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Abstract

:

This study uses deep learning methods to explore the Internet of Things (IoT) network intrusion detection method based on the CIC-IoT-2023 dataset. This dataset contains extensive data on real-life IoT environments. Based on this, this study proposes an effective intrusion detection method. Apply seven deep learning models, including Transformer, to analyze network traffic characteristics and identify abnormal behavior and potential intrusions through binary and multivariate classifications. Compared with other papers, we not only use a Transformer model, but we also consider the model’s performance in the multi-class classification. Although the accuracy of the Transformer model used in the binary classification is lower than that of DNN and CNN + LSTM hybrid models, it achieves better results in the multi-class classification. The accuracy of binary classification of our model is 0.74% higher than that of papers that also use Transformer on TON-IOT. In the multi-class classification, our best-performing model combination is Transformer, which reaches 99.40% accuracy. Its accuracy is 3.8%, 0.65%, and 0.29% higher than the 95.60%, 98.75%, and 99.11% figures recorded in papers using the same dataset, respectively.
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1. Introduction


In recent years, Internet of Things technology has developed rapidly, and we have entered a highly interconnected smart world. IoT devices have been integrated into various industries, including healthcare, agriculture, transportation, and manufacturing [1]. Experts predict that by 2025, the Internet of Things and its applications will have a huge economic impact, with the annual impact ranging from 3.9 trillion to 11.1 trillion [2]. However, this seamless connection also brings new challenges, one of which is security. The ever-increasing number of IoT devices makes them potential targets for attacks, so protecting these devices from improper access and attacks has become critical. In such an environment with diverse devices, there are bound to be devices that are more vulnerable to attacks. Such devices not only affect the security of the IoT system, but also affect the transmission channels in the system, and even cause a partial or complete failure of the transmission network [3]. With the advancement of artificial intelligence technology, machine learning (ML) and deep learning (DL) have made great progress and are now widely used in various fields such as wireless communications, computer vision, and healthcare systems [4]. Intrusion detection systems based on machine learning and deep learning are widely used in the Internet of Things environment [5].



Abbas et al. [1] used the CIC-IoT-2023 dataset and used DNN-based federated learning to detect the security of IoT devices through binary classification. The result accuracy rate is 99.0%. Wang et al. [6] compared six DL models, including DNN, CNN, RNN, LSTM, CNN + LSTM, and the CNN + RNN hybrid model, with the CSE-CIC-IDS2018 dataset. The results showed that the CNN + LTSM model performed well in both classifications. The results all have the highest accuracy rates, 98.84% and 98.85%, respectively. Ahmed et al. [7] compared their proposed Transformer architecture with RNN and LSTM with binary classification using the ToN_IoT dataset released in 2020. The results show that the proposed Transformer model performs excellently in terms of accuracy and precision, with an accuracy rate of 87.79%.



References [7,8] mention the time complexity of some of the models in our paper such as RNN, CNN, LSTM, etc. Reference [6] mentions most of the models’ time complexity, in the same way as our paper but in a different dataset.



He et al. [9] proposed a transferable and adaptive network intrusion detection system (NIDS) based on deep reinforcement learning. The results reached 99.60% and 95.60% in the binary classification and multi-class classification of CIC-IoT2023, respectively. Jony et al. [10] used LSTM to conduct an experimental evaluation of the multi-class classification in CIC-IoT-2023, and the accuracy of the results reached 98.75%. Jaradat et al. [11] used four different machine learning methods to classify network attacks in CIC-IoT-2023, but they did not mention the classification tasks they used. Among them, Gradient Boost achieved the highest accuracy of 95%. Among the above-mentioned papers, only Abbas et al. [1] dealt with the problem of data imbalance in the dataset. Table 1 summarizes the key points of the above papers. The effectiveness of machine learning-based intrusion detection systems (ML-IDSs) depends largely on the quality of the dataset [12]. In this paper, we use the CIC-IoT-2023 dataset [13] released in 2023 to conduct IDS experiments. CIC-IoT-2023 is a unique and comprehensive collection of information designed specifically for IoT attacks. And we use multiple models, such as DNN, CNN, RNN, LSTM, CNN + LSTM, CNN + RNN, and Transformer, to identify whether the traffic is malicious. Classification tasks cover binary classification and multi-class classification. The main contributions of this study are detailed below.




	(1)

	
We use the CIC-IoT-2023 dataset [1,13] used by Abbas et al. This is currently the largest collection of IoT data recorded by real IoT devices. The number of data entries in this dataset reaches 46,686,579 and there are as many as 33 attack types. Among them, most of the examples in this dataset are related to common malicious attacks: DDoS and DoS attacks [14];




	(2)

	
We not only use the six DL models used in [6], but also use a Transformer model [15] to handle binary and multi-class classification tasks. Compared with [1,7], we further implement the multi-class classification on our model;




	(3)

	
On the ToN_IoT dataset, compared with [7], our Transformer model achieved an accuracy of 88.25%, which is 0.46% higher than the 87.79% of [7];




	(4)

	
Compared with [10,11,13], which also use the CIC-IoT-2023 dataset [16,17], the accuracy of our Transformer model in the multi-class classification reaches 99.40% accuracy; when compared with 95.60% [10], 98.75% [11], and 99.11% [13], our results are 3.8%, 0.65%, and 0.29% higher, respectively.









The second part of this paper is methodology, which describes the dataset and data preprocessing methods in detail. The third part will introduce six neural network models and Transformer models, and the fourth part will show the experimental results. The fifth part is the conclusion of this paper.




2. Methodology


The system architecture diagram of this paper is shown in Figure 1, which is divided into two parts: data preprocessing and training evaluation. Next, we will introduce the details of the system architecture diagram one by one.



2.1. CIC-IoT-2023


As of 2023, CIC-IoT-2023 stands out as the largest IoT dataset [16], derived from real IoT devices. The dataset contains data from 105 IoT devices, documenting 33 recorded attacks. Notably, these attacks were launched by malicious IoT devices targeting other IoT devices. In addition, CIC-IoT-2023 also contains multiple attack types that do not exist in other IoT datasets



Table 2 provides the number of each label containing benign traffic. This dataset contains a total of 46 features and 1 label. Different from the 84 features of CSE-CIC-IDS2018, CIC-IoT-2023 has 37 fewer features. In this experiment, no specific feature screening was performed, and all features were used directly to conduct the experiment.



CIC-IoT-2023 Features


CIC-IoT-2023 has 46 features and those features are shown in Table 3.



We chose all the above features because all of these features lack redundancy. This method ensures better accuracy.





2.2. Data Merging


Since the dataset is spread across 169 CSV files, it is necessary to merge these files into a single file before importing the data for processing and training. Therefore, as a first step, we will merge all 169 CSV files before proceeding to subsequent stages.




