factors of urban functions in the Guangdong-Hong Kong-Macao Greater Bay Area. Trop. Geogr. 2019, 39, 647–660. [Google Scholar]
- Li, X.; Zhou, J.; Huang, Y.; Huang, M. Examining the spatial structure of the Guangdong-Hong Kong-Macao Greater Bay Area from the perspective of mega-city regions. Prog. Geogr. Sci. 2018, 37, 1609–1622. [Google Scholar]
- Jin, Y.; Feng, Z.; Chen, D. Circular Economy: Concept and Innovation. Renew. Resour. Circ. Econ. 2010, 3, 4–9. [Google Scholar]
- Zhang, S.; Wang, D.; Cheng, H.; Song, Y.; Yuan, K.; Du, W. Key technologies and challenges of low-carbon integrated energy system planning under dual carbon target. Autom. Electr. Power Syst. 2022, 46, 189–207. [Google Scholar]
- Han, J.; Zhou, X.; Xiang, W. Research progress on carbon emission effects of land use and its low-carbon management. Ecol. J. 2016, 36, 1152–1161. [Google Scholar]
- Yang, B.; Bai, Z. Research progress on carbon source/sink of land ecosystem in coal mining area under the background of carbon neutrality and its emission reduction countermeasures. China Min. Ind. 2021, 30, 1–9. [Google Scholar]
- Zhao, R.; Liu, Y.; Hao, S.; Ding, M. Research on low-carbon land use models. Soil Water Conserv. Res. 2010, 17, 190–194. [Google Scholar]
- Rodygin, K.S.; Vikenteva, Y.A.; Ananikov, V.P. Calcium-Based Sustainable Chemical Technologies for Total Carbon Recycling. ChemSusChem 2019, 12, 1483–1516. [Google Scholar] [CrossRef] [PubMed]
- Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives. ACS Catal. 2020, 10, 11318–11345. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Han, J.I.; Yang, J.W.; Chang, Y.K.; Ryu, B.G. Carbon balance of major volatile fatty acids (VFAs) in recycling algal residue via a VFA-platform for reproduction of algal biomass. J. Environ. Manag. 2019, 237, 228–234. [Google Scholar] [CrossRef]
- Lapinskienė, G.; Peleckis, K.; Slavinskaitė, N. Energy consumption, economic growth and greenhouse gas emissions in the European Union countries. J. Bus. Econ. Manag. 2017, 18, 1082–1097. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, B.; Lu, H. Carbon dioxide emissions, economic growth, and selected types of fossil energy consumption in China: Empirical evidence from 1965 to 2015. Sustainability 2017, 9, 697. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hao, Y. The dynamic links between CO2 emissions, energy consumption and economic development in the countries along “the Belt and Road”. Sci. Total Environ. 2018, 645, 674–683. [Google Scholar] [CrossRef]
- Guo, X. Entropy method and its application in comprehensive evaluation. Financ. Trade Res. 1994, 5, 56–60. [Google Scholar]
- Lu, T.; Kang, K. Application of Entropy Value Method and Analytic Hierarchy Process in Weight Determination. Comput. Program. Ski. Maint. 2009, 22, 19–20. [Google Scholar]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental vulnerability assessment for mainland China based on entropy method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- Petrov, A.I. Entropy method of road safety management: Case study of the Russian Federation. Entropy 2022, 24, 177. [Google Scholar] [CrossRef]
- Scaramelli, B.F.; Couto, E.V.; Bueno, P.A.A.; de Souza, D.C.; Vieira, L.M.; Ferreira, J.H.D.C. Prioriority actions maps of municipal public services with geospace application. Acta Sci. Technol. 2020, 42, e44426. [Google Scholar] [CrossRef]
