Process Modeling and Simulation of Tableting—An Agent-Based Simulation Methodology for Direct Compression
<p>Typical dynamic simulation approaches for the tableting process mapped on the simulation modeling paradigms (following [<a href="#B4-pharmaceutics-13-00996" class="html-bibr">4</a>,<a href="#B5-pharmaceutics-13-00996" class="html-bibr">5</a>,<a href="#B6-pharmaceutics-13-00996" class="html-bibr">6</a>]).</p> "> Figure 2
<p>Direct compression process chain with exemplary (intermediate) product structures.</p> "> Figure 3
<p>Rotary press components (provided by Korsch AG).</p> "> Figure 4
<p>Typical agent structure and interactions (following [<a href="#B13-pharmaceutics-13-00996" class="html-bibr">13</a>]).</p> "> Figure 5
<p>Existing model agents and their required parameters.</p> "> Figure 6
<p>Schematic visualization of the process and material agents with the relevant states of the process agents.</p> "> Figure 7
<p>Exemplary agent interactions for this simulation model.</p> "> Figure 8
<p>Particle size distribution of the DCPAs.</p> "> Figure 9
<p>Relative error between simulation and experimental results for (<b>a</b>) different midstream diameter settings and (<b>b</b>) die filling ratio settings in relation to the tablet weight.</p> "> Figure 10
<p>(<b>a</b>) Measured (solid lines), fitted (dashed lines), and calculated (dotted lines) compressibility curves of DI-CAFOS A60, A150, and mixtures, and (<b>b</b>) the relative error between the measured and the predicted data.</p> "> Figure 11
<p>(<b>a</b>) Measured (solid lines) and calculated (dotted lines) out-die porosities of DI-CAFOS A60, A150, and mixtures, and (<b>b</b>) the relative error between the measured and the calculated data.</p> "> Figure 12
<p>(<b>a</b>) Measured (solid lines) and calculated (dotted lines) tensile strength of DI-CAFOS A60, A150, and mixtures, and (<b>b</b>) the relative error between the measured and the calculated data.</p> "> Figure 13
<p>Comparison of the simulative data with experimental results for (<b>a</b>) the mass fraction of DCPA A150 and A60 and (<b>b</b>) the tablet weight.</p> "> Figure 14
<p>Comparison of the simulative data with experimental results for (<b>a</b>) the out-die porosity and (<b>b</b>) the compression stress.</p> "> Figure 15
<p>(<b>a</b>) Calculated compression stress over the mass fraction of DCPA A60. (<b>b</b>) Comparison of the simulative data with experimental results for the tensile strength.</p> "> Figure 16
<p>Relative error of the simulative data compared to experimentally determined values for the (<b>a</b>) tablet weight, out-die porosity, and tensile strength over time and (<b>b</b>) the mass fraction of DCPA A60.</p> ">
Abstract
:1. Introduction
2. Tableting and Its Simulation
2.1. Tableting Process
- a hopper containing the blend,
- a filling pipe transporting the blend into the feed frame,
- a feed frame equipped with one to three rotating paddle wheels with several stirring blades, transporting and filling the blend into the dies,
- dies (and punches), passing the pre and main compression roller and the ejection mechanism. The main compression roller performs the compression of the powder in the die, leading to the formation of a tablet and the latter enables the ejection of the tablet from the die and out of the press.
2.2. Existing Simulation Approaches and Agent-Based Simulation
2.2.1. Dynamic Flowsheet Simulation Modeling
2.2.2. Discrete and Finite Element Modeling
2.2.3. Agent-Based Modeling
3. Agent-Based Simulation Model for the Tableting Process
- I.
- the identification of agents, agent groups, and their attributes,
- II.
- the specification of the agent’s behavior and
- III.
- identifying the agent’s interactions.