2.3. Data Transformation


In this part, the text labels must be converted to a numeric format so that the model can read the labels In the binary classification, there are two types of labels. The benign label assignment is 0, with a total of 1,098,195 records. The malicious attack label is 1, with a total of 45,588,384 records, making an overall total of 46,686,579 records. In the multi-class classification, we classify malicious attacks into seven categories. Including the benign traffic, there are a total of eight labels [17]. The distribution of converted tags is shown in Figure 2.




2.4. Data Normalization


In order to improve the performance of deep learning models, feature normalization techniques are usually used to achieve the above purposes. We transform the numerical values of the features so that they are relatively consistent. The method we use is StandardScaler technology, which is used to convert the value to a standard normal distribution with a mean of 0 and a standard deviation of 1. This specific method is to calculate the ratio of the difference between the original value and the mean and the standard deviation.




2.5. Data Segmentation


Since the dataset lacks predefined training and testing sets, we used the holdout method for segmentation in this experiment. This technique involves dividing the dataset into a training–validation set and a testing set based on a specified ratio. In this study, we allocate 80% of the dataset to the training–validation set and the remaining 20% to the test set. This partitioning strategy aims to make the model generalizable. Furthermore, in the training–validation set, 80% is designated as the training set, including 37,349,263 records, while the remaining 20% is designated as the validation set, with a total of 9,337,316 records. This distribution corresponds to a proportion of approximately 80% and 20% for the entire dataset [6].





3. Deep Learning Model


In the experiments of this paper, we use the six neural network models mentioned above [6]. In addition to this, we use the Transformer model [7,15] to conduct further experiments. Transformer’s self-attention mechanism allows the model to process all positions in the sequence in parallel, unlike RNN, which needs to process them sequentially. This enables Transformer to more effectively utilize computing resources during training and inference and improve the model’s training speed. We use brute force to try our best to exhaust various parameter settings to find the best model settings.



3.1. Neural Network


In the neural network, each neural network has six combinations, the hidden layer is set to layer 1 and layer 3, and the number of neurons is set to 256, 512, and 768, respectively. Detailed parameters are shown in Table 4.



The various architectures of the neural network are shown in Figure 3. Part of the figure only shows one layer of the architecture of each deep learning network. But, we actually conducted experiments using one- and three-layer stacking architectures. At the output layer, it is worth noting that we will use excitation functions for the classification tasks, binary classification will use Sigmoid, and multivariate classification will use Softmax. We will describe the detailed parameter quantities of each neural network in the following sections.



3.1.1. DNN


The architecture of DNN is shown in Figure 3a, which mainly consists of the input Dense layer, Batch Normalization (BN) layer, Dropout layer, Flatten layer, and output Dense layer. The number of parameters in each layer and the corresponding number of nodes are shown in Table 5. In order to reduce the occurrence of overfitting, we add a BN layer and a Dropout layer to each layer, normalize each batch during the training process, and the Dropout layer randomly discards neurons at a certain proportion in each layer. Both effectively prevent neurons from becoming overly dependent on certain features.




3.1.2. RNN


The architecture of RNN is shown in Figure 3b. Similar to DNN, it also consists of a Simple RNN, BN layer, and Dropout layer. But, there is no Flatten layer in RNN. This is because, in RNN, the input can be a sequence, such as a text sentence or a time series, and the RNN layer is designed to be able to process sequence data. Therefore, there is no need to add a Flatten layer to convert the dimensions of the data. The number of parameters in each layer and the corresponding number of nodes are shown in Table 6.




3.1.3. CNN


The architecture of CNN is shown in Figure 3c, which mainly consists of Conv1D and MaxPooling layers. Unlike DNN and RNN where each hidden layer contains a BN layer and Dropout layer, CNN only introduces a BN layer and Dropout layer before the output layer. This design choice is attributed to the effectiveness of MaxPooling layers 1 and 2 in preventing overfitting. These layers facilitate feature extraction after convolution, emphasizing key data and minimizing irrelevant noise. Table 7 outlines the details of the number of parameters per layer and the corresponding number of nodes of CNN.




3.1.4. LSTM


The architecture of LSTM is shown in Figure 3d. LSTM is a variant of RNN designed to better handle long sequence dependencies and overcome the vanishing gradient problem of traditional RNN. The number of parameters in each layer and the corresponding number of nodes are shown in Table 7. The architecture of CNN + RNN is shown in Figure 3e. In this architecture, there are two architectures: one with one convolutional layer and one recurrent layer, and one with three convolutional layers and three recurrent layers. The number of parameters in each layer and the corresponding number of nodes are shown in Table 8.




3.1.5. CNN + RNN


The architecture of CNN + RNN is shown in Figure 3e. In this architecture, there are two architectures: one with one convolutional layer and one recurrent layer, and one with three convolutional layers and three recurrent layers. The number of parameters in each layer and the corresponding number of nodes are shown in Table 9.




3.1.6. CNN + LSTM


The architecture of CNN + RNN is shown in Figure 3f. In this architecture, there are two architectures: one with one convolutional layer and one recurrent layer, and one with three convolutional layers and three recurrent layers. The number of parameters in each layer and the corresponding number of nodes are shown in Table 10.





3.2. Transformer


The architecture of the Transformer used in this paper is shown in Figure 4, and the detailed parameters are shown in Table 11. The main architecture of Transformer includes an encoder and a decoder, but for binary and multivariate classification tasks involving a single output sequence, the decoder is unnecessary. Therefore, only encoders [7] are used in our architecture.



Additionally, two structures can be omitted for classification purposes. First, word embedding, which converts language vocabulary into a vector space for deep learning analysis, is unnecessary for our model. The material we are classifying is already in numeric form and converted to integers, thus eliminating the need for word embeddings. Secondly, positional encoding (Positional Encoding) used to determine the relative and absolute positions of tokens in sentences is not needed for our dataset. The length and composition of similar “sentences” in our data are fixed, making this structure not necessary [5].



3.2.1. Self Attention


The most important structures in Transformer are the self-attention mechanism and the multi-head attention mechanism. The schematic diagram of finding one of the outputs    b 1    is shown in Figure 5.



First, we assume that the input is a sequence of four vectors    a 1   ,    a 2   ,    a 3   ,    a 4   , and then multiply these four vectors by three transformation matrices    W Q  ,    W K    and    W V    to get each    q i   ,    k i    and    v i    corresponding to each input vector, that is:


   q i  =  W Q   a i   



(1)






   k i  =  W k   a i   



(2)






   v i  =  W v   a i   



(3)




where     i = 1 ,   2 ,   3 ,   4  .