- Tang, P.; Chen, D.; Hou, Y. Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting. Chaos Solitons Fractals 2016, 89, 243–248. [Google Scholar] [CrossRef]
- Walke, N.; Reddy, G.O.; Maji, A.K.; Thayalan, S. GIS-based multicriteria overlay analysis in soil-suitability evaluation for cotton (Gossypium spp.): A case study in the black soil region of Central India. Comput. Geosci. 2012, 41, 108–118. [Google Scholar] [CrossRef]
- Gurugnanam, B.; Bagyaraj, M.; Kumaravel, S.; Vinoth, M.; Vasudevan, S. GIS based weighted overlay analysis in landslide hazard zonation for decision makers using spatial query builder in parts of Kodaikanal taluk, South India. J. Geomat. 2012, 6, 49. [Google Scholar]
- Matas, G.; Lantada, N.; Corominas, J.; Gili, J.A.; Ruiz-Carulla, R.; Prades, A. RockGIS: A GIS-based model for the analysis of fragmentation in rockfalls. Landslides 2017, 14, 1565–1578. [Google Scholar] [CrossRef] [Green Version]
- Mahalingam, B.; Vinay, M. Identification of ground water potential zones using GIS and Remote Sensing Techniques: A case study of Mysore taluk-Karnataka. Int. J. Geomat. Geosci. 2015, 5, 393–403. [Google Scholar]
- Schubert, P.; Kirchner, M. Ellipse area calculations and their applicability in posturography. Gait Posture 2014, 39, 518–522. [Google Scholar] [CrossRef]
- Prasad, D.K.; Leung MK, H.; Quek, C. ElliFit: An unconstrained, non-iterative, least squares based geometric Ellipse Fitting method. Pattern Recognit. 2013, 46, 1449–1465. [Google Scholar] [CrossRef]
- Shcherbakova, Y.; van den Berg, C.A.; Moonen, C.T.; Bartels, L.W. PLANET: An ellipse fitting approach for simultaneous T1 and T2 mapping using phase-cycled balanced steady-state free precession. Magn. Reson. Med. 2018, 79, 711–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, B.; Kukla, M.; Warguła, Ł. The symmetric nature of the position distribution of the human body center of gravity during propelling manual wheelchairs with innovative propulsion systems. Symmetry 2021, 13, 154. [Google Scholar] [CrossRef]
- Lee, J.; Hyun, D.; Han, K.; Choi, S. Real-time longitudinal location estimation of vehicle center of gravity. Int. J. Automot. Technol. 2018, 19, 651–658. [Google Scholar] [CrossRef]
- Irwanto, B.; Hasibuan, S. Determination of pharmaceutical industrial distribution center location using center of gravity method: Case study at PT JKT. J. Oper. Excell. J. Appl. Ind. Eng. 2018, 10, 228–239. [Google Scholar] [CrossRef]
- Luo, Y.; Mesgarani, N. Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation. IEEE ACM Trans. Audio Speech Lang. Process. 2019, 27, 1256–1266. [Google Scholar] [CrossRef] [Green Version]
- Wegner Maus, V.; Câmara, G.; Appel, M.; Pebesma, E. dtwsat: Time-weighted dynamic time warping for satellite image time series analysis in r. J. Stat. Softw. 2019, 88, 1–31. [Google Scholar]
- Rao, P.C.; Jana, P.K.; Banka, H. A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wirel. Netw. 2017, 23, 2005–2020. [Google Scholar] [CrossRef]
- Gu, S.; Cao, D.; Yang, M. Strategic Thinking on Constructing the Innovation Ecosystem of Guangdong-Hong Kong-Macao Greater Bay Area. China Soft Sci. 2018, 4, 1–9. [Google Scholar]
