The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Data
3.2. Methodology and Empirical Model
3.2.1. Technical Efficiency Measurement
3.2.2. Empirical Model
4. Results and Discussion
4.1. Hypothesis Tests
4.2. Meta-Frontier Approach Results
4.3. Determinants of Meta Efficiency
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malorgio, G.; Felice, A. Chapter 9. Trade and logistics: The fruit and vegetables industry. In MediTERRA 2014 (English): Logistics and Agro-Food Trade. A Challenge for the Mediterranean; Dans, C.L., Ed.; Presses de Sciences Po.: Paris, France, 2014; pp. 149–171. [Google Scholar] [CrossRef]
- Krause, H.; Lippe, R.S.; Grote, U. Adoption and income effects of public GAP standards: Evidence from the horticultural sector in Thailand. Horticulturae 2016, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Gorodnichenko, Y.; Svejnar, J.; Terrell, K. Globalization and innovation in emerging markets. Am. Econ. J.-Mcroecon. 2010, 2, 194–226. Available online: https://www.jstor.org/stable/25760301 (accessed on 20 October 2022). [CrossRef] [Green Version]
- Wongprawmas, R.; Canavari, M.; Waisarayutt, C. A multi-stakeholder perspective on the adoption of good agricultural practices in the Thai fresh produce industry. Brit. Food J. 2015, 117, 2234–2249. [Google Scholar] [CrossRef]
- Hobbs, J.E. Incentives for the Adoption of Good Agricultural Practices (GAPs); Background Paper for the FAO Expert Consultation on a Good Agricultural Practice Approach: Rome, Italy, 2003; Available online: http://www.fao.org/3/ag854e/ag854e00.pdf (accessed on 20 October 2022).
- Aldieri, L.; Makkonen, T.; Vinci, C.P. Environmental knowledge spillovers and productivity: A patent analysis for large international firms in the energy, water, and land resources fields. Resour. Policy 2020, 69, 101877. [Google Scholar] [CrossRef]
- Krasachat, W.; Yaisawarng, S. Directional distance function technical efficiency of chili production in Thailand. Sustainability 2021, 13, 741. [Google Scholar] [CrossRef]
- Henson, S.; Humphrey, J. Understanding the complexities of private standards in global agri-food chains as they impact developing countries. J. Dev. Stud. 2010, 46, 1628–1646. [Google Scholar] [CrossRef] [PubMed]
- Subervie, J.; Vagneron, I. Can Fresh Produce Farmers Benefit from Global Gap Certification? In The Case of Lychee Producers in Madagascar; Paper presented to the Conference of International Association of Agricultural Economists: Foz do Iguacu, Brazil, 2012. [Google Scholar] [CrossRef]
- Oya, C.; Schaefer, F.; Skalidou, D.; McCosker, C.; Langer, L. Effects of certification schemes for agricultural production on socio-economic outcomes in low- and middle-income countries: A systematic review. Campbell Syst. Rev. 2017, 13, 1–346. [Google Scholar] [CrossRef]
- Fiankor, D.-D.D.; Flachsbarth, I.; Masood, A.; Brümmer, B. Does GlobalGAP certification promote agrifood exports? Eur. Rev. Agric. Econ. 2020, 47, 247–272. [Google Scholar] [CrossRef]
- Amekawa, Y.; Bumrungsri, S.; Wayo, K.; Gebre, G.G.; Hongsibsong, S. Pesticide use under public good agricultural practices standard: A comparative study in Thailand. Agriculture 2022, 12, 606. [Google Scholar] [CrossRef]
- Salakpetch, S. Quality management system: Good agricultural practices (GAP) for on-farm production in Thailand. In Good Agricultural Practice (GAP) in Asia and Oceania. Proceedings International Seminar on Technology Development for Good Agricultural Practice in Asia and Oceania; Hu, S., Bejosano-Gloria, G., Eds.; Food and Fertilizer Technology Center: Tsukuba, Japan, 2005; pp. 44–53. Available online: https://www.fftc.org.tw/en/publications/detail/728 (accessed on 25 October 2022).
- Laosutsan, P.; Shivakoti, G.P.; Soni, P. Factors influencing the adoption of good agricultural practices and export decision of Thailand’s vegetable farmers. Int. J. Commons 2019, 13, 867–880. [Google Scholar] [CrossRef] [Green Version]
- Athipanyakul, T.; Pak-Uthai, W. Determinants of good agricultural practices (GAP) adoption in the chili production system in Northeastern Thailand: A case of participatory approach. Int. J. Environ. Rural Dev. 2012, 3, 175–180. Available online: http://iserd.net/ijerd32/32175.pdf (accessed on 19 October 2022).
- FAO. The Vegetable Sector in Thailand—A Review. In Regional Office for Asia and Pacific; RAP Publication: Bangkok, Thailand, 1999; Available online: http://www.fao.org/3/ac145e/AC145E00.htm#for (accessed on 20 October 2022).
- Department of Agriculture. Chili Production Situation; Horticulture Research Institute: Bangkok, Thailand, 2020; Available online: https://www.doa.go.th/hort/?page_id=19041 (accessed on 20 October 2022).
- Mustafa, U.; Ali, M.; Satapornvorasak, T.; Dissataporn, O.; Thailand, A.M. (Eds.) Food Chain Analysis: Setting Research Priorities in Asia; The World Vegetable Center, GTZ: Shanhua, Taiwan, 2006; pp. 197–245. Available online: https://worldveg.tind.io/record/13713/ (accessed on 25 October 2022).
- Ooraikul, S.; Siriwong, W.; Siripattanakul, S.; Chotpantarat, S.; Robson, M. Risk assessment of organophosphate pesticides for chili consumption from chili farm area, Ubon Ratchathani Province, Thailand. J. Health Res. 2011, 25, 141–146. Available online: https://he01.tci-thaijo.org/index.php/jhealthres/article/view/81160 (accessed on 25 October 2022).