After getting these three elements, we can start attention, as shown in Figure 5. Here, we take the output    b 1    as an example.



First, we perform Scaled Dot Product on    q 1    with    k 1   ,    k 2   ,    k 3    and    k 4   , and we can get    α  1 , 1    ,    α  1 , 2   ,    α  1 , 3     and    α  1 , 4    .



Then, we perform Softmax on    α  1 , 1   ,      α  1 , 2    ,    α  1 , 3     and    α  1 , 4    , we can get    α  1 , 1  ′  ,    α  1 , 2  ′   ,    α  1 , 3  ′    and    α  1 , 4  ′   , and then    α  1 , 1  ′  ,      α  1 , 2  ′   .


   α  1 , 1   =  q 1  ⋅  k 1   



(4)






   α  1 , 2   =  q 1  ⋅  k 2   



(5)






   α  1 , 3   =  q 1  ⋅  k 3   



(6)






   α  1 , 4   =  q 1  ⋅  k 4   



(7)







   α  1 , 3  ′    and    α  1 , 4  ′    are multiplied by    v 1   ,    v 2  ,      v 3    and    v 4   , respectively, and finally the four results are added to obtain the output    b 1   , that is:


   b 1  =   ∑   i = 1  4   α  1 , i  ′   v i  =   ∑   i = 1  4  Softmax    α  1 , i      v i   



(8)







As for    b 2   ,    b 3    and    b 4   , we can refer to Formula (8) and express it as the following formula:


   b 2  =   ∑   i = 1  4   α  2 , i  ′   v i   



(9)






   b 3  =   ∑   i = 1  4   α  3 , i  ′   v i   



(10)






   b 4  =   ∑   i = 1  4   α  4 , i  ′   v i   



(11)








3.2.2. Multi-Head Attention


There is an advanced version of self-attention called the multi-head attention mechanism. In the previous chapter, the input was multiplied only once by the transformation matrices    W Q   ,      W K   , and    W v   , and then its corresponding    q     ,    k     , and    v     values.



In the multi-head attention mechanism, taking two inputs    a 1    and    a 2    as an example,   q  ,   k  , and   v   will be multiplied again by a transformation matrix. Assuming there are two attention heads, two types of   q  ,   k  , and   v   will be obtained, respectively. As shown in Figure 6a, the first attention head    q  1 , 1     will perform an attention calculation with    k  1 , 1    , then it will perform Softmax, and then it will multiply by    v  1 , 1    . Next,    q  1 , 1     will be calculated with    k  2 , 1     for attention, then Softmax, and finally multiplied by    v  2 , 1    . Finally, adding the previous two results gives    b  1 , 1    , that is:


   b  1 , 1   =   ∑   i = 1  n  Softmax    q  1 , 1   ⋅  k  n , 1      v  n , 1    



(12)




where n is 2, which is the number of heads.



Then, as shown in Figure 6b, the second attention head    q  1 , 2     will perform an attention calculation with    k  1 , 2    , then it will perform Softmax, and finally it will multiply by    v  1 , 2    . Then,    q  1 , 2     performs an attention calculation with    k  2 , 2    , then it performs Softmax, and finally it multiplies    v  2 , 2    . Finally, adding the previous two results gives    b  1 , 2    , that is:


   b  1 , 2   =   ∑   i = 1  n  Softmax    q  1 , 2   ⋅  k  n , 1      v  n , 1    



(13)







Finally, these two outputs are concatenated and multiplied by an output transformation matrix    W O    to obtain the final output    b 1   , as shown in Figure 6c.




3.2.3. Feed Forward Network


In our architecture, the main classification task is performed in a feed forward network. The feed forward network lies behind the multi-head attention mechanism and consists of two fully connected layers. The activation function of the first layer is Relu, and no activation function is used in the second layer.




3.2.4. Layer Normalization


Layer Normalization is a technique that normalizes each input feature independently, aiming to eliminate scale differences between different features and maintain output stability. Layer normalization helps control the output of each layer to keep it within a smaller range, helping to prevent gradient explosion. Sometimes, it can accelerate the convergence of the model and improve the training speed. Compared with Batch Normalization, Layer Normalization does not need to consider batch information.




3.2.5. Residual Connection


In neural networks, complex features are learned by stacking multiple layers. However, as the number of network layers increases, the gradient may gradually decrease, making the training process difficult. The idea of residual connections is to introduce skip connections, allowing the network to directly skip one or more layers and add the input signal to the output signal. In this way, even in deep networks, the information of the original input signal can still be propagated directly to deeper layers, thus helping to alleviate the vanishing gradient problem.






4. Experimental Results


4.1. Experimental Environment


The equipment specifications and environment settings used in this article are shown in Table 12. Since simply using tensorflow will cause the training speed to be too slow; this article chooses to use tensorflow-gpu to run our model to speed up the training. The hyperparameters of the six neural network models are shown in Table 13. Due to the large size of the dataset, we increased the batch size to 1024.




4.2. Experimental Metrics


We employ four metrics to evaluate the model’s predictions of the number of accurate and inaccurate outcomes. These metrics are as follows: (1) True Positives (TPs), which represent the number of correctly classified benign samples; (2) False Positives (FPs), which represent the number of attack samples that are incorrectly predicted to be benign; (3) True Negatives (TNs), which represent the correct number of classified attack samples; and (4) False Negatives (FNs), indicating the number of benign samples that are incorrectly predicted as attacks. These four metrics produce four evaluation metrics: accuracy, precision, recall, and F1-Score. Accuracy measures the proportion of correctly classified samples. Precision measures the accuracy of predicting benign samples, while recall measures the accuracy of identifying benign samples. The F1-Score is an indicator of the classification model’s performance and is the harmonic mean of precision and recall. The formulas for these metrics are summarized below:


  A c c u r a c y =    T P + T N   T P + T N + F P + F N     



(14)






  P r e c i s i o n =    T P   T P + F P     



(15)






  R e c a l l =    T P   T P + F N     



(16)






  F 1 - S c o r e = 2 ×    P r e c i s i o n × R e c a l l   P r e c i s i o n + R e c a l l     



(17)








4.3. Experimental Result


The accuracy results of DNN are shown in Table 14, and the evaluation results of DNN are shown in Table 15.



The accuracy results of RNN are shown in Table 16, and the evaluation results of RNN are shown in Table 17.



The accuracy results of CNN are shown in Table 18, and the evaluation results of CNN are shown in Table 19.



The accuracy results of LSTM are shown in Table 20, and the evaluation results of LSTMare shown in Table 21.



The accuracy results of CNN + RNN are shown in Table 22, and its evaluation results are shown in Table 23.