- Zhou, L.; Luo, Z.; Zhu, L.; Yu, X.; Fang, Q.; Zhang, X. Research on the Co-construction Mechanism of Ecological Civilization in the Guangdong-Hong Kong-Macao Greater Bay Area. Chin. Environ. Manag. 2019, 11, 28–31. [Google Scholar]
- Li, L. Thoughts on the “Guangdong-Hong Kong-Macau Greater Bay Area”. Trop. Geogr. 2017, 37, 757–761. [Google Scholar]
- Ding, X.; Wang, H. The construction of a new pattern of Guangdong’s open economy since the reform and opening up. J. South China Univ. Technol. Soc. Sci. Ed. 2018, 20, 30–37. [Google Scholar]
- Ye, Y.; Wang, J.; Wu, K.; Du, Z.; Wang, Y.; He, S.; Liu, Z. Strategic thinking on building an international science and technology innovation center in the Guangdong-Hong Kong-Macao Greater Bay Area. Trop. Geogr. 2020, 40, 27–39. [Google Scholar]
- Wu, P.; Zhao, X.; Gu, T.; Jiang, T.; Wang, X.; Feng, Y. The status quo of water resources in the Guangdong-Hong Kong-Macao Greater Bay Area and its co-evolution trend with social economy—A comparative study with international bay areas. China Geol. 2021, 48, 1357–1367. [Google Scholar]
- Zhang, S. Discussion on the Development Path and Construction Strategy of the Guangdong-Hong Kong-Macao Greater Bay Area: Based on the Comparative Analysis of the World’s Three Great Bay Areas. China Dev. 2018, 18, 53–59. [Google Scholar]
- Xiong, J.; Tang, J. Research on the Coupling and Coordination of Land Ecological Security and Social Economic Development in Guangzhou. J. Saf. Environ. 2019, 19, 615. [Google Scholar]
- Fang, S. Research on the Coordination Relationship between Regional Traffic Accessibility and Urban Economic Development. Transp. Technol. Econ. 2019, 21, 69–75. [Google Scholar]
- Huang, K. Promoting Guangzhou’s high-quality economic development with the concept of ecological priority and green development. Quest 2019, 5, 44–51. [Google Scholar]
- Li, M. Research on the Driving Mechanism of Spillover Economic Development—Taking Shenzhen as an Example. J. Xinyang Norm. Univ. Philos. Soc. Sci. 2018, 38, 49–53. [Google Scholar]
- Tan, J. China’s Special Economic Zones and Youth Development and Changes—Taking Shenzhen Special Economic Zone as a Typical Case. Contemp. Youth Stud. 2020, 3, 5–11. [Google Scholar]
- Li, Y. Research on the Development Countermeasures of the “Guangzhou-Shenzhen-Hong Kong-Macao” Science and Technology Innovation Corridor Based on High-end Elements. Econ. Forum 2019, 7, 30–36. [Google Scholar]
- Guan, H. Shenzhen and Hong Kong: World-class twin metropolises that are closely related to each other. China Econ. Wkly. 2019, 16, 20–25. [Google Scholar]
- Luo, Q.; Zhang, C. Historical Logic and Experience Enlightenment of Shenzhen Special Economic Zone’s “Four-Zone Superposition” for Forty Years. J. Shenzhen Univ. Humanit. Soc. Sci. Ed. 2020, 37, 32–40. [Google Scholar]
- Li, C.; Zhao, Q. Research on the Development Model of Industrial Economy Aiming at Profit Growth—Taking the Transformation of Jiangmen City’s Industrial Growth Model as an Example. Spec. Zone Econ. 2018, 6, 72–75. [Google Scholar]
- Li, L.; Wu, D.; Liu, Y.; Gong, J.; Liu, Y.; Zheng, J. Temporal and spatial evolution characteristics and simulation prediction of ecological and economic coordination degree in Huizhou based on CA-Markov model. J. Ecol. Rural Environ. 2020, 36, 161–170. [Google Scholar]