- Wanwimolruk, S.; Phopin, K.; Boonpangrak, S.; Prachayasittikul, V. Food safety in Thailand 4: Comparison of pesticide residues found in three commonly consumed vegetables purchased from local markets and supermarkets in Thailand. PeerJ 2016, 4, e2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poapongsakorn, N.; Ruhs, M.; Tangjitwisuth, S. Problems and outlook of agriculture in Thailand. TDRI Q. Rev. 1998, 13, 3–14. Available online: https://tdri.or.th/2012/12/tdri-quarterly-review-june-1998/ (accessed on 25 October 2022).
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, D.; Thongkum, W.; Tudpor, K.; Turnbull, N.; Yukalang, N.; Sychareun, V.; Vo, T.V.; Win, L.L.; Watkins, A.; Jordan, S. Pesticides use and health impacts on farmers in Thailand, Vietnam, and Lao PDR: Protocol for a survey of knowledge, behaviours and blood acetylcholinesterase concentrations. PLoS ONE 2021, 16, e0258134. [Google Scholar] [CrossRef] [PubMed]
- Schreinemachers, P.; Schad, I.; Tipraqsa, P.; Williams, P.M.; Neef, A.; Riwthong, S.; Sangchan, W.; Grovermann, C. Can public GAP standards reduce agricultural pesticide use? The case of fruit and vegetable farming in northern Thailand. Agric. Hum. Values 2012, 29, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisc Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asravor, J.; Onumah, E.E.; Osei-Asare, Y.B. Efficiency of chili pepper production in the Volta Region of Ghana. J. Agric. Ext. Rural Dev. 2016, 8, 99–110. [Google Scholar] [CrossRef] [Green Version]
- López-Penabad, M.-C.; Maside-Sanfiz, J.M.; Torrelles Manent, J.; Iglesias-Casa, A. Application of the DEA double bootstrap to analyze efficiency in Galician Sheltered Workshops. Sustainability 2020, 12, 6625. [Google Scholar] [CrossRef]
- Taraka, K.; Latif, I.A.; Shamsudin, M.N.; Sidique, S.B.A. Estimation of technical efficiency for rice farms in central Thailand using stochastic frontier approach. Asian J. Agric. Dev. 2012, 9, 1–11. [Google Scholar] [CrossRef]
- De Silva, T.B.Y.A.; Rathnayaka, R.M.S.D. Impact of Good Agricultural Practices on Technical Efficiency of Tea Small Holders. In Proceedings of the Research Symposium on Value Addition for Sustainable Development, Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka, 11–12 December 2014; Available online: http://www.uwu.ac.lk/wp-content/uploads/Pro-TEA.pdf (accessed on 20 October 2022).
- Krasachat, W. Directional Input Distance Function Technical Efficiency of Chili Production in Thailand: Parametric Approach. In Proceedings of the 28th International Scientific Conference on Economic and Social Development, Paris, France, 19–20 April 2018; Omazic, M.A., Roska, V., Grobelna, A., Eds.; Varazdin Development and Entrepreneurship Agency: Varazdin, Croatia; Faculty of Management University of Warsaw: Warsaw, Poland; University North: Koprivnica, Croatia, 2018; pp. 464–471. [Google Scholar]
- Krasachat, W. Technical inefficiency of chili farms in Thailand: A parametric approach. Test. Eng. Manag. 2020, 83, 30415–30421. [Google Scholar]
- Thang, D.Q.; Dung, D.V. The efficiency of development investment in agricultural production applying good agricultural practices (Gap) standard of household—Case study of grapes and apple in Ninh Thuan province, Vietnam. J. Bus. Manag. Econ. Res. 2019, 3, 8–16. [Google Scholar] [CrossRef]
- Charamba, V.; Thomas, B. Estimation of farm level technical efficiency for small scale irrigation farmers of Etunda and Olushandja irrigation schemes of North-Central Namibia: A stochastic frontier approach. J. Dev. Agric. Econ. 2022, in press.
- FAO. Development of a Framework for Good Agricultural Practices; Committee on Agriculture, Seventeenth Session Food and Agriculture Organization: Rome, Italy, 2003; Available online: http://www.fao.org/3/y8704e/y8704e.htm (accessed on 20 October 2022).
- Ministry of Agriculture and Cooperatives. Good Agricultural Practices for Peppers. Royal Gaz; Volume 122 Special Section 117D; Office of the Prime Minister: Bangkok, Thailand, 2005; Available online: https://www.acfs.go.th/standard/download/eng/GAP_peppers.pdf (accessed on 25 October 2022).
- Villano, R.; Bravo-Ureta, B.; Solís, D.; Fleming, E. Modern rice technologies and productivity in the Philippines: Disentangling technology from managerial gaps. J. Agric. Econ. 2015, 66, 129–154. [Google Scholar] [CrossRef] [Green Version]
- Ahmadzai, H. Crop Diversification and Technical Efficiency in Afghanistan: Stochastic Frontier Analysis; CREDIT Research Paper No. 17/04; The University of Nottingham, Centre for Research in Economic Development and International Trade (CREDIT): Nottingham, UK, 2017; Available online: http://hdl.handle.net/10419/162749 (accessed on 19 October 2022).
- Phetcharat, C.; Chalermphol, J.; Siphumin, P.; Khempet, S. The determinants of farmers’ cropping systems adoption: A case of the upland farmers in Northern Thailand. Appl. Econ. J. 2017, 24, 52–62. Available online: https://so01.tci-thaijo.org/index.php/AEJ/article/view/115018 (accessed on 25 October 2022).