The accuracy results of CNN + LSTM are shown in Table 24, and its evaluation results are shown in Table 25.



The accuracy results of Transformer are shown in Table 26 and its evaluation results are shown in Table 27 and Table 28.




4.4. Accuracy Figure


In this subsection, we show the comparison between the validation and training accuracy in every model. In Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13, we provide the most complex case for each model (DNN, RNN, CNN, LSTM, CNN + RNN, CNN + LSTM, Transformer, etc.). As shown in Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13, there is no overfitting.




4.5. Time Consumption


The time consumption of each model is show in Table 29.




4.6. Confusion Matrices


In this subsection, we show the confusion matrix in every model. In Table 30, Table 31, Table 32, Table 33, Table 34, Table 35 and Table 36 we provide the most complex case for each model (DNN, RNN, CNN, LSTM, CNN + RNN, CNN + LSTM, Transformer, etc.).





5. Conclusions


This research is based on the CIC-IoT-2023 dataset and conducts an in-depth discussion and analysis of IoT network intrusion detection. We apply deep learning methods to improve the detection performance of abnormal behaviors and intrusions. Compared with other papers, we further use the Transformer model and further use multi-class classification. The experimental results show that in binary classification, DNN and CNN + LSTM have the highest accuracy, while in multi-class classification, the Transformer model has the highest accuracy. This proves the potential application value of deep learning methods in IoT network intrusion detection. In the future, the dataset can be reconstructed and balanced to avoid the unpredictable situation of minority category attacks, so that these 34 categories can be directly used for classification to improve the generalization ability of the model and remove some features that have no impact on model classification to improve classification efficiency.



The method used in this study brings new possibilities to the field of IoT network intrusion detection. It is hoped that the results of this study can provide a valuable reference for the development of the field of IoT security.
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Figure 1. Architecture diagram of this paper. 
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Figure 2. Distribution of converted labels containing benign traffic. 
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Figure 3. (a) Architecture diagram of DNN, (b) architecture diagram of RNN, (c) architecture diagram of CNN, (d) architecture diagram of LSTM, (e) architecture diagram of CNN + RNN, and (f) architecture diagram of CNN + LSTM. 






Figure 3. (a) Architecture diagram of DNN, (b) architecture diagram of RNN, (c) architecture diagram of CNN, (d) architecture diagram of LSTM, (e) architecture diagram of CNN + RNN, and (f) architecture diagram of CNN + LSTM.
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Figure 4. Transformer encoder architecture diagram. 






Figure 4. Transformer encoder architecture diagram.



[image: Futureinternet 16 00284 g004]







[image: Futureinternet 16 00284 g005] 





Figure 5. The schematic diagram of finding one of the outputs    b 1   . 
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Figure 6. (a) The schematic diagram of finding one of the output    b  1 , 1    ; (b) the schematic diagram of finding one of the output    b  1 , 2    ; and (c) the schematic diagram of adding two results. 






Figure 6. (a) The schematic diagram of finding one of the output    b  1 , 1    ; (b) the schematic diagram of finding one of the output    b  1 , 2    ; and (c) the schematic diagram of adding two results.
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Figure 7. Accuracy figure of DNN with (layer = 3, Node = 768, multi-class). 
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Figure 8. Accuracy figure of RNN (with layer = 3, node = 768, multi-class classification). 
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Figure 9. Accuracy figure of CNN (with layer = 3, node = 768, multi-class classification). 
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Figure 10. Accuracy figure of LSTM (with layer = 3, node = 768, multi-class classification). 
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Figure 11. Accuracy figure of CNN + RNN (with layer = 3, node = 768, multi-class classification). 






Figure 11. Accuracy figure of CNN + RNN (with layer = 3, node = 768, multi-class classification).
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Figure 12. Accuracy figure of CNN + LSTM (with layer = 3, node = 768, multi-class classification). 






Figure 12. Accuracy figure of CNN + LSTM (with layer = 3, node = 768, multi-class classification).
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Figure 13. Accuracy figure of Transformer (with Dense Dimension = 2048, Number of Heads = 1, Number of Layers = 1, multi-class classification). 






Figure 13. Accuracy figure of Transformer (with Dense Dimension = 2048, Number of Heads = 1, Number of Layers = 1, multi-class classification).
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Table 1. Related works/baseline schemes.






Table 1. Related works/baseline schemes.













	Paper
	Dataset
	Classification
	DL Method
	Accuracy
	Inference Time 1





	[1]
	CIC-IoT-2023
	Binary
	DNN based on Federated Learning
	99.00%
	



	[6]
	CIC-IDS-2018
	Binary, Multi-class
	DNN, RNN, CNN, LSTM,

CNN + LSTM, and CNN + RNN
	98.85%
	Multi-Class:

LSTM: 3.451 (ms)

CNN + LSTM: 4.31 (ms)



	[7]
	ToN-IoT
	Binary
	LSTM, RNN, and Transformer
	87.79%
	Binary Class

LSTM: 27 (s)

RNN: 35 (s)



	[9]
	CIC-IoT-2023
	Multi-class
	Deep Reinforcement Learning
	95.60%
	



	[10]
	CIC-IoT-2023
	Multi-class
	LTSM
	98.75%
	



	[11]
	CIC-IoT-2023
	Not Mentioned
	Gradient Boost, MLP,

Logistic Regression, and KNN
	95.00%
	



	[13]
	CIC-IoT-2023
	Binary, Multi-class
	DNN
	99.44%, 99.11%
	



	[8]
	KD999
	Multi-class
	CNN, Autoencoder, FCN

RNN, U-Net, TCN, and TCN + LSTM
	97.7%
	Multi-Class

CNN: 5 (min/epoch)

TCN + LSTM: 11 (min/epoch)







1 Inference time is copy from references.













 





Table 2. The number of each label containing benign traffic.






Table 2. The number of each label containing benign traffic.





	Label
	Quantitys
	Label
	Quantitys
	Label
	Quantitys





	DDoS-ICMP_Flood
	7,200,504
	Mirai-greeth_flood
	991,866
	DoS-HTTP_Flood
	71,864



	DDoS-UDP_Flood
	5,412,287
	Mirai-udpplain
	890,576
	Vulnerability Scan
	37,382



	DDoS-TCP_Flood
	4,497,667
	Mirai-greip_flood
	751,682
	DDoS-SlowLoris
	23,246



	DDoS-PSHACK_Flood
	4,094,755
	DDoS-ICMP_Fragmentation
	452,489
	DictionaryBruteForce
	13,064



	DDoS-SYN_Flood
	4,059,190
	MITM-ArpSpoofing
	307,593
	BrowserHijacking
	5859



	DDoS-RSTFINFlood
	4,045,190
	DDoS-UDP_Fragmentation
	286,925
	CommandInjection
	5409



	DDoS-SynonymousIP_Flood
	3,598,138
	DDoS-ACK_Fragmentation
	285,104
	SQL Injection
	5245



	DoS-UDP_Flood
	3,318,595
	Recon-HostDiscovery
	178,911
	XSS
	3946



	DoS-TCP_Flood
	2,671,445
	Recon-OSScan
	134,378
	Backdoor_Malware
	3218



	DoS-SYN_Flood
	2,028,834
	Recon-PortScan
	98,259
	Recon-PingSweep
	2262



	Benign
	1,098,195
	DDoS-HTTP_Flood
	71,864
	Uploading_Attack
	1252










 





Table 3. The features used in CIC-IoT-2023.