3.1. Step I|Identification of Agents, Agent Groups and Their Attributes
3.2. Step II|Specification of the Agents’ Behavior
3.2.1. Hopper
3.2.2. Filling Pipe
3.2.3. Feed Frame
3.2.4. Die (and Punches)
3.3. Step III|Identifying the Agents’ Interactions
4. Exemplary Application of the Agent-Based Methodology on a Rotary Press
4.1. Materials
4.2. Experimental Methods
4.3. Calibration of the Process Models
4.4. Configuration of Simulation Setup and Error Analysis
5. Results and Discussion
5.1. Calibration of the Simulation Model
5.2. Validation of the Sub-Process Models
5.3. Comparison of the Simulative and Experimental Results
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.L.; O’Connor, T.F.; Yang, X.; Cruz, C.N.; Chatterjee, S.; Madurawe, R.D.; Moore, C.M.V.; Yu, L.X.; Woodcock, J. Modernizing Pharmaceutical Manufacturing: From Batch to Continuous Production. J. Pharm. Innov. 2015, 10, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Boukouvala, F.; Niotis, V.; Ramachandran, R.; Muzzio, F.J.; Ierapetritou, M.G. An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process. Comput. Chem. Eng. 2012, 42, 30–47. [Google Scholar] [CrossRef]
- Thiede, S. Environmental Sustainability of Cyber Physical Production Systems. Procedia CIRP 2018, 69, 644–649. [Google Scholar] [CrossRef]
- Borshchev, A.; Filippov, A. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools. In Proceedings of the 22nd International Conference of the System Dynamics Society, Oxford, UK, 25–29 July 2004; Kennedy, M., Ed.; System Dynamics Society: Albany, NY, USA, 2004. ISBN 0974532908. [Google Scholar]
- Forrester, J.W. System dynamics, systems thinking, and soft OR. Syst. Dyn. Rev. 1994, 10, 245–256. [Google Scholar] [CrossRef]
- Hildebrandt, C. Improving Die Filling in Pharmaceutical Tableting by Experimental and Numerical Means. Ph.D. Thesis, Kiel University, Kiel, Germany, 2018. [Google Scholar]
- Hartge, E.-U.; Pogodda, M.; Reimers, C.; Schwier, D.; Gruhn, G.; Werther, J. Flowsheet Simulation of Solids Processes. KONA Powder Part. J. 2006, 24, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Dosta, M.; Litster, J.D.; Heinrich, S. Flowsheet simulation of solids processes: Current status and future trends. Adv. Powder Technol. 2020, 31, 947–953. [Google Scholar] [CrossRef]
- Singh, R.; Ierapetritou, M.; Ramachandran, R. Hybrid Advanced Control of Flexible Multipurpose Continuous Tablet Manufacturing Process via Direct Compaction. In 23rd European Symposium on Computer Aided Process Engineering; Elsevier: Amsterdam, The Netherlands, 2013; pp. 757–762. ISBN 9780444632340. [Google Scholar]
- Ketterhagen, W.R.; Ende, M.T.A.; Hancock, B.C. Process Modeling in the Pharmaceutical Industry using the Discrete Element Method. J. Pharm. Sci. 2009, 98, 442–470. [Google Scholar] [CrossRef]
- Skorych, V.; Dosta, M.; Heinrich, S. Dyssol—An open-source flowsheet simulation framework for particulate materials. SoftwareX 2020, 12, 100572. [Google Scholar] [CrossRef]
- Rogers, A.J.; Hashemi, A.; Ierapetritou, M.G. Modeling of Particulate Processes for the Continuous Manufacture of Solid-Based Pharmaceutical Dosage Forms. Processes 2013, 1, 67–127. [Google Scholar] [CrossRef] [Green Version]
- Macal, C.M.; North, M.J. Tutorial on agent-based modelling and simulation. J. Simul. 2010, 4, 151–162. [Google Scholar] [CrossRef]
- Belič, A.; Škranjc, D.Z.-B.I.; Vrečer, F.; Karba, R. Artificial Neural Networks for Optimisation of Tablet Production. In Proceedings of the 6th EUROSIM Congress on Modelling and Simulation, EUROSIM 2007, Ljubljana, Slovenia, 9–13 September 2007; ISBN 978-3-901608-32-2. [Google Scholar]
- Aksu, B.; Paradkar, A.; De Matas, M.; Özer, Ö.; Güneri, T.; York, P. Quality by Design Approach: Application of Artificial Intelligence Techniques of Tablets Manufactured by Direct Compression. AAPS PharmSciTech 2012, 13, 1138–1146. [Google Scholar] [CrossRef]