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-economic trade-offs of Diversified Farming Systems—A review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Madau, F.A. Technical efficiency in organic and conventional farming: Evidence from Italian cereal farms. Agric. Econ. Rev. 2007, 8, 5–22. [Google Scholar] [CrossRef]
- Acknowledge Management Institution. Thailand 4.0: Thriving in the 21st Century through Security, Prosperity & Sustainability; Thailand Research Fund: Bangkok, Thailand, 2017; Available online: https://thaiembdc.org/2016/11/21/thailand-4-0-thriving-in-the-21st-century-through-security-prosperity-sustainablility/ (accessed on 19 October 2022).
- Dörr, A.; Grote, U. The role of certification in the Brazilian fruit sector. Rev. Econ. Contemp. 2009, 13, 539–571. [Google Scholar] [CrossRef]
- Purnamasari, F.; Waluyati, L.R.; Masyhuri, M. The effect of good agriculture practices (GAP) on soybean productivity with Cobb-Douglas production function analysis in Kulon Progo Regency. Agro Ekonomi 2017, 28, 220–236. [Google Scholar] [CrossRef]
- Bayramoglu, Z.; Gundogmus, E.; Tatlidil, F.F. The impact of EurepGAP requirements on farm income from greenhouse tomatoes in Turkey. Afr. J. Agric. Res. 2010, 5, 348–355. Available online: https://academicjournals.org/journal/AJAR/article-stat/C81866C27521 (accessed on 19 October 2022).
- Bairagi, S.; Mishra, A.K.; Giri, A. Good agricultural practices, farm performance, and input usage by smallholders: Empirical evidence from Nepal. Agribusiness 2019, 35, 471–491. [Google Scholar] [CrossRef]
- Lazaro, V.; Rajendran, S.; Afari-Sefa, V.; Kazuzuru, B. Analysis of good agricultural practices in an integrated maize-based farming system. Int. J. Veg. Sci. 2017, 23, 598–604. [Google Scholar] [CrossRef]
- Asfaw, S.; Mithöfer, D.; Waibel, H. What impact are EU supermarket standards having on developing countries’ export of high-value horticultural products? Evidence from Kenya. J. Int. Food Agribus. Mark. 2010, 22, 252–276. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.B.C.; Le, T.Q.A. Impact of VietGAP Vegetable Production on the Health of Farmers Thua Thien Hue Province, Vietnam. In EEPSEA Research Report No. 2015-RR19; Economy and Environment Program in Southeast Asia (EEPSEA): Laguna, Philippines, 2015; Available online: https://eepseapartners.org/impact-of-vietgap-vegetable-production-on-the-health-of-farmers-in-thua-thien-hue-province-vietnam/ (accessed on 25 October 2022).
- Thanh Truc, N.T.; Thuc, L.V. Impacts of adopting specialized agricultural programs relying on “good practice”-Empirical evidence from fruit growers in Vietnam. Open Agric. 2022, 7, 39–49. [Google Scholar] [CrossRef]
- Lippe, R.S.; Grote, U. Costs and Benefits of GAP Standards Adoption in Thai Horticulture. In Aktuelle Forschung in der Gartenbauökonomie, Proceedings of the 1st Symposium für Ökonomie im Gartenbau, Göttingen, Germany, 27 November 2013; Dirksmeyer, W., Theuvsen, L., Kayser, M., Eds.; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2015; pp. 205–214. Available online: https://literatur.thuenen.de/digbib_extern/dn062217.pdf (accessed on 20 October 2022).
- Pongvinyoo, P.; Yamao, M.; Hosono, K. Cost efficiency of Thai national GAP (QGAP) and mangosteen farmers’ understanding in Chanthaburi Province. Am. J. Rural Dev. 2015, 3, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Lippe, R.S.; Grote, U. Determinants affecting adoption of GLOBALG.A.P. standards: A choice experiment in Thai horticulture. Agribusiness 2017, 33, 242–256. [Google Scholar] [CrossRef]
- CEIC. Available online: https://www.ceicdata.com/en/thailand/producer-price-index-2010100-classification-of-production-by-activities-cpa/producer-price-index (accessed on 20 October 2022).
- Wu, Z.; Liu, Y.; Li, G.; Han, Y.; Li, X.; Chen, Y. Influences of environmental variables and their interactions on Chinese farmland soil organic carbon density and its dynamics. Land 2022, 11, 208. [Google Scholar] [CrossRef]
- Mzyece, A.; Ng’ombe, J.N. Does crop diversification involve a trade-off between technical efficiency and income stability for rural farmers? Evidence from Zambia. Agronomy 2020, 10, 1875. [Google Scholar] [CrossRef]
- Kostov, P.; Davidova, S.; Bailey, A. Effect of family labour on output of farms in selected EU Member States: A non-parametric quantile regression approach. Eur. Rev. Agric. Econ. 2018, 45, 367–395. [Google Scholar] [CrossRef]
- Saidah, Z.; Harianto; Hartoyo, S.; Asmarantaka, R.W. Change on production and income of red chili farmers. IOP Conf. Ser.: Earth Environ. Sci. 2020, 466, 012003. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Morais, G.A.S.; Silva, F.F.; Freitas, C.O.d.; Braga, M.J. Irrigation, technical efficiency, and farm Size: The case of Brazil. Sustainability 2021, 13, 1132. [Google Scholar] [CrossRef]
- Ajibefun, I.A. An evaluation of parametric and non-parametric methods of technical efficiency measurement: Application to small scale food crop production in Nigeria. J. Agri. Soc. Sci. 2008, 4, 95–100. Available online: http://www.fspublishers.org/published_papers/70167_..pdf (accessed on 19 October 2022).
- Jarzębowski, S. Parametric and non-parametric efficiency measurement—The comparison of results. Quant. Methods Econ. 2013, 14, 170–179. Available online: http://qme.sggw.pl/pdf/MIBE_T14_z1.pdf (accessed on 20 October 2022).
