Sustainability in Rainfed Maize (Zea mays L.) Production Using Choice of Corn Variety and Nitrogen Scheduling
<p>Hypothesis of experiment is conceived with 30-years long-term meteorological data available for the site and the crop was raised under rainfed condition. Moisture from top 35–40 mm of soil depth evaporates quickly and soil becomes dry when dry spell is prolongs, however, soil below the 35–40 mm of depth had variable soil profile moisture (depicted in <a href="#sustainability-14-03116-f001" class="html-fig">Figure 1</a> and termed as ‘stored moisture zone’). Fertilizer (Urea) in the absence of moisture in the topsoil, does not go inside the soil and losses through volatilization (depicted in Left side portion of <a href="#sustainability-14-03116-f001" class="html-fig">Figure 1</a>). In the present study nitrogen is scheduled based on 30-years average rainfall data when 14–15 mm rainfall is expected to be received which moistened top 40 mm of soil profile of the experimental soil i.e., clayey soil (in figure termed as ‘top moisture zone’). Therefore, applied fertilizer moves all round in the top moisture zone as well as meets with ‘stored moisture zone’ of soil and becomes available to plant roots, (depicted in the Right side portion of <a href="#sustainability-14-03116-f001" class="html-fig">Figure 1</a>) leading to better nutrition and yield.</p> "> Figure 2
<p>Location of the experimental site.</p> "> Figure 3
<p>Rainfall and other weather parameters during crop growing period of experimental crop season and 30-years average.</p> "> Figure 4
<p>Views of experiment.</p> "> Figure 5
<p>Effect of variety and nitrogen scheduling based on 30-years average rainfall data on leaf area index. Different letters, i.e., <sup>a, b, c</sup> indicate significant differences according to honestly significant difference (HSD) test (α = 0.05). Significance levels: * <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 6
<p>Durations of maize varieties as influenced by nitrogen scheduling based on 30-years average rainfall data. S: sowing; VE: emergency stage; V6: sixth leaf stage; V15: fifteenth leaf stage; VT: tasseling stage; R1: silking stage and PM: physiological maturity stages.</p> "> Figure 7
<p>Effect of variety and nitrogen scheduling based on 30-years average rainfall data on number of grains⋅row<sup>−1</sup>. Different letters, i.e., <sup>a, b, c</sup> indicate significant differences according to honestly significant difference (HSD) test (α = 0.05). Significance levels: * <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 8
<p>Effect of nitrogen scheduling based on 30-years average rainfall data on protein content.</p> "> Figure 9
<p>Effect of nitrogen scheduling based on 30-years average rainfall data on total mineral content.</p> "> Figure 10
<p>Effect of nitrogen scheduling based on 30-years average rainfall data on dickson quality index.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Climatic Condition and Soil Property
2.2. Experimental Set Up and Treatment Details
2.3. Crop Management
2.4. Sampling and Observations
2.4.1. Dry Matter (g⋅plant−1)
2.4.2. Leaf Area (cm2⋅plant−1)
2.4.3. Leaf Area Index (LAI)
2.4.4. Crop Growth Rate (g⋅m−2⋅day−1)
2.4.5. Crop Phenology
2.4.6. Dickson Quality Index (DQI)
2.4.7. Yield Attributes
2.4.8. Yield (kg⋅ha−1)
2.4.9. Protein Content
2.4.10. Total Mineral
2.5. Statistical Analysis
3. Results and Discussion
3.1. Growth Parameters
3.2. Crop Phenology
3.3. Yield Attributes
3.4. Yield of Maize
3.5. Quality Parameters
3.5.1. Protein Content (%)
3.5.2. Mineral Content (%)
3.5.3. Dickson Quality Index (DQI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- FAOSTAT Production/Yield Quantities of Maize in World + (Total) and India. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 9 September 2021).
- CGIAR Maize-Global Alliance for Improving Food Security and the Livelihoods of the Resource-Poor in the Developing World. Available online: https://cgspace.cgiar.org/bitstream/handle/10947/2556/crp_3.2_crp_report_june_1_2011.pdf?sequence=1 (accessed on 30 September 2020).
- FICCI-PwC Maize Vision 2022—A Knowledge Report. Available online: https://ficci.in/spdocument/22966/India-Maize-Summit.pdf (accessed on 10 September 2021).