Table 3. The features used in CIC-IoT-2023.





	Feature
	Name





	1
	Flow duration



	2
	Header Length



	3
	Protocol



	4
	Type



	5
	Duration



	6
	Rate Mrate Drate



	7
	fin flag number



	8
	syn flag number



	9
	rst flag number



	10
	psh flag number



	11
	ack flag number



	12
	ece flag number



	13
	cwr flag number



	14
	ack count



	15
	syn count



	16
	fin count



	17
	urg count



	18
	rst count



	19
	HTTP



	20
	HTTPS



	21
	DNS



	22
	Telnet



	23
	SMTP



	24
	SSH



	25
	IRC



	26
	TCP



	27
	UDP



	28
	DHCP



	29
	ARP



	30
	ICMP



	31
	IPv



	32
	LLC



	33
	Tot sum



	34
	Min



	35
	Max



	36
	AVG



	37
	Std



	38
	Tot size



	39
	IAT



	40
	Number



	41
	Magnitude



	42
	Radius



	43
	Covariance



	44
	Variance



	45
	Weight



	46
	Flow duration










 





Table 4. The number of neurons and units of each of the neural networks.






Table 4. The number of neurons and units of each of the neural networks.





	
Layers

	
Neurons

	
Units






	
1

	
256

	
256




	
512

	
512




	
768

	
768




	
3

	
256

	
64 + 64 + 128




	
512

	
128 + 128 + 256




	
768

	
256 + 256 + 256











 





Table 5. Number of parameters and nodes of DNN.






Table 5. Number of parameters and nodes of DNN.





	
Layers

	
Neurons

	
Parameters




	
Binary

	
Multi-Class






	
1

	
256

	
13,313

	
15,112




	
512

	
26,625

	
30,216




	
768

	
39,937

	
45,320




	
3

	
256

	
19,521

	
19,976




	
512

	
63,617

	
64,520




	
768

	
146,945

	
148,744











 





Table 6. Number of parameters and nodes of RNN.






Table 6. Number of parameters and nodes of RNN.





	
Layers

	
Neurons

	
Parameters




	
Binary

	
Multi-Class






	
1

	
256

	
78,849

	
80,648




	
512

	
288,769

	
292,360




	
768

	
629,761

	
635,144




	
3

	
256

	
44,097

	
44,552




	
512

	
161,921

	
162,824




	
768

	
343,553

	
345,352











 





Table 7. Number of parameters and nodes of CNN.






Table 7. Number of parameters and nodes of CNN.





	
Layers

	
Neurons

	
Parameters




	
Binary

	
Multi-Class






	
1

	
256

	
13,313

	
15,112




	
512

	
26,625

	
30,216




	
768

	
39,937

	
45,320




	
3

	
256

	
19,521

	
19,976




	
512

	
63,617

	
64,520




	
768

	
146,945

	
148,744











 





Table 8. Number of parameters and nodes of LSTM.






Table 8. Number of parameters and nodes of LSTM.





	
Layers

	
Neurons

	
Parameters




	
Binary

	
Multi-Class






	
1

	
256

	
311,553

	
313,352




	
512

	
1,147,393

	
1,150,984




	
768

	
2,507,521

	
2,512,904




	
3

	
256

	
173,121

	
173,576




	
512

	
354,433

	
619,528




	
768

	
1,364,225

	
1,366,024











 





Table 9. Number of parameters and nodes of CNN + RNN.






Table 9. Number of parameters and nodes of CNN + RNN.





	
Layers

	
Neurons

	
Parameters




	
Binary

	
Multi-Class






	
1

	
256

	
78,849

	
133,160




	
512

	
288,769

	
365,864




	
768

	
629,761

	
729,640




	
3

	
256

	
44,097

	
86,568




	
512

	
161,921

	
215,336




	
768

	
343,553

	
397,864











 





Table 10. Number of parameters and nodes of CNN + LSTM.






Table 10. Number of parameters and nodes of CNN + LSTM.





	
Layers

	
Neurons

	
Parameters




	
Binary

	
Multi-Class






	
1

	
256

	
420,041

	
428,840




	
512

	
1,346,849

	
1,350,440




	
768

	
2,790,945

	
2,796,328




	
3

	
256

	
246,625

	
247,080




	
512

	
756,641

	
757,544




	
768

	
1,479,713

	
1,481,512











 





Table 11. Number of parameters of Transformer.






Table 11. Number of parameters of Transformer.





	
Dense Dimension

(FFN)

	
Number of Heads

	
Number of Layers

(Encoder)

	
Parameters




	
Binary

	
Multi-Class






	
256

	
1

	
1

	
32,733

	
33,062




	
128

	

	

	
20,829

	
21,158




	
512

	

	

	
56,541

	
56,870




	
1024

	

	

	
104,157

	
104,486




	
2048

	

	

	
199,389

	
199,718




	

	
2

	

	
41,335

	
41,664




	

	
4

	

	
58,539

	
58,868




	

	
8

	

	
94,947

	
93,276




	

	

	
2

	
41,381

	
41,710




	

	

	
4

	
58,677

	
59,006




	

	

	
8

	
94,269

	
93,598











 





Table 12. Number of parameters of Transformer.






Table 12. Number of parameters of Transformer.





	Project
	Properties





	OS
	Windows 11



	CPU
	Intel® Core™ i7-13700 Processor



	GPU
	NVIDA Geforce RTX 4080



	Memory
	128 GB



	Disk
	1TB SSD



	Python
	3.7.16



	NVIDIA CUDA
	11.3.1



	Framework
	Tensorflow-gpu 2.5 & 2.6










 





Table 13. Number of parameters of Transformer.






Table 13. Number of parameters of Transformer.





	Hyperparameter
	Value





	Batch Size
	1024



	Epochs
	10



	Learning Rate
	0.001



	Dropout
	0.1










 





Table 14. The accuracy results of DNN.






Table 14. The accuracy results of DNN.