- Asmare, E.; Begashaw, A. Review on parametric and nonparametric methods of efficiency analysis. Open Acc. Biostat. Bioinform. 2018, 2, 1–7. Available online: https://crimsonpublishers.com/oabb/fulltext/OABB.000534.php (accessed on 19 October 2022).
- Huang, T.H.; Wang, M.H. Comparison of economic efficiency estimation methods: Parametric and non-parametric techniques. Manch. Sch. 2002, 70, 682–709. [Google Scholar] [CrossRef]
- Porcelli, F. Measurement of technical efficiency. A brief survey on parametric and non-parametric techniques. Univ. Warwick 2009, 11, 1–27. Available online: https://scholar.google.co.th/citation?user=r3aedaaaaj&hl=en&oi=sra (accessed on 25 October 2022).
- Silva, E.; Mendes, A.B.; Santos, J. Efficiency measures in the agricultural Sector: The beginning. In Efficiency Measures in the Agricultural Sector; Mendes, A.L.D.G., Soares da Silva, E., Azevedo Santos, J., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Anyanwu, S.O.; Kalio, A.E.; Olatunji, O.; Akonye, L. A stochastic frontier production function approach to technical efficiency among cassava farmers in Rivers State, Nigeria. Asian J. Agric. Ext. Economics Sociol. 2014, 3, 746–755. [Google Scholar] [CrossRef]
- Battese, G.E.; Corra, G.S. Estimation of a production frontier model with application to the pastoral zone of Eastern Australia. Aust. J. Agr. Econ. 1977, 21, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Murillo-Zamorano, L.R.; Vega-Cervera, J.A. The use of parametric and non-parametric frontier methods to measure the productive efficiency in the industrial sector: A comparative study. Int. J. Prod. Econ. 2001, 69, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Alrafadi, K.M.S.; Yusuf, M.; Hisham, B. Measuring efficiency in banks: A brief survey on non-parametric technique (data envelopment analysis). Int. J. Bus. Econ. Mang. 2016, 3, 52–68. [Google Scholar] [CrossRef]
- Roman, M.; Gotiu, L. Non-parametric methods applied in the efficiency analysis of European structural funding in Romania. J. Appl. Quant. Methods 2017, 18, 1–23. Available online: https://mpra.ub.uni-muenchen.de/80548/ (accessed on 25 October 2022).
- Musa, H.A.; Lemma, Z.; Endrias, G. Measuring technical, economic and allocative efficiency of maize production in subsistence farming: Evidence from the central rift valley of Ethiopia. Appl. Stud. Agribusiness Comm. 2015, 9, 63–73. [Google Scholar] [CrossRef]
- Aldamak, A.; Zolfaghari, S. Review of efficiency ranking methods in data envelopment analysis. Measurement 2017, 106, 161–172. [Google Scholar] [CrossRef]
- Zamanian, G.R.; Shahabinejad, V.; Yaghoubi, M. Application of DEA and SFA on the measurement of agricultural technical efficiency in MENA countries. Int. J. Appl. Oper. Res. 2013, 3, 43–51. Available online: https://ijorlu.liau.ac.ir/article-1-227-en.pdf (accessed on 25 October 2022).
- Coelli, T.J. Recent developments in frontier modelling and efficiency measurement. Aust. J. Agric. Res. Econ. 1995, 39, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Lema, T.Z.; Tessema, S.A.; Abebe, F.A. Analysis of Technical Efficiency of Rice Production in Fogera District of Ethiopia: A Stochastic Frontier Approach. 2016. Available online: https://mpra.ub.uni-muenchen.de/77774/ (accessed on 20 October 2022).
- Kea, S.; Li, H.; Pich, L. Technical efficiency and its determinants of rice production in Cambodia. Economies 2016, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econometrics 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Cuesta, R.A.; Zofío, J.L. Hyperbolic efficiency and parametric distance functions: With application to Spanish savings banks. J. Prod. Anal. 2005, 24, 31–48. [Google Scholar] [CrossRef]
- Abdul-Majid, M.; Saal, D.S.; Battisti, G. The Efficiency and Productivity of Malaysian Banks: An Output Distance Function Approach. In Aston Business School Research Papers No. RP0815; Aston University: Birmingham, UK, 2008; Available online: https://research.aston.ac.uk/en/publications/the-efficiency-and-productivity-of-malaysian-banks-an-output-dist (accessed on 19 October 2022).
- Rungsuriyawiboon, S.; O’Donnell, C. Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. In Electric Utilities, Centre for Efficiency and Productivity Analysis Working Paper Series, No. 07/2004; University of Queensland: Brisbane, Australia, 2004; Available online: http://www.uq.edu.au/economics/cepa/docs/WP/WP072004.pdf (accessed on 25 October 2022).
- Coelli, T.J. On the Econometric Estimation of the Distance Function Representation of a Production Technology. In CORE Discussion Papers; Universite Catholique de Louvain: Ottignies-Louvain-la-Neuve, Belgium, 2000; Available online: http://hdl.handle.net/2078.1/4131 (accessed on 20 October 2022).
- Coelli, T.; Singh, S.; Fleming, E. An Input Distance Function Approach to the Measurement of Technical and Allocative Efficiency: With Application to Indian Dairy Processing Plants; Working paper; School of Economics, University of New England: Armidale, NSW, Australia, 2003; Available online: https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=esam2003&paper_id=105 (accessed on 20 October 2022).