- Hasanuzzaman, M. Agronomic Crops: Volume 2: Management Practices, 1st ed.; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019; ISBN 9789813297838. [Google Scholar]
- Gowing, J.W.; Palmer, M. Sustainable agricultural development in sub-Saharan Africa: The case for a paradigm shift in land husbandry. Soil Use Manag. 2008, 24, 92–99. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Conyers, M.K.; Hunt, J.R.; Kirkby, C.A.; Watt, M.; Rebetzke, G.J. Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 2014, 187, 133–145. [Google Scholar] [CrossRef]
- Biradar, C.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, N.M.; Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; et al. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinfor. 2009, 11, 114–129. [Google Scholar] [CrossRef]
- CIMMYT Improving Rainfed (Kharif) Maize Productivity. Available online: https://www.cimmyt.org/projects/improving-r (accessed on 8 August 2021).
- FAO. Technical Options for Sustainable Land and Water Management. Available online: http://www.fao.org/3/i1688e/i1688e06.pdf (accessed on 30 June 2021).
- Vanschoenwinkel, J.; Van Passel, S. Climate response of rainfed versus irrigated farms: The bias of farm heterogeneity in irrigation. Clim. Chang. 2018, 147, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Mugiyo, H.; Mhizha, T.; Chimonyo, V.; Mabhaudhi, T. Investigation of the optimum planting dates for maize varieties using a hybrid approach: A case of Hwedza, Zimbabwe. Heliyon 2021, 7, e06109. [Google Scholar] [CrossRef]
- Chen, G.; Liu, H.; Zhang, J.; Liu, P.; Dong, S. Factors affecting summer maize yield under climate change in Shandong Province in the Huanghuaihai Region of China. Int. J. Biometeorol. 2012, 56, 621–629. [Google Scholar] [CrossRef]
- Dangi, K.; Singh, S.; Malviya, D.; Gautam, A.; Kanapuriya, N.; Kumar, B. Effect of Rice Varieties on Growth, Yield and Economics at Varying Levels of Nitrogen under Direct Seeded Upland Condition Rewa Region. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2313–2318. [Google Scholar] [CrossRef] [Green Version]
- Pannell, D.J. Economic perspectives on nitrogen in farming systems: Managing trade-offs between production, risk and the environment. Soil Res. 2017, 55, 473. [Google Scholar] [CrossRef]
- The State of the World’s Land and Water Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/3/i1688e/i1688e.pdf (accessed on 12 September 2021).
- Bindhani, A.; Barik, K.C.; Garnayak, L.M.; Mahapatra, P.K. Productivity and nitrogen-use efficiency of baby corn (Zea mays) at different levels and timing of nitrogen application under rainfed conditions. Indian J. Agric. Sci. 2008, 78, 629–631. [Google Scholar]
- Afifi, M.H.M.; Khalifa, R.K.M.; Camilia, Y.E.-D. Urea foliar application as a partial substitution of soil-applied nitrogen fertilization for some maize cultivars grown in newly cultivated soil. Aust. J. Basic Appl. Sci. 2011, 5, 826–832. [Google Scholar]
- Khan, A.Z.; Jan, A.; Shah, Z.; Ahmad, B.; Khalil, S.K.; Ali, A.; Hidayatullah; Ahamd, F.; Nawaz, A. Foliar application of nitrogen at different growth stages influences the phenology, growth and yield of maize (Zea mays L.). Soil Environ. 2013, 32, 135–140. [Google Scholar] [CrossRef]
- ICAR—Indian Institute of Maize Research. Available online: https://iimr.icar.gov.in/publications-category/krishi-chetna/ (accessed on 3 March 2022).
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Piper, C.S. Soil and Plant Analysis; Interscience Publishers, Inc.: New York, NY, USA, 1950. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid method for estimation of nitrogen in soil. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watandbe, F.; Dean, L. Estimation of Available Phosphorus in Soil by Extraction with sodium Bicarbonate. J. Chem. Inf. Model. 1954, 53, 1689–1699. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Publisher: New Delhi, India, 1964. [Google Scholar]
- Musa, U.T.; Hassan, U.T. Leaf area determination for Maize (Zea mays L.), Okra (Abelmoschus esculentus L.) and Cowpea (Vigna unguiculata L.) crops using linear measurements. J. Biol. Agric. Healthc. 2016, 6, 103–111. [Google Scholar]
- Watson, D.J. The Physiological Basis of Variation in Yield. Adv. Agron. 1952, 4, 101–145. [Google Scholar] [CrossRef]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Merril, A.L.; Watt, B.K. Energy Value of Foods: Basis and Derivation, Revised; US Government Printing Office: Washington, DC, USA, 1973.