- Jia, R.; Mao, Z.; Wang, F.; He, D. Self-tuning final product quality control of batch processes using kernel latent variable model. Chem. Eng. Res. Des. 2015, 94, 119–130. [Google Scholar] [CrossRef]
- Westerhuis, J.A.; Coenegracht, P.M.J. Multivariate modelling of the pharmaceutical two-step process of wet granulation and tableting with multiblock partial least squares. J. Chemom. 1997, 11, 379–392. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, Z.; He, D.; Shi, J.; Sun, S.; Hou, Y. Simulation Modeling of a Pharmaceutical Tablet Manufacturing Process via Wet Granulation. Complexity 2019, 2019, 1–16. [Google Scholar] [CrossRef]
- Kuentz, M.; Leuenberger, H. A new model for the hardness of a compacted particle system, applied to tablets of pharmaceutical polymers. Powder Technol. 2000, 111, 145–153. [Google Scholar] [CrossRef]
- Boukouvala, F.; Chaudhury, A.; Sen, M.; Zhou, R.; Mioduszewski, L.; Ierapetritou, M.G.; Ramachandran, R. Computer-Aided Flowsheet Simulation of a Pharmaceutical Tablet Manufacturing Process Incorporating Wet Granulation. J. Pharm. Innov. 2013, 8, 11–27. [Google Scholar] [CrossRef]
- Rogers, A.J.; Inamdar, C.; Ierapetritou, M.G. An Integrated Approach to Simulation of Pharmaceutical Processes for Solid Drug Manufacture. Ind. Eng. Chem. Res. 2013, 53, 5128–5147. [Google Scholar] [CrossRef]
- Baroutaji, A.; Bryan, K.; Sajjia, M.; Lenihan, S. Mechanics and Computational Modeling of Pharmaceutical Tabletting Process. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Lewis, R.W.; Gethin, D.T.; Yang, X.-S.; Rowe, R.C. A combined finite-discrete element method for simulating pharmaceutical powder tableting. Int. J. Numer. Methods Eng. 2005, 62, 853–869. [Google Scholar] [CrossRef]
- Cabiscol, R.; Finke, J.H.; Kwade, A. Calibration and interpretation of DEM parameters for simulations of cylindrical tablets with multi-sphere approach. Powder Technol. 2018, 327, 232–245. [Google Scholar] [CrossRef]
- Rantanen, J.; Khinast, J. The Future of Pharmaceutical Manufacturing Sciences. J. Pharm. Sci. 2015, 104, 3612–3638. [Google Scholar] [CrossRef] [Green Version]
- Wu, C. DEM simulations of die filling during pharmaceutical tabletting. Particuology 2008, 6, 412–418. [Google Scholar] [CrossRef]
- Guo, Y.; Kafui, K.D.; Wu, C.-Y.; Thornton, C.; Seville, J.P.K. A coupled DEM/CFD analysis of the effect of air on powder flow during die filling. AIChE J. 2008, 55, 49–62. [Google Scholar] [CrossRef]
- Bierwisch, C.; Kraft, T.; Riedel, H.; Moseler, M. Die filling optimization using three-dimensional discrete element modeling. Powder Technol. 2009, 196, 169–179. [Google Scholar] [CrossRef]
- Gopireddy, S.R.; Hildebrandt, C.; Urbanetz, N.A. Numerical simulation of powder flow in a pharmaceutical tablet press lab-scale gravity feeder. Powder Technol. 2016, 302, 309–327. [Google Scholar] [CrossRef]
- Ketterhagen, W.R. Simulation of powder flow in a lab-scale tablet press feed frame: Effects of design and operating parameters on measures of tablet quality. Powder Technol. 2015, 275, 361–374. [Google Scholar] [CrossRef]
- Siegmann, E.; Forgber, T.; Toson, P.; Martinetz, M.C.; Kureck, H.; Brinz, T.; Manz, S.; Grass, T.; Khinast, J. Powder flow and mixing in different tablet press feed frames. Adv. Powder Technol. 2020, 31, 770–781. [Google Scholar] [CrossRef]
- Mateo-Ortiz, D.; Méndez, R. Microdynamic analysis of particle flow in a confined space using DEM: The feed frame case. Adv. Powder Technol. 2016, 27, 1597–1606. [Google Scholar] [CrossRef]
- Cabiscol, R.; Finke, J.H.; Kwade, A. Assessment of particle rearrangement and anisotropy in high-load tableting with a DEM-based elasto-plastic cohesive model. Granul. Matter 2019, 21, 98. [Google Scholar] [CrossRef]
- Giannis, K.; Schilde, C.; Finke, J.H.; Kwade, A.; Celigueta, M.A.; Taghizadeh, K.; Luding, S. Stress based multi-contact model for discrete-element simulations. Granul. Matter 2021, 23, 1–14. [Google Scholar] [CrossRef]