- Li, M.; Sicular, T. Aging of the labor force and technical efficiency in crop production: Evidence from Liaoning Province, China. China Agric. Econ. Rev. 2013, 5, 342–359. [Google Scholar] [CrossRef]
- Atkinson, S.E.; Primont, D. Stochastic estimation of firm technology, inefficiency, and productivity growth using shadow cost and distance functions. J. Econometrics 2002, 108, 203–225. [Google Scholar] [CrossRef]
- Shephard, R.W. Theory of Cost and Production Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Coelli, T.J.; Perelman, S. Technical efficiency of European railways: A distance function approach. Appl. Econ. 2000, 32, 1967–1976. [Google Scholar] [CrossRef]
- Irz, X.; Thirtle, C. Dual technological development in Botswana agriculture: A stochastic input distance function approach. J. Agric. Econ. 2004, 55, 455–478. [Google Scholar] [CrossRef]
- Coelli, T.J.; Fleming, E. Diversification economies and specialisation efficiencies in a mixed food and coffee smallholder farming system in Papua New Guinea. Agr. Econ. 2004, 31, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S. Scale efficiency in Danish agriculture: An input distance–function approach. Eur. Rev. Agric. Econ. 2010, 37, 335–367. [Google Scholar] [CrossRef] [Green Version]
- Honma, S.; Hu, J.-L. A meta-stochastic frontier analysis for energy efficiency of regions in Japan. J. Econ. Struct. 2018, 7, 1–16. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Zhou, D.Q. Measuring economy-wide energy efficiency performance: A parametric frontier approach. Appl. Energy 2012, 90, 196–200. [Google Scholar] [CrossRef]
- Lovell, C.A.K.; Travers, P.; Richardson, S.; Wood, L. Resources and functionings: A new view of inequality in Australia. In Models and Measurement of Welfare and Inequality; Eichhorn, W., Ed.; Springer-Verlag: Berlin, Germany, 1994; pp. 787–807. [Google Scholar] [CrossRef]
- Singbo, A.; Larue, B. Scale Economies and Technical Efficiency of Quebec Dairy Farms. In Working Paper 2014-7, Center for Research on the Economics of the Environment, Agri-Food, Transports and Energy (CREATE); Social Science Research Network (SSRN): Rochester, NY, USA, 2014. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Frontier production function, technical efficiency and panel data: With application to paddy farmers in India. J. Prod. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Greene, W.H. The Econometric approach to efficiency analysis. In The Measurement of Productive Efficiency: Techniques and Applications; Fried, H.O., Lovell, C.A.K., Schmidt, S.S., Eds.; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Morrison Paul, C.J.; Nehring, R. Product diversification, production systems, and economic performance in U.S. agricultural production. J. Econometrics 2005, 126, 525–548. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A Model of technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, S.C.; Ghosh, S.; McGuckin, J.T. A generalized production frontier approach for estimating determinants of inefficiency in US dairy farms. J. Bus. Econ. Stat. 1991, 9, 279–286. [Google Scholar] [CrossRef]
- Wilson, P.; Hadley, D.; Ramsden, S.; Kaltsas, I. Measuring and explaining efficiency in UK potato production. J. Agric. Econ. 1998, 49, 294–305. [Google Scholar] [CrossRef]
- Gonzalez-Flores, M.; Bravo-Ureta, B.; Solıs, D.; Winters, P. The impact of high value markets on smallholder efficiency in the Ecuadorean Sierra: A stochastic production frontier approach correcting for selectivity bias. Food Policy 2014, 44, 237–247. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.P.; O’Donnell, C.J. A Metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Prod. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Huang, C.J.; Huang, T.H.; Liu, N.H. A new approach to estimating the metafrontier production function based on a stochastic frontier framework. J. Prod. Anal. 2014, 42, 241–254. [Google Scholar] [CrossRef]
- Sipiläinen, T. Sources of productivity growth on Finnish dairy farms—Application of an input distance function. Acta Agric. Scand. A Food Econ. 2007, 4, 65–76. [Google Scholar] [CrossRef]
- Bouchaddakh, Z.; Ben Jemaa, M.M. Risk Sharing Vs Risk Bearing and Shifting: Evidence from Conventional and Islamic Banks of MENA Region Using Metafrontier Directional Distance Functions. In Working Paper 1042, Economic Research Forum; Economic Research Forum (ERF): Giza, Egypt, 2016; Available online: http://bit.ly/2bDYHWl (accessed on 19 October 2022).
- Wree, P.; Sauer, J.; Wimmer, S. Economic evaluation of yield-increasing wheat seeds using a distance function approach. Agric. Resour. Econ. Rev. 2018, 47, 610–633. [Google Scholar] [CrossRef]
- Mohammed, B.; Ahmed, B.; Abdulsalam, Z. Technical efficiency of chilli pepper production in Kaduna State, Nigeria. J. Exp. Agric. Int. 2015, 9, 1–9. [Google Scholar] [CrossRef]
- Jara-Rojas, R.; Bravo-Ureta, B.E.; Solís, D.; Arriagada, D.M. Technical efficiency and marketing channels among small-scale farmers: Evidence for raspberry production in Chile. Int. Food Agribus. Manag. Rev. 2017, 21, 351–364. [Google Scholar] [CrossRef]
- Tenaye, A. Technical efficiency of smallholder agriculture in developing countries: The case of Ethiopia. Economies 2020, 8, 34. [Google Scholar] [CrossRef]
- Onumah, E.E.; Brümmer, B.; Hörstgen-Schwark, G. Productivity of the hired and family labour and determinants of technical inefficiency in Ghana’s fish farms. Agric. Econ.–Czech 2010, 56, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Onumah, E.E.; Acquah, H.d. A stochastic production investigation of fish farms in Ghana. Agris On-Line Pap. Econ. Inform. 2011, 3, 55–65. [Google Scholar] [CrossRef]
- Anang, B.T.; Bäckman, S.T.; Sipiläinen, T.A. Technical efficiency and its determinants in smallholder rice production in Northern Ghana. J. Dev. Areas 2016, 50, 311–328. [Google Scholar] [CrossRef]
- Jirarud, S.; Suwanmaneepong, S. Technical efficiency of rice farmers under the large agricultural plot scheme in Khlong Khuean District, Chachoengsao Province, Thailand. World Rev. Entrep. Manag. Sustain. Dev. 2020, 16, 228–240. [Google Scholar] [CrossRef]
- Cao, T.M.; Thongrak, S.; Kiatpathomchai, S. Technical efficiency in rice production of the farmers in cooperatives: A study in Kien Giang Province, Mekong Delta, Vietnam. Int. J. Econ. Res. 2017, 14, 689–704. [Google Scholar]
- Masterson, T. Productivity, Technical Efficiency, and Farm Size in Paraguayan Agriculture; Working Paper No. 490; The Levy Economics Institute: New York, NY, USA, 2007; Available online: http://www.levyinstitute.org/pubs/wp_490.pdf (accessed on 25 October 2022).