- Nabila, M.Z.; Hassanein, M.S.; Ahmed, A.G.; Ahmed, M.A.; Hozayn, M. Impact of urea and potassium foliar application on yield and yield components of two maize hybrids. Int. J. Chem. Tech. Res. 2016, 9, 300–307. [Google Scholar]
- Abera, T.; Debele, T.; Wegary, D. Effects of Varieties and Nitrogen Fertilizer on Yield and Yield Components of Maize on Farmers Field in Mid Altitude Areas of Western Ethiopia. Int. J. Agron. 2017, 2017, 4253917. [Google Scholar] [CrossRef]
- Amin, A.A.; Rashad, E.S.M.; Hassanein, M.S.; Zaki, N.M. Response of Some White Maize Hybrids to Foliar Spray with Benzyl Adenine. Res. J. Agric. B Iological Sci. 2007, 3, 648–656. [Google Scholar]
- Hassanein, M.S.; Amal, G.A.; Nabila, M.Z.; Hozayn, M. Maize productivity as influenced by foliar fertilizer stimufol Amino. Int. J. Chem. Tech. Res. 2015, 8, 196–203. [Google Scholar]
- Hammad, H.M.; Ahmad, A.; Wajid, A.; Akhter, J. Maize response to time and rate of nitrogen application. Pak. J. Bot. 2011, 43, 1935–1942. [Google Scholar]
- Wasaya, A.; Tahir, M.; Tanveer, A.; Yaseen, M. Response of maize to tillage and nitrogen management. J. Anim. Plant Sci. 2012, 22, 452–456. [Google Scholar]
- Sharifi, R.S.; Namvar, A. Effects of time and rate of nitrogen application on phenology and some agronomical traits of maize (Zea mays L.). Biologija 2016, 62. [Google Scholar] [CrossRef]
- Verma, L.; Kumar, V.; Shinde, S.S.; Asewar, B. V Yield reponse of Kharif maize for split application of nitrogen. J. Pharmacogn. Phytochestry 2018, 7, 1097–1099. [Google Scholar]
- Hammad, H.M.; Ahmad, A.; Farhad, W.; Abbas, F.; Qasim, K.; Saeed, S. Nitrogen stimulates phenological traits, growth and growing degree days of maize. Pak. J. Agric. Sci. 2013, 50, 337–343. [Google Scholar]
- Adhikari, P.; Baral, B.R.; Shrestha, J. Maize response to time of nitrogen application and planting seasons. J. Maize Res. Dev. 2016, 2, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.M.; Shafi, M.; Ahmad, H.; Nawab, A.; Jehanzeb; Owais, M.I.; Ullah, S.; Shafiullah. Phenology and yield response of different maize varieties to split nitrogen application under climatic conditions of Peshawar. Pure Appl. Biol. 2018, 7, 671–677. [Google Scholar] [CrossRef]
- Gungula, D.T.; Kling, J.G.; Togun, A.O. CERES-Maize Predictions of Maize Phenology under Nitrogen-Stressed Conditions in Nigeria. Agron. J. 2003, 95, 892–899. [Google Scholar] [CrossRef]
- Dolan, M.; Clapp, C.; Allmaras, R.; Baker, J.; Molina, J. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- Meng, Q.; Cui, Z.; Yang, H.; Zhang, F.; Chen, X. Establishing High-Yielding Maize System for Sustainable Intensification in China. Adv. Agron. 2018, 148, 85–109. [Google Scholar] [CrossRef]
- Asaduzzaman; Biswas, M.; Islam, N.; Rahman, M.M.; Begum, R.; Sarkar, A.R. Variety and N-Fertilizer Rate Influence the Growth, Yield and Yield Parameters of Baby Corn (Zea mays L.). J. Agric. Sci. 2014, 6, 118. [Google Scholar] [CrossRef]