	
Layers

	
Neurons

	
Accuracy (%)




	
Binary

	
Multi-Class






	
1

	
256

	
99.48

	
97.35




	
512

	
99.47

	
97.73




	
768

	
99.53

	
99.13




	
3

	
256

	
99.56

	
99.16




	
512

	
99.56

	
99.23




	
768

	
99.56

	
99.36











 





Table 15. The evaluation results of DNN.






Table 15. The evaluation results of DNN.





	
Layer

	
Node

	
Precision (%)

	
Recall (%)

	
F1-Score (%)




	
Binary

	
Multi-Class

	
Binary

	
Multi-Class

	
Binary

	
Multi-Class






	
1

	
256

	
99.51

	
97.35

	
99.48

	
97.35

	
99.49

	
97.30




	
512

	
99.51

	
97.74

	
99.48

	
97.73

	
99.49

	
97.66




	
768

	
99.49

	
99.12

	
99.47

	
99.13

	
99.48

	
99.10




	
3

	
256

	
99.54

	
99.17

	
99.53

	
99.16

	
99.54

	
99.12




	
512

	
99.57

	
99.24

	
99.56

	
99.23

	
99.56

	
99.18




	
768

	
99.57

	
99.35

	
99.56

	
99.36

	
99.57

	
99.32











 





Table 16. The accuracy results of RNN.






Table 16. The accuracy results of RNN.





	
Layers

	
Neurons

	
Accuracy (%)




	
Binary

	
Multi-Class






	
1

	
256

	
99.49

	
99.21




	
512

	
99.49

	
99.22




	
768

	
99.48

	
99.24




	
3

	
256

	
99.53

	
99.26




	
512

	
99.50

	
99.27




	
768

	
99.50

	
99.28











 





Table 17. The evaluation results of RNN.






Table 17. The evaluation results of RNN.





	
Layer

	
Node

	
Precision (%)

	
Recall (%)

	
F1-Score (%)




	
Binary

	
Multi-Class

	
Binary

	
Multi-Class

	
Binary

	
Multi-Class






	
1

	
256

	
99.51

	
99.21

	
99.49

	
99.21

	
99.50

	
99.17




	
512

	
99.50

	
99.23

	
99.49

	
99.22

	
99.49

	
99.19




	
768

	
99.51

	
99.23

	
99.48

	
99.24

	
99.49

	
99.21




	
3

	
256

	
99.54

	
99.26

	
99.53

	
99.26

	
99.53

	
99.21




	
512

	
99.50

	
99.27

	
99.50

	
99.27

	
99.50

	
99.24




	
768

	
99.52

	
99.28

	
99.50

	
99.28

	
99.51

	
99.23











 





Table 18. The evaluation results of CNN.






Table 18. The evaluation results of CNN.





	
Layer

	
Node

	
Precision (%)

	
Recall (%)

	
F1-Score (%)




	
Binary

	
Multi-Class

	
Binary

	
Multi-Class

	
Binary

	
Multi-Class






	
1

	
256

	
99.51

	
99.21

	
99.49

	
99.21

	
99.50

	
99.17




	
512

	
99.50

	
99.23

	
99.49

	
99.22

	
99.49

	
99.19




	
768

	
99.51

	
99.23

	
99.48

	
99.24

	
99.49

	
99.21




	
3

	
256

	
99.54

	
99.26

	
99.53

	
99.26

	
99.53

	
99.21




	
512

	
99.50

	
99.27

	
99.50

	
99.27

	
99.50

	
99.24




	
768

	
99.52

	
99.28

	
99.50

	
99.28

	
99.51

	
99.23











 





Table 19. The evaluation results of CNN.






Table 19. The evaluation results of CNN.





	
Layer

	
Node

	
Precision (%)

	
Recall (%)

	
F1-Score (%)




	
Binary

	
Multi-Class

	
Binary

	
Multi-Class

	
Binary

	
Multi-Class






	
1

	
256

	
99.30

	
96.11

	
99.27

	
96.06

	
99.28

	
95.93




	
512

	
99.29

	
97.83

	
99.27

	
97.73

	
99.28

	
97.64




	
768

	
99.31

	
91.95

	
99.24

	
90.91

	
99.27

	
89.88




	
3

	
256

	
99.50

	
99.18

	
99.48

	
99.19

	
99.48

	
99.15




	
512

	
99.51

	
99.21

	
99.48

	
99.23

	
99.49

	
99.1




	
768

	
99.52

	
99.23

	
99.48

	
99.25

	
99.50

	
99.21











 





Table 20. The accuracy results of LSTM.






Table 20. The accuracy results of LSTM.





	
Layers

	
Neurons

	
Accuracy (%)




	
Binary

	
Multi-Class






	
1

	
256

	
99.51

	
99.28




	
512

	
99.51

	
99.28




	
768

	
99.50

	
99.28




	
3

	
256

	
99.54

	
99.32




	
512

	
99.54

	
99.21




	
768

	
99.52

	
99.34











 





Table 21. The evaluation results of LSTM.






Table 21. The evaluation results of LSTM.





	
Layer

	
Node

	
Precision (%)

	
Recall (%)

	
F1-Score (%)




	
Binary

	
Multi-Class

	
Binary

	
Multi-Class

	
Binary

	
Multi-Class






	
1

	
256

	
99.52

	
99.27

	
99.51

	
99.28

	
99.51

	
99.24




	
512

	
99.53

	
99.28

	
99.51

	
99.28

	
99.52

	
99.25




	
768

	
99.53

	
99.28

	
99.50

	
99.28

	
99.51

	
99.24




	
3

	
256

	
99.55

	
99.31

	
99.54

	
99.32

	
99.54

	
99.28




	
512

	
99.55

	
99.31

	
99.54

	
99.31

	
99.54

	
99.28




	
768

	
99.54

	
99.32

	
99.54

	
99.34

	
99.52

	
99.31











 





Table 22. The accuracy results of CNN + RNN.






Table 22. The accuracy results of CNN + RNN.





	
Layers

	
Neurons

	
Accuracy (%)




	
Binary

	
Multi-Class






	
1

	
256

	
99.37

	
99.15




	
512

	
99.29

	
99.19




	
768

	
99.45

	
99.11




	
3

	
256

	
99.46

	
99.16




	
512

	
99.42

	
99.07




	
768

	
99.15

	
99.03











 





Table 23. The evaluation results of CNN + RNN.






Table 23. The evaluation results of CNN + RNN.