- Manjunatha, A.V.; Anikc, A.R.; Speelman, S.; Nuppenau, E.A. Impact of land fragmentation, farm size, land ownership and crop diversity on profit and efficiency of irrigated farms in India. Land Use Policy 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Ogundari, K. Crop diversification and technical efficiency in food crop production: A study of peasant farmers in Nigeria. Int. J. Soc. Econ. 2013, 40, 267–287. [Google Scholar] [CrossRef]
- Nguyen, H. Crop Diversification, Economic Performance and Household Behaviour Evidence from Vietnam; MPRA Paper No. 59090; Social Science Research Network (SSRN): Rochester, NY, USA, 2014. [Google Scholar] [CrossRef]
- Khai, H.V.; Yabe, M. Technical efficiency analysis of rice production in Vietnam. J. ISSAAS 2011, 17, 135–146. Available online: https://agris.fao.org/agris-search/search.do?recordID=PH2013000242 (accessed on 20 October 2022).
- Mithiya, D.; Bandyopadhyay, S.; Mandal, K. Measuring technical efficiency and returns to scale in Indian agriculture using panel data: A case study of west Bengal. Appl. Econ. Fin. 2019, 6, 1–14. [Google Scholar] [CrossRef]
- Coelli, T.J. A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation. In Centre for Efficiency and Productivity Analysis (CEPA) Working Paper 96/07; University of New England: Armidale, Australia, 1996; Available online: https://economics.uq.edu.au/cepa/software (accessed on 20 October 2022).
- Agresti, A. Categorical Data Analysis; John Wiley and Sons: New York, NY, USA, 1990. [Google Scholar]
- Glen, S. Wald Test: Definition, Examples, Running the Test. Available online: https://www.statisticshowto.com/wald-test/ (accessed on 20 October 2022).
- Fan, S.; Chan-Kang, C. Is small beautiful? farm size, productivity, and poverty in Asian agriculture. Agr. Econ. 2005, 32, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Srisompun, O.; Boontang, S. Production efficiency and its determinants of cassava farm in Maha Sarakham, Thailand. J. ISSAAS 2020, 26, 73–85. Available online: http://issaasphil.org/wp-content/uploads/2020/06/7.-Srisompun-and-Boontang-2020-Cassava-technical-efficiency-FINAL.pdf (accessed on 20 October 2022).
- Srimongkol, K.; Marten, G.G. Traditional agriculture in northern Thailand. In Traditional Agriculture in Southeast Asia: A Human Ecology Perspective; Marten, G.G., Ed.; Westview Press: Boulder, Colorado, 1986; Available online: http://gerrymarten.com/traditional-agriculture/pdfs/Traditional-Agriculture-chapter-04.pdf (accessed on 25 October 2022).
- Gorman, M. Older Women, Older Farmers—The Hidden Face of Agriculture. Available online: https://www.helpage.org/silo/files/older-women-older-farmers-the-hidden-face-of-agriculture.pdf (accessed on 20 October 2022).
- Jansuwan, P.; Zander, K.K. Getting young People to Farm: How effective is Thailand’s young smart farmer programme? Sustainability 2021, 13, 11611. [Google Scholar] [CrossRef]
- Jansuwan, P.; Zander, K.K. Multifunctional farming as successful pathway for the next generation of Thai farmers. PLoS One 2022, 17, e0267351. [Google Scholar] [CrossRef] [PubMed]
- Schipane, S. A Guide to Types of Farms. Available online: https://hellohomestead.com/a-guide-to-types-of-farms (accessed on 25 October 2022).
- Toulmin, C.; Guèye, B. Is there a future for family farming in west Africa? IDS Bulletin 2005, 36, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Chuenchooklin, S.; Pangnakorn, U.; Chaowakul, M.; Soonthornnondha, P. Comparative Study of Traditional and Smart-farm Irrigation Systems for Melon Farms in Chai Nat Province, Thailand. 2019. Available online: https://www.icid.org/9imic2019_papers/9th_imic_st1_paper (20).pdf (accessed on 20 October 2022).
- Hyuha, T.S.; Bashaasha, B.; Nkonya, E.; Kraybill, D. Analysis of profit efficiency in rice production in eastern and northern Uganda. Afr. Crop Sci. J. 2007, 15, 243–253. Available online: http://www.ajol.info/index.php/acsj/article/view/54465/42983 (accessed on 20 October 2022).
- Schultz, T.W. The value of the ability to deal with disequilibrium. J. Econ. Lit. 1975, 13, 827–846. Available online: http://www.jstor.org/stable/2722032 (accessed on 25 October 2022).