- Kasikranan, S.; Jones, H.; Suksri, A. Growth, Yield, Qualities and Appropriate Sizes of Eight Baby Corn Cultivars (Zea mays L.) for Industrial Uses Grown on Oxic Paleustults Soil, Northeast Thailand. Pak. J. Biol. Sci. 2000, 4, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.S.; Silva, P.S.L.; Cardoso, M.J. Baby corn, green corn, and dry corn yield of corn cultivars. Hortic. Bras. 2013, 31, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Nemati, A.R.; Sharifi, R.S. Effects of rates and nitrogen application timing on yield, agronomic characterstics and nitrogen use efficiency in corn. Int. J. Agric. Crop Sci. 2012, 4, 534–539. [Google Scholar]
- Nwogboduhu, N.G. Response of Maize (Zea mays L.) varieties to planting densities. IOSR J. Agric. Vet. Sci. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Cao, Q.; Li, G.; Yang, F.; Jiang, X.; Diallo, L.; Zhang, E.; Kong, F. Maize yield, biomass and grain quality traits responses to delayed sowing date and genotypes in rain-fed condition. Emir. J. Food Agric. 2019, 31, 415–425. [Google Scholar]
- Binder, D.L.; Sander, D.H.; Walters, D.T. Maize Response to Time of Nitrogen Application as Affected by Level of Nitrogen Deficiency. Agron. J. 2000, 92, 1228–1236. [Google Scholar] [CrossRef]
- Neupane, M.P.; Singh, S.P.; Uppu, S.S. Response of baby corn genotypes to soil and foliar nitrogen application schedule. Arch. Agron. Soil Sci. 2017, 63, 1912–1926. [Google Scholar] [CrossRef]
- Ercoli, L.; Lulli, L.; Arduini, I.; Mariotti, M.; Masoni, A. Durum wheat grain yield and quality as affected by S rate under Mediterranean conditions. Eur. J. Agron. 2011, 35, 63–70. [Google Scholar] [CrossRef]
- Payman, G.; Raghu Rami Reddy, P.; Srinivas, A.; Reddy, N.; Madhavi, A. Optimization of nitrogen scheduling for higher productivity in machine transplanted rice (Oryza satival L.) in southern zone of Telangana. J. Res. PJTSAU 2015, 43, 40–45. [Google Scholar]
- Silva, R.R.; Zucareli, C.; Fonseca, C.D.B.; Riede, C.R.; Benin, G.; Gazola, D. Timing and growing conditions of nitrogen topdressing influence the grain yield and protein content of four wheat cultivars. Bragantia 2019, 78, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, S.; Kumar, R.; Kumar, V.; Roy, D. Nutritional and Mineral Composition of Different Varieties of Normal and HighQuality Protein Maize Fodder At Post-Cob Stage. Int. J. Sci. Environ. Technol. 2016, 5, 2719–2727. [Google Scholar]
- Codling, E.E.; Mulchi, C.L.; Chaney, R.L. Grain Yield and Mineral Element Composition of Maize Grown on High Phosphorus Soils Amended with Water Treatment Residual. J. Plant Nutr. 2007, 30, 225–240. [Google Scholar] [CrossRef]
- Park, B.B.; Park, G.E.; Bae, K. Diagnosis of plant nutrient and growth responses on fertilization with vector analysis and morphological index. For. Sci. Technol. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Tosta, M.D.S.; De Almeida, J.P.N.; De Góes, G.B.; Freire, P.D.A.; Mendonça, V. Nitrogen fertilization in the production of seedlings of Talisia esculenta (A. St. Hil) Radlk. Rev. Bras. Eng. Agric. Ambient. 2017, 21, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.J.T.; De Souza, H.A.; Natale, W.; Modesto, V.C.; Rozane, D.E. Adubação com nitrogênio e potássio em mudas de goiabeira em viveiro comercial. Semin. Ciências Agrárias 2012, 33. [Google Scholar] [CrossRef] [Green Version]