- Huang, Z.; Hu, J. Research on Huizhou’s “2 + 1” Industrial System Development Strategy. Guangdong Econ. 2020, 4, 53–58. [Google Scholar]
- Kuang, G. The Evolution and Experience Enlightenment of Industrial Economic Development in Zhongshan Over the Past 40 Years of Reform and Opening-up. J. Zhuhai Sch. Adm. Party Sch. Zhuhai Munic. Comm. Communist Party China 2020, 1, 69–73. [Google Scholar]
- Feng, R. Reflections on the Compilation of Urban Master Planning in the Transition Period—Taking Zhongshan City as an Example. Eng. Constr. Des. 2018, 5, 34–36. [Google Scholar]
Layer of Criterion | The Weight | Indicator Layer | The Weight | The Positive and Negative |
---|---|---|---|---|
Output of land | 0.1663 | Agricultural output value per unit of cultivated land | 0.0318 | + |
Land area per unit of agricultural, forestry and fishery output value | 0.0086 | − | ||
Land area per unit of industrial output | 0.0075 | − | ||
Unit of tertiary industry output covers an area | 0.0078 | + | ||
Engel coefficient | 0.0250 | + | ||
Rate of urbanization | 0.0148 | + | ||
Per capita residential land area | 0.0355 | + | ||
Urban per capita disposable income | 0.0141 | + | ||
GDP output of construction land per unit | 0.0212 | + | ||
Land-use structure | 0.1174 | Proportion of residential land | 0.0179 | + |
The proportion of land for public facilities | 0.0414 | − | ||
Proportion of industrial land | 0.0201 | − | ||
Rate of green land | 0.0132 | − | ||
Per capita land area | 0.0248 | + | ||
Reduction in land resource input | 0.1136 | Fertilizer input per unit of cultivated land | 0.0268 | − |
Mechanical power input per unit of cultivated land | 0.0070 | + | ||
Local fixed asset investment | 0.0277 | + | ||
Local governments have invested in science, education and health | 0.0176 | + | ||
Local average labor force | 0.0147 | + | ||
Land average real estate investment | 0.0198 | + | ||
Security of land resources | 0.1573 | Per capita cultivated area | 0.0276 | − |
Density of population | 0.0167 | − | ||
Grain per unit yield | 0.0151 | + | ||
Proportion of arable land under effective irrigation | 0.0129 | + | ||
The proportion of industrial and mining land in construction land | 0.0155 | + | ||
The proportion of the area of the nature reserve in the area of jurisdiction | 0.0391 | + | ||
Investment in industrial pollution control as a percentage of GDP | 0.0306 | + | ||
Low-carbon land use | 0.1514 | The proportion of wetland area | 0.0360 | + |
Carbon emission intensity | 0.0186 | − | ||
Number of buses per 10,000 people | 0.0314 | + | ||
Elasticity coefficient of energy consumption | 0.0158 | − | ||
Local average carbon emissions | 0.0097 | − | ||
Forest cover rate | 0.0092 | + | ||
Energy consumption per unit of GDP | 0.0130 | − | ||
Green coverage of built-up areas | 0.0177 | + | ||
Level of land recycling | 0.1738 | Rate of land consolidation | 0.0096 | + |
Multiple seed index | 0.0146 | + | ||
Arable land replenishment index | 0.0568 | + | ||
We will bring soil erosion under control | 0.0211 | + | ||
Cumulative waterlogging control area | 0.0313 | + | ||
Mine environmental restoration and treatment rate | 0.0404 | + | ||
Land ecological environment protection | 0.1203 | Per capita park green area | 0.0190 | + |
Local expenditure on energy conservation and environmental protection | 0.0232 | + | ||