- Asante, B.O.; Wiredu, A.N.; Martey, E.; Sarpong, D.B.; Mensah-Bonsu, A. NERICA adoption and impacts on technical efficiency of rice producing households in Ghana: Implications for research and development. J. Exp. Agric. Int. 2014, 4, 244–262. [Google Scholar] [CrossRef]
- Ali, S.; Murtaza; Ahmad, W.; Bibi, N.; Khan, A.; Khan, J. Does education and farming experience affect technical efficiency of rice crop growers? Evidence from Khyber Pakhtunkhwa, Pakistan. Sarhad J. Agric. 2022, 38, 1147–1159. [Google Scholar] [CrossRef]
- Llewelyn, R.V.; Williams, J.R. Nonparametric analysis of technical, pure technical, and scale efficiencies for food crop production in East Java, Indonesia. Agric. Econ. 1996, 15, 113–126. [Google Scholar] [CrossRef]
Variable | Average | S.D. | Minimum | Maximum |
---|---|---|---|---|
Group 1: Non-GAP farms (n = 40) | ||||
Age (years) | 55.65 | 8.50 | 39 | 72 |
Cultivation experience (years) | 13.30 | 9.65 | 1 | 42 |
Group 2: GAP farms (n = 60) | ||||
Age (years) | 55.45 | 7.77 | 38 | 78 |
Cultivation experience (years) | 15.18 | 10.18 | 1 | 40 |
Group 3: Farms using dry-season variety (n = 38) | ||||
Age (years) Cultivation experience (years) | 55.21 14.32 | 6.85 9.12 | 42 3 | 73 30 |
Group 4: Farms using rainy-season variety (n = 57) | ||||
Age (years) Cultivation experience (years) | 57.47 24.75 | 8.54 10.81 | 38 1 | 78 42 |
Hypothesis | ANOVA Test | Wilcoxon Two-Sample Test | ||
H0: No difference in averaged age between GAP and non-GAP farms | F-value =0.01 | Z-value = 0.08 | ||
Prob > F =0.90 | Pr > |Z| = 0.94 | |||
H0: No difference in averaged years of experience between GAP and non-GAP farms | F-value =0.86 | Z-value = 0.89 | ||
Prob > F = 0.36 | Pr > |Z| = 0.38 | |||
H0: No difference in averaged age between farms using dry-season variety and farms using rainy-season variety | F-value = 0.07 Prob > F = 0.79 | Z-value = 0.14 Pr > |Z| =0.89 | ||
H0: No difference in averaged years of experience between farms using dry-season variety and farms using rainy-season variety | F-value = 0.001 Prob > F = 0.98 | Z-value = 0.31 Pr > |Z| =0.76 |
Variable | Group 1: Non-GAP Farms, n = 36 | Group 2: GAP Farms, n = 59 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | S.D. 1 | Min | Max | C.V. 2 | Average | S.D. | Min | Max | C.V. | |
Output (kgs) | 2282.11 | 3879.06 | 15.00 | 18000.0 | 170.0 | 936.26 | 964.35 | 65.00 | 7941.0 | 103.0 |
Land (rai) | 2.27 | 2.76 | 0.25 | 10.0 | 121.6 | 1.00 | 0.53 | 0.25 | 3.0 | 53.0 |
Labor (person-hours) | 89.38 | 108.85 | 6.75 | 453.9 | 121.8 | 67.75 | 41.15 | 13.75 | 196.0 | 60.7 |
Capital (constant 2010 THB) | 51.32 | 75.45 | 1.23 | 387.1 | 147.0 | 28.26 | 26.11 | 0.11 | 116.7 | 92.4 |
Materials (constant 2010 THB) | 81.72 | 111.37 | 0.58 | 507.3 | 136.3 | 53.73 | 31.22 | 5.81 | 159.8 | 58.1 |
Good agricultural practices (GAP) (GAP adoption = 1; non-GAP adoption = 0) | 0.00 | 0.00 | 0.00 | 0.0 | - | 1.00 | 0.00 | 1.00 | 1.0 | 0.0 |
Variety (rainy-season variety = 1; dry-season variety = 0) | 0.83 | 0.38 | 0.00 | 1.0 | 45.8 | 0.46 | 0.50 | 0.00 | 1.0 | 108.7 |
Age (years) | 55.39 | 8.09 | 39.00 | 72.0 | 14.6 | 55.36 | 7.80 | 38.00 | 78.0 | 14.1 |
Education (years of schooling) | 6.56 | 2.14 | 0.00 | 14.0 | 32.6 | 7.48 | 2.52 | 6.00 | 16.0 | 33.7 |
Technical training classes (number of classes) | 0.33 | 0.86 | 0.00 | 4.0 | 260.6 | 4.63 | 5.04 | 0.00 | 30.0 | 108.9 |
Cultivation experience (years) | 13.25 | 10.09 | 1.00 | 42.0 | 76.2 | 15.39 | 10.14 | 1.00 | 40.0 | 65.9 |
Farm size (equal to or more than 2 rai of chili-cultivated area = 1; otherwise = 0) | 0.36 | 0.49 | 0.00 | 1.0 | 136.1 | 0.10 | 0.30 | 0.00 | 1.0 | 300.0 |
Crop diversification (complete diversity = 1; completely uniform = 0) | 0.15 | 0.14 | 0.01 | 0.5 | 93.3 | 0.17 | 0.13 | 0.00 | 0.48 | 76.5 |
Family labor involved in farming per area of chili cultivation (person-days/rai) | 2.45 | 2.38 | 0.00 | 8.0 | 97.1 | 2.49 | 1.71 | 0.75 | 10.0 | 68.7 |
Null Hypothesis | Model | Statistic Test | Critical Value 1 | Result |
---|---|---|---|---|
H0: | Translog vs. Cobb–Douglas | 41.96 | 23.20 | Rejected H0 |
H0: | Technological homogeneity (GAP 2 adoption vs. non-GAP adoption) | 9.05 | 6.63 | Rejected H0 |
H0: | Technological homogeneity (rainy-season variety vs. dry-season variety) | 0.53 3 | 6.63 | Not rejected H0 |