Mechanical Analysis Values of Soil | |||
---|---|---|---|
S. No. | Soil Particle | Quantity (%) | Method of Analysis |
1 | Sand | 12.43% | Hydrometer method [21] |
2 | Silt | 38.03% | |
3 | Clay | 49.54% | |
4 | Textural class | Clay soil | - |
Chemical Analysis Values of Soil | |||
S. No. | Analysis | Values | Method Adopted |
1 | Soil pH | 7.60 | Glass electrode method [22] |
2 | Electrical conductivity (dS⋅m−1) | 0.26 | [22] |
3 | Organic carbon (%) | 0.40 | [23] |
4 | Available nitrogen (kg⋅ha−1) | 188 | Alkaline permanganate method [24] (estimates ammonium nitrogen) |
5 | Available phosphorus (kg⋅ha−1) | 15.8 | Olsen’s method [25] |
6 | Available potassium (kg⋅ha−1) | 526 | Flame photometer [26] |
Varity (V) | |
---|---|
V1 | JM 216 |
V2 | JM 218 |
Nitrogen Scheduling Based on 30-Years Average Rainfall Data (Ns30RF) | |
N1 | 40 kg N as basal fb 2 splits of 40 kg N and 30 kg N at 30 and 52 DAS |
N2 | 60 kg N as basal fb 2 splits of 30 kg N at 30 and 52 DAS |
N3 | 30 kg N as basal fb 2 splits of 60 kg N and 30 kg N at 30 and 52 DAS |
N4 | 30 kg N as basal fb 3 splits of 30 kg N at 30, 52 and 60 DAS |
N5 | 40 kg N as basal fb 2 splits of 40 kg N and 38.8 kg N at 30 and 52 DAS and 1% N foliar spray at 40 DAS |
N6 | 30 kg N as basal fb 3 splits of 30 kg N, 30 kg N and 28.8 kg N at 30, 52 and 60 DAS and 1% N foliar spray at 40 DAS |
Treatment Symbols | Nitrogen Quantity (kg N ha−1) | ||||
---|---|---|---|---|---|
As Basal (At 0 DAS) | At 30 DAS | At 40 DAS * | At 52 DAS | At 60 DAS | |
N1 | 40.0 | 40.0 | - | 40.0 | - |
N2 | 60.0 | 30.0 | - | 30.0 | - |
N3 | 30.0 | 60.0 | - | 30.0 | - |
N4 | 30.0 | 30.0 | - | 30.0 | 30.0 |
N5 | 40.0 | 40.0 | 1.2 | 38.8 | - |
N6 | 30.0 | 30.0 | 1.2 | 30.0 | 28.8 |
Treatment | Growth Attributes | |||
---|---|---|---|---|
Plant Height (cm) | CGR (g⋅d−1⋅m−2) | Dry Matter (g⋅plant−1) | Leaf Area (cm2⋅plant−1) | |
At Harvest | 50–75 DAS | At Harvest | 75 DAS | |
Variety (V) | ||||
V1-JM 216 | 184.5 b | 33.5 b | 290.6 b | 5929.8 b |
V2-JM 218 | 200.4 a | 38.1 a | 336.1 a | 6557.6 a |
HSD (p ≤ 0.05) | 13.4 | 2.4 | 18.1 | 373.6 |
Nitrogen Scheduling Based on 30-Years Average Rainfall Data (Ns30RF) | ||||
N1-40 kg N as basal fb 2 splits of 40 kg N/ha and 30 kg N/ha at 30 and 52 DAS | 188.4 abc | 34.9 bc | 306.8 ab | 6128.5 abc |
N2-60 kg N//ha as basal fb 2 splits of 30 kg N/ha at 30 and 52 DAS | 180.5 bc | 29.7 c | 297.6 ab | 5764.0 bc |
N3-30 kg N/ha as basal fb 2 splits of 60 kg N/ha and 30 kg N/ha at 30 and 52 DAS | 177.2 c | 29.3 c | 290.2 b | 5598.1 c |
N4-30 kg N/ha as basal fb 3 splits of 30 kg N/ha at 30, 52 and 60 DAS | 195.8 abc | 37.3 ab | 316.7 ab | 6411.2 abc |
N5-40 kg N/ha as basal fb 2 splits of 40 kg N/ha and 38.8 kg N/ha at 30 and 52 DAS and 1% N foliar spray at 40 DAS | 209.8 a | 42.2 a | 340.3 a | 6933.0 a |
N6-30 kg N//ha as basal fb 3 splits of 30 kg N/ha, 30 kg N/ha and 28.8 kg N/ha at 30, 52 and 60 DAS and 1% N foliar spray at 40 DAS | 203.0 ab | 41.5 a | 328.7 ab | 6627.4 ab |
HSD (p ≤ 0.05) | 23.2 | 6.24 | 46.9 | 972.03 |
Source of variation | ||||
V | * | * | * | * |
Ns30RF | * | ** | * | ** |
V × Ns30RF | ns | ns | ns | ns |
Treatment | Yield Attributes | Yields | |||
---|---|---|---|---|---|