	
Layer

	
Node

	
Precision (%)

	
Recall (%)

	
F1-Score (%)




	
Binary

	
Multi-Class

	
Binary

	
Multi-Class

	
Binary

	
Multi-Class






	
1

	
256

	
99.44

	
99.15

	
99.37

	
99.15

	
99.39

	
99.10




	
512

	
99.36

	
99.19

	
99.29

	
99.19

	
99.32

	
99.15




	
768

	
99.48

	
99.12

	
99.45

	
99.11

	
99.47

	
99.04




	
3

	
256

	
99.48

	
99.15

	
99.46

	
99.16

	
99.47

	
99.12




	
512

	
99.43

	
99.07

	
99.42

	
99.07

	
99.43

	
99.00




	
768

	
99.23

	
99.02

	
99.15

	
99.03

	
99.18

	
98.98











 





Table 24. The accuracy results of CNN + LSTM.






Table 24. The accuracy results of CNN + LSTM.





	
Layers

	
Neurons

	
Accuracy (%)




	
Binary

	
Multi-Class






	
1

	
256

	
99.56

	
99.33




	
512

	
99.46

	
98.70




	
768

	
99.55

	
99.34




	
3

	
256

	
99.53

	
99.31




	
512

	
99.49

	
99.26




	
768

	
99.48

	
99.26











 





Table 25. The evaluation results of CNN + LSTM.






Table 25. The evaluation results of CNN + LSTM.





	
Layer

	
Node

	
Precision (%)

	
Recall (%)

	
F1-Score (%)




	
Binary

	
Multi-Class

	
Binary

	
Multi-Class

	
Binary

	
Multi-Class






	
1

	
256

	
99.57

	
99.31

	
99.56

	
99.33

	
99.56

	
99.30




	
512

	
9.57

	
98.70

	
99.56

	
98.70

	
99.56

	
98.66




	
768

	
99.57

	
99.33

	
99.55

	
99.34

	
99.56

	
99.31




	
3

	
256

	
99.55

	
99.29

	
99.53

	
99.31

	
99.54

	
99.28




	
512

	
99.49

	
99.25

	
99.49

	
99.26

	
99.49

	
99.22




	
768

	
99.48

	
99.25

	
99.48

	
99.26

	
99.48

	
99.22











 





Table 26. The accuracy results of Transformer.






Table 26. The accuracy results of Transformer.





	
Dense Dimension

(FFN)

	
Number of Heads

	
Number of Layers

(Encoder)

	
Accuracy (%)




	
Binary

	
Multi-Class






	
256

	
1

	
1

	
99.51

	
99.12




	
128

	

	

	
99.50

	
97.54




	
512

	

	

	
99.51

	
99.40




	
1024

	

	

	
99.51

	
99.36




	
2048

	

	

	
99.52

	
99.21




	

	
2

	

	
99.50

	
99.19




	

	
4

	

	
99.50

	
98.96




	

	
8

	

	
99.51

	
99.32




	

	

	
2

	
99.50

	
99.34




	

	

	
4

	
99.49

	
99.23




	

	

	
8

	
99.48

	
99.24











 





Table 27. The precision of Transformer.






Table 27. The precision of Transformer.












	Dense Dimension

(FFN)
	Number of Heads
	Number of Layers

(Encoder)
	Binary
	Multi-Class





	256
	1
	1
	99.52
	94.03



	128
	
	
	99.53
	98.72



	512
	
	
	99.52
	99.27



	1024
	
	
	99.54
	99.31



	2048
	
	
	99.54
	99.33



	
	2
	
	99.53
	98.88



	
	4
	
	99.52
	99.23



	
	8
	
	99.53
	95.03



	
	
	2
	99.53
	99.25



	
	
	4
	99.52
	99.32



	
	
	8
	99.49
	99.11










 





Table 28. The recall of Transformer.






Table 28. The recall of Transformer.












	Dense Dimension

(FFN)
	Number of Heads
	Number of Layers

(Encoder)
	Binary
	Multi-Class





	256
	1
	1
	99.50
	93.68



	128
	
	
	99.51
	98.72



	512
	
	
	99.51
	99.27



	1024
	
	
	99.52
	99.43



	2048
	
	
	99.52
	99.33



	
	2
	
	99.50
	98.88



	
	4
	
	99.50
	94.94



	
	8
	
	99.51
	98.88



	
	
	2
	99.50
	99.24



	
	
	4
	99.49
	99.30



	
	
	8
	99.48
	99.11










 





Table 29. Time consumption of each model (per sample).






Table 29. Time consumption of each model (per sample).





	Model
	Binary Testing Time (μs)
	Multi-Class Testing Time (μs)





	DNN
	3.8
	3.8



	RNN
	7
	7



	CNN
	12.3
	12.3



	LSTM
	8
	8



	CNN + RNN
	15
	15



	CNN + LSTM
	18
	18



	Transformer
	5
	5










 





Table 30. Confusion matrix figure of DNN (with layer = 3, node = 768, multi-class classification).






Table 30. Confusion matrix figure of DNN (with layer = 3, node = 768, multi-class classification).





	
Actual

	
Benign Traffic

	
1,073,132

	
87

	
287

	
8001

	
30

	
3

	
16,647

	
8




	
DDos

	
47

	
83,980,302

	
2712

	
1338

	
0

	
0

	
12

	
149




	
Dos

	
22

	
18,808

	
8,071,716

	
79

	
0

	
0

	
34

	
7915




	
Recon

	
82,758

	
5445

	
105

	
220,880

	
1550

	
138

	
43,664

	
15




	
Web-Based

	
5367

	
0

	
7

	
3462

	
3193

	
12

	
12,787

	
1




	
Brute Force

	
2508

	
0

	
2

	
1938

	
15

	
3749

	
4852

	
0




	
Spoofing

	
56,557

	
132

	
141

	
13,208

	
91

	
945

	
415,405

	
25




	
Mirai

	
9

	
13,504

	
289

	
1175

	
0

	
0

	
18

	
2,619,129




	

	
Benign Traffic

	
DDos

	
Dos

	
Recon

	
Web-Based

	
Brute Force

	
Spoofing

	
Mirai











 





Table 31. Confusion matrix figure of RNN (with layer = 3, node = 768, multi-class classification).






Table 31. Confusion matrix figure of RNN (with layer = 3, node = 768, multi-class classification).





	
Actual

	
Benign Traffic

	
1,057,073

	
7

	
4

	
17,204

	
40

	
1

	
23,866

	
0




	
DDos

	
51

	
83,980,261

	
2463

	
1198

	
0

	
0

	
96

	
491




	
Dos

	
26

	
7272

	
8,083,199

	
32

	
0

	
0

	
46

	
163




	
Recon

	
83,296

	
1312

	
37

	
236,622

	
196

	
9

	
33,083

	
10




	
Web-Based

	
8200

	
0

	
0

	
5175

	
2746

	
0

	
8708

	
0




	
Brute Force

	
4089

	
0

	
0

	
3834

	
29

	
2298

	
2812

	
2




	
Spoofing

	
108,726

	
24

	
7

	
24,986

	
220

	
14

	
352,524

	
3




	
Mirai

	
18

	
350

	
56

	
11

	
0

	
0

	
33

	
2,633,656




	

	
Benign Traffic

	
DDos

	
Dos

	
Recon

	
Web-Based

	
Brute Force

	
Spoofing

	
Mirai




	
Predicted











 





Table 32. Confusion matrix figure of CNN (with layer = 3, node = 768, multi-class classification).