Variable | Group Technical Efficiency (TEG) | Technology Gap Ratio (TGR) | ||||
---|---|---|---|---|---|---|
Non-GAP Farms | GAP Farms | |||||
Coefficient | Standard Error | Coefficient | Standard Error | Coefficient | Standard Error | |
Stochastic frontier: | ||||||
Constant | −5.267 *** | 1.227 | −0.997 | 1.153 | −0.206 | 0.775 |
ln(output) | 0.669 ** | 0.241 | 0.121 | 0.482 | 0.172 | 0.139 |
ln(land) | −1.598 *** | 0.541 | 0.106 | 0.719 | 0.362 | 0.304 |
ln(capital) | −0.812 | 0.474 | 0.637 *** | 0.144 | 0.371 ** | 0.154 |
ln(materials) | 0.101 | 0.371 | −0.394 | 0.600 | −0.107 | 0.217 |
ln(land)xln(land) | −0.315 *** | 0.093 | −0.038 | 0.158 | −0.120 *** | 0.044 |
ln(capital)xln(capital) | −0.106 *** | 0.029 | 0.014 | 0.017 | 0.014 | 0.010 |
ln(materials)xln(materials) | −0.074 | 0.086 | 0.077 | 0.131 | 0.071 * | 0.039 |
ln(land)xln(capital) | −0.037 | 0.090 | 0.226 *** | 0.053 | 0.082 ** | 0.041 |
ln(land)xln(materials) | 0.134 | 0.121 | −0.103 | 0.230 | 0.003 | 0.065 |
ln(capital)xln(materials) | −0.228 ** | 0.081 | −0.090 | 0.095 | −0.040 | 0.039 |
ln(land)xln(output) | 0.020 | 0.052 | 0.060 | 0.083 | −0.091*** | 0.031 |
ln(capital)xln(output) | 0.080 ** | 0.035 | 0.048 | 0.083 | −0.004 | 0.022 |
ln(materials)xln(output) | 0.024 | 0.039 | 0.029 | 0.094 | 0.045 | 0.028 |
ln(output)xln(output) | −0.070 *** | 0.010 | −0.003 | 0.012 | −0.065 *** | 0.008 |
Inefficiency model: | ||||||
Constant | 1.544 | 1.550 | 2.350 ** | 0.986 | ||
age | −0.033 | 0.056 | −0.057 | 0.034 | ||
age2 | 0.0004 | 0.0005 | 0.0004 | 0.0003 | ||
education | 0.015 | 0.015 | 0.024 ** | 0.010 | ||
training class | −0.116 * | 0.059 | 0.010 * | 0.005 | ||
experience | 0.003 | 0.004 | 0.010 *** | 0.003 | ||
farm size | 0.216 ** | 0.124 | 0.204 *** | 0.021 | ||
crop diversification | −0.525 | 0.406 | 0.820 *** | 0.244 | ||
family labor/chili-cultivated area | −0.218 *** | 0.038 | −0.141 *** | 0.025 | ||
0.015 *** | 0.003 | 0.023 *** | 0.003 | 0.075 *** | 0.021 | |
0.601 ** | 0.244 | 0.999 *** | 0.016 | 0.920 *** | 0.101 | |
Log-likelihood | 25.957 | 28.098 | 35.096 | |||
No. of farms | 36 | 59 | 95 |
Null Hypothesis | Model | Statistic Test | Critical Value 1 | Result |
---|---|---|---|---|
Good agricultural practice (GAP) farms (n = 59) | ||||
H0: | Translog vs. Cobb–Doulglas | 30.79 | 23.20 | Rejected H0 |
H0: | No inefficiency effects | 74.91 | 23.20 | Rejected H0 |
H0: | No farm-specific factors | 70.77 | 20.09 | Rejected H0 |
Non-GAP farms (n = 36) | ||||
H0: | Translog vs. Cobb–Doulglas | 57.12 | 23.20 | Rejected H0 |
H0: | No inefficiency effects | 47.62 | 23.20 | Rejected H0 |
H0: | No farm-specific factors | 44.30 | 20.09 | Rejected H0 |
Technology gap ratio (TGR) (n = 95) | ||||
H0: | Translog vs. Cobb–Douglas | 75.62 | 23.20 | Rejected H0 |
Average | S.D. 1 | Min | Max | |
---|---|---|---|---|
Good agricultural practice (GAP) farms | ||||
Group technical efficiency (TEG) | 0.442 | 0.172 | 0.139 | 0.991 |
Technology gap ratio (TGR) | 0.861 | 0.062 | 0.717 | 0.967 |
Meta-frontier efficiency (TE *) | 0.383 | 0.158 | 0.117 | 0.889 |
Non-GAP farms | ||||
Group technical efficiency (TEG) | 0.513 | 0.232 | 0.154 | 0.988 |
Technology gap ratio (TGR) | 0.769 | 0.147 | 0.453 | 0.970 |
Meta-frontier efficiency (TE *) | 0.399 | 0.214 | 0.118 | 0.913 |
Hypothesis | ANOVA Test | Wilcoxon Two-Sample Test | ||
H0: No difference in the averaged meta-frontier technical efficiency (TE *) between GAP farms and non-GAP farms | F-value = 0.182 Prob > F = 0.671 | Z-value = −0.061 Pr > |Z| = 0.951 | ||
H0: No difference in the averaged technology gap ratio (TGR) between GAP farms and non-GAP farms | F-value = 17.884 *** Prob > F = <0.001 | Z-value = −2.631 *** Pr > |Z| = 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasachat, W. The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand. Sustainability 2023, 15, 866. https://doi.org/10.3390/su15010866
Krasachat W. The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand. Sustainability. 2023; 15(1):866. https://doi.org/10.3390/su15010866
Chicago/Turabian StyleKrasachat, Wirat. 2023. "The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand" Sustainability 15, no. 1: 866. https://doi.org/10.3390/su15010866
APA StyleKrasachat, W. (2023). The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand. Sustainability, 15(1), 866. https://doi.org/10.3390/su15010866