Length of Cob (cm) | Number of Grain Rows⋅Cob−1 | 1000-Grain Weight (g) | Grain Yield (kg⋅ha−1) | Stover Yield (kg⋅ha−1) | |
Variety (V) | |||||
V1-JM 216 | 18.5 b | 12.4 b | 285.4 b | 5685 b | 10,338 b |
V2-JM 218 | 20.0 a | 14.0 a | 309.6 a | 6139 a | 11,107 a |
HSD (p ≤ 0.05) | 0.8 | 0.8 | 13.5 | 215 | 285 |
Nitrogen Scheduling Based on 30-Years Average Rainfall Data (Ns30 RF) | |||||
N1-40 kg N/ha as basal fb 2 splits of 40 kg N/ha and 30 kg N/ha at 30 and 52 DAS | 19.0 abc | 12.8 abc | 295.1 abc | 5883 ab | 10,691 ab |
N2-60 kg N//ha as basal fb 2 splits of 30 kg N/ha at 30 and 52 DAS | 18.5 bc | 12.2 bc | 279.2 bc | 5754 ab | 10,459 b |
N3-30 kg N/ha as basal fb 2 splits of 60 kg N/ha and 30 kg N/ha at 30 and 52 DAS | 17.9 c | 11.9 c | 269.1 c | 5607 b | 10,269 b |
N4-30 kg N/ha as basal fb 3 splits of 30 kg N/ha at 30, 52 and 60 DAS | 19.2 abc | 13.5 abc | 305.3 ab | 5975 ab | 10,801 ab |
N5-40 kg N/ha as basal fb 2 splits of 40 kg N/ha and 38.8 kg N/ha at 30 and 52 DAS and 1% N foliar spray at 40 DAS | 20.7 a | 14.7 a | 322.6 a | 6197 a | 11,207 a |
N6-30 kg N//ha as basal fb 3 splits of 30 kg N/ha, 30 kg N/ha and 28.8 kg N/ha at 30, 52 and 60 DAS and 1% N foliar spray at 40 DAS | 20.1 ab | 14.2 ab | 313.8 ab | 6057 ab | 10,911 ab |
HSD (p ≤ 0.05) | 2.03 | 2.09 | 35.08 | 558.8 | 742.32 |
Source of Variation | |||||
V | * | * | * | * | * |
Ns30RF | ** | ** | ** | * | * |
V × Ns30RF | ns | ns | ns | ns | ns |
Treatment | Protein Content (%) | Total Minerals (%) | Dickson Quality Index |
---|---|---|---|
Variety (V) | |||
V1- JM 216 | 9.08 a | 1.60 a | 20.60 b |
V2- JM 218 | 9.14 a | 1.63 a | 23.09 a |
HSD (p ≤ 0.05) | ns | ns | 1.85 |
Source of Variation | |||
V | ns | ns | * |
Ns30RF | ns | ns | ** |
V × Ns30RF | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aakash; Thakur, N.S.; Singh, M.K.; Bhayal, L.; Meena, K.; Choudhary, S.K.; Kumawat, N.; Singh, R.K.; Singh, U.P.; Singh, S.K.; et al. Sustainability in Rainfed Maize (Zea mays L.) Production Using Choice of Corn Variety and Nitrogen Scheduling. Sustainability 2022, 14, 3116. https://doi.org/10.3390/su14053116
Aakash, Thakur NS, Singh MK, Bhayal L, Meena K, Choudhary SK, Kumawat N, Singh RK, Singh UP, Singh SK, et al. Sustainability in Rainfed Maize (Zea mays L.) Production Using Choice of Corn Variety and Nitrogen Scheduling. Sustainability. 2022; 14(5):3116. https://doi.org/10.3390/su14053116
Chicago/Turabian StyleAakash, Narendra Singh Thakur, Manoj Kumar Singh, Lalita Bhayal, Kamlesh Meena, Sharad Kumar Choudhary, Narendra Kumawat, Ram Kumar Singh, Udai Pratap Singh, Shrish Kumar Singh, and et al. 2022. "Sustainability in Rainfed Maize (Zea mays L.) Production Using Choice of Corn Variety and Nitrogen Scheduling" Sustainability 14, no. 5: 3116. https://doi.org/10.3390/su14053116
APA StyleAakash, Thakur, N. S., Singh, M. K., Bhayal, L., Meena, K., Choudhary, S. K., Kumawat, N., Singh, R. K., Singh, U. P., Singh, S. K., Sanodiya, P., Kumar, A., & Singh, A. K. (2022). Sustainability in Rainfed Maize (Zea mays L.) Production Using Choice of Corn Variety and Nitrogen Scheduling. Sustainability, 14(5), 3116. https://doi.org/10.3390/su14053116