The proportion of days when the air quality is better than Grade II | 0.0176 | − | ||
The amount of pesticides used in average cultivated land | 0.0197 | − | ||
Local average waste-water discharge | 0.0115 | − | ||
Average emissions of sulfur dioxide | 0.0094 | + | ||
Garbage removal volume of urban land per unit | 0.0199 | + |
City | Output of Land | Land Use Structure | Reduction in Land Resource Input | Security of Land Resources | Low-Carbon Land Use | Level of Land Recycling | Land Ecological Environment Protection | Comprehensive Evaluation | Ranking |
---|---|---|---|---|---|---|---|---|---|
Shenzhen | 0.1289 | 0.0741 | 0.0201 | 0.0289 | 0.1154 | 0.0963 | 0.0454 | 0.0679 | 1 |
Guangzhou | 0.1013 | 0.0713 | 0.0214 | 0.0336 | 0.0931 | 0.0897 | 0.0509 | 0.0668 | 2 |
Hong Kong | 0.0991 | 0.0592 | 0.0318 | 0.0400 | 0.0770 | 0.0751 | 0.0524 | 0.0658 | 3 |
Foshan | 0.0964 | 0.0583 | 0.0320 | 0.0547 | 0.0756 | 0.0585 | 0.0526 | 0.0650 | 4 |
Dongguan | 0.0805 | 0.0486 | 0.0410 | 0.0568 | 0.0754 | 0.0545 | 0.0537 | 0.0642 | 5 |
Zhuhai | 0.0799 | 0.0369 | 0.0459 | 0.0618 | 0.0715 | 0.0540 | 0.0591 | 0.0629 | 6 |
Macau | 0.0794 | 0.0346 | 0.0545 | 0.0725 | 0.0705 | 0.0533 | 0.0598 | 0.0622 | 7 |
Huizhou | 0.0660 | 0.0334 | 0.0571 | 0.0805 | 0.0630 | 0.0532 | 0.0657 | 0.0606 | 8 |
Zhongshan | 0.0528 | 0.0297 | 0.0667 | 0.0812 | 0.0606 | 0.0527 | 0.0728 | 0.0603 | 9 |
Jiangmen | 0.0340 | 0.0205 | 0.0726 | 0.1057 | 0.0384 | 0.0505 | 0.0773 | 0.0593 | 10 |
Zhaoqing | 0.0313 | 0.0203 | 0.0897 | 0.1085 | 0.0334 | 0.0096 | 0.0780 | 0.0486 | 11 |
Time | Comprehensive Sustainable Development and Utilization of Land |
---|---|
2010 | 0.371 |
2015 | 0.407 |
2018 | 0.448 |
2021 | 0.753 |
City | Output of Land | Land-Use Structure | Reduction in Land Resource Input | Security of Land Resources | Low-Carbon Land Use | Level of Land Recycling | Land Ecological Environment Protection |
---|---|---|---|---|---|---|---|
Max | 0.0355 | 0.0414 | 0.0277 | 0.0391 | 0.0360 | 0.0568 | 0.0232 |
Min | 0.0078 | 0.0132 | 0.0070 | 0.0129 | 0.0092 | 0.0096 | 0.0094 |
Value of range | 0.0277 | 0.0282 | 0.0207 | 0.0262 | 0.0268 | 0.0472 | 0.0138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Chen, F.; Cui, F.; Lei, W. Spatial Heterogeneity of Sustainable Land Use in the Guangdong–Hong Kong–Macao Greater Bay Area in the Context of the Carbon Cycle: GIS-Based Big Data Analysis. Sustainability 2023, 15, 1715. https://doi.org/10.3390/su15021715
Chen X, Chen F, Cui F, Lei W. Spatial Heterogeneity of Sustainable Land Use in the Guangdong–Hong Kong–Macao Greater Bay Area in the Context of the Carbon Cycle: GIS-Based Big Data Analysis. Sustainability. 2023; 15(2):1715. https://doi.org/10.3390/su15021715
Chicago/Turabian StyleChen, Xiaolong, Fang Chen, Fangyuan Cui, and Wachio Lei. 2023. "Spatial Heterogeneity of Sustainable Land Use in the Guangdong–Hong Kong–Macao Greater Bay Area in the Context of the Carbon Cycle: GIS-Based Big Data Analysis" Sustainability 15, no. 2: 1715. https://doi.org/10.3390/su15021715
APA StyleChen, X., Chen, F., Cui, F., & Lei, W. (2023). Spatial Heterogeneity of Sustainable Land Use in the Guangdong–Hong Kong–Macao Greater Bay Area in the Context of the Carbon Cycle: GIS-Based Big Data Analysis. Sustainability, 15(2), 1715. https://doi.org/10.3390/su15021715