Table 32. Confusion matrix figure of CNN (with layer = 3, node = 768, multi-class classification).





	
Actual

	
Benign Traffic

	
1,034,444

	
14

	
7

	
22,362

	
127

	
47

	
41,192

	
2




	
DDos

	
83

	
83,979,984

	
3238

	
764

	
0

	
0

	
63

	
428




	
Dos

	
36

	
6228

	
8,084,368

	
20

	
0

	
0

	
37

	
49




	
Recon

	
78,798

	
2093

	
40

	
236,729

	
790

	
161

	
35,930

	
24




	
Web-Based

	
6077

	
1

	
2

	
5485

	
2960

	
7

	
10,297

	
0




	
Brute Force

	
3564

	
0

	
0

	
3584

	
78

	
2401

	
3437

	
0




	
Spoofing

	
101,541

	
23

	
4

	
24,349

	
880

	
98

	
359,605

	
4




	
Mirai

	
5

	
380

	
63

	
6

	
0

	
0

	
16

	
2,633,654




	

	
Benign Traffic

	
DDos

	
Dos

	
Recon

	
Web-Based

	
Brute Force

	
Spoofing

	
Mirai




	
Predicted











 





Table 33. Confusion matrix figure of LSTM (with layer = 3, node = 768, multi-class classification).






Table 33. Confusion matrix figure of LSTM (with layer = 3, node = 768, multi-class classification).





	
Actual

	
Benign Traffic

	
1,049,179

	
16

	
3

	
17,245

	
244

	
34

	
31,472

	
2




	
DDos

	
46

	
83,980,598

	
2405

	
1335

	
2

	
0

	
47

	
136




	
Dos

	
24

	
6531

	
8,084,054

	
28

	
1

	
0

	
37

	
63




	
Recon

	
68,011

	
723

	
29

	
247,281

	
1212

	
179

	
37,128

	
2




	
Web-Based

	
5230

	
1

	
0

	
4826

	
5520

	
16

	
9235

	
1




	
Brute Force

	
3258

	
1

	
0

	
3384

	
142

	
2864

	
3415

	
0




	
Spoofing

	
88,611

	
29

	
30

	
21,880

	
1797

	
170

	
373,965

	
22




	
Mirai

	
11

	
865

	
38

	
19

	
0

	
0

	
25

	
2,633,166




	

	
Benign Traffic

	
DDos

	
Dos

	
Recon

	
Web-Based

	
Brute Force

	
Spoofing

	
Mirai




	
Predicted











 





Table 34. Confusion matrix figure of CNN + RNN (with layer = 3, node = 768, multi-class classification).






Table 34. Confusion matrix figure of CNN + RNN (with layer = 3, node = 768, multi-class classification).





	
Actual

	
Benign Traffic

	
1,043,235

	
67

	
3

	
20,089

	
81

	
2

	
34,715

	
3




	
DDos

	
108

	
83,962,688

	
160,078

	
3626

	
0

	
2

	
290

	
1768




	
Dos

	
42

	
29,673

	
8,058,272

	
1521

	
3

	
0

	
47

	
1180




	
Recon

	
95,693

	
4048

	
638

	
217,211

	
55

	
14

	
36,490

	
416




	
Web-Based

	
7995

	
7

	
0

	
5812

	
1501

	
0

	
9513

	
1




	
Brute Force

	
4772

	
1

	
0

	
3641

	
5

	
1904

	
2741

	
0




	
Spoofing

	
131,007

	
95

	
0

	
27,761

	
203

	
0

	
327,415

	
23




	
Mirai

	
29

	
10,576

	
1292

	
1130

	
0

	
2

	
161

	
2,620,934




	

	
Benign Traffic

	
DDos

	
Dos

	
Recon

	
Web-Based

	
Brute Force

	
Spoofing

	
Mirai




	
Predicted











 





Table 35. Confusion matrix figure of CNN + LSTM (with layer = 3, node = 768, multi-class classification).






Table 35. Confusion matrix figure of CNN + LSTM (with layer = 3, node = 768, multi-class classification).





	
Actual

	
Benign Traffic

	
1,042,720

	
31

	
6

	
25,929

	
367

	
26

	
29,116

	
0




	
DDos

	
33

	
83,980,794

	
2611

	
778

	
0

	
3

	
83

	
258




	
Dos

	
15

	
6435

	
8,084,207

	
10

	
1

	
0

	
30

	
40




	
Recon

	
66,965

	
1731

	
27

	
251,565

	
1386

	
155

	
32,689

	
47




	
Web-Based

	
4273

	
6

	
1

	
6214

	
5465

	
10

	
8410

	
0




	
Brute Force

	
3036

	
1

	
0

	
3710

	
177

	
2740

	
3400

	
0




	
Spoofing

	
93,724

	
109

	
28

	
26,392

	
2532

	
77

	
363,638

	
4




	
Mirai

	
7

	
368

	
31

	
70

	
0

	
0

	
103

	
2,633,545




	

	
Benign Traffic

	
DDos

	
Dos

	
Recon

	
Web-Based

	
Brute Force

	
Spoofing

	
Mirai




	
Predicted











 





Table 36. Confusion matrix figure of Transformer (with layer = 3, node = 768, multi-class classification).






Table 36. Confusion matrix figure of Transformer (with layer = 3, node = 768, multi-class classification).





	
Actual

	
Benign Traffic

	
1,050,021

	
1264

	
1

	
23,943

	
61

	
11

	
22,828

	
66




	
DDos

	
13

	
83,975,357

	
2031

	
3208

	
1

	
0

	
688

	
3262




	
Dos

	
46

	
25,250

	
8,064,500

	
498

	
0

	
0

	
60

	
384




	
Recon

	
59,531

	
2309

	
2

	
257,601

	
28

	
7

	
35,007

	
80




	
Web-Based

	
5513

	
23

	
0

	
4960

	
7361

	
0

	
6971

	
1




	
Brute Force

	
3300

	
6

	
0

	
2589

	
2

	
2318

	
4848

	
1




	
Spoofing

	
68,286

	
613

	
0

	
23,988

	
379

	
333

	
392