- Macal, C.M.; North, M.J. Agent-Based Modeling and Simulation. In Proceedings of the 2009 Winter Simulation Conference (WSC), Austin, TX, USA, 13–16 December 2009; pp. 86–98. [Google Scholar]
- Macal, C.M. Everything you need to know about agent-based modelling and simulation. J. Simul. 2016, 10, 144–156. [Google Scholar] [CrossRef]
- Schönemann, M.; Bockholt, H.; Thiede, S.; Kwade, A.; Herrmann, C. Multiscale simulation approach for production systems. Int. J. Adv. Manuf. Technol. 2019, 102, 1373–1390. [Google Scholar] [CrossRef]
- Celik, M. Overview of Compaction Data Analysis Techniques. Drug Dev. Ind. Pharm. 1992, 18, 767–810. [Google Scholar] [CrossRef]
- Wünsch, I.; Finke, J.H.; John, E.; Juhnke, M.; Kwade, A. A Mathematical Approach to Consider Solid Compressibility in the Compression of Pharmaceutical Powders. Pharmaceuticals 2019, 11, 121. [Google Scholar] [CrossRef] [Green Version]
- Heckel, R.W. Density-Pressure Relationships in Powder Compaction. Trans. Metall. Soc. AIME 1961, 221, 671–675. [Google Scholar]
- Kawakita, K.; Lüdde, K.-H. Some considerations on powder compression equations. Powder Technol. 1971, 4, 61–68. [Google Scholar] [CrossRef]
- Gurnham, C.F.; Masson, H.J. Expression of Liquids from Fibrous Materials. Ind. Eng. Chem. 1946, 38, 1309–1315. [Google Scholar] [CrossRef]
- Cooper, A.R.; Eaton, L.E. Compaction Behavior of Several Ceramic Powders. J. Am. Ceram. Soc. 1962, 45, 97–101. [Google Scholar] [CrossRef]
- Busignies, V.; Mazel, V.; Diarra, H.; Tchoreloff, P. Prediction of the compressibility of complex mixtures of pharmaceutical powders. Int. J. Pharm. 2012, 436, 862–868. [Google Scholar] [CrossRef]
- Hirschberg, C.; Paul, S.; Rantanen, J.; Sun, C.C. A material-saving and robust approach for obtaining accurate out-of-die powder compressibility. Powder Technol. 2020, 361, 903–909. [Google Scholar] [CrossRef]
- Ryshkewitch, E. Compression Strength of Porous Sintered Alumina and Zirconia. J. Am. Ceram. Soc. 1953, 36, 65–68. [Google Scholar] [CrossRef]
- Schomberg, A.K.; Kwade, A.; Finke, J.H. The Challenge of Die Filling in Rotary Presses—A Systematic Study of Material Properties and Process Parameters. Pharmaceutics 2020, 12, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fell, J.T.; Newton, J.M. Determination of Tablet Strength by the Diametral-Compression Test. J. Pharm. Sci. 1970, 59, 688–691. [Google Scholar] [CrossRef]
- Nicklasson, F.; Alderborn, G. Analysis of the Compression Mechanics of Pharmaceutical Agglomerates of Different Porosity and Composition Using the Adams and Kawakita Equations. Pharm. Res. 2000, 17, 949–954. [Google Scholar] [CrossRef]
- Puckhaber, D.; Eichler, S.; Kwade, A.; Finke, J.H. Impact of Particle and Equipment Properties on Residence Time Distribution of Pharmaceutical Excipients in Rotary Tablet Presses. Pharmaceuticals 2020, 12, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors | Considered Process Scope | Considered CQA for Tableting Process | ||
---|---|---|---|---|
Blending | Granulation | Tableting | ||
Boukouvala et al., 2012 | X | X | X |
|
Boukouvala et al., 2013 | X | X | X |
|
Rogers et al., 2013 | X | X |
|
Agent | State | Behavior | Interactions | Calculations |
---|---|---|---|---|
Hopper | Fill filling pipe | Determine/specify materials for the transmission in filling pipe | Filling the filling pipe with blend from hopper | |
Filling pipe | Movement in filling pipe | Blend in pipe is transported towards feed frame, realize flow profile inside the pipe | Triggering hopper to fill voids | Material fractions |
Fill feed frame | Filling the feed frame compartments with blend in filling pipe | Material fractions | ||
Feed frame | Turning | Turning the compartments according to paddle speed | Feed die with blend and triggering filling pipe | |
Die filling | Filling of die out of different feed frame compartments | Material fractions | ||
Mixed density (Equation (1)) | ||||
Tablet weight (Equation (2)) | ||||
Die (and punches) | Compaction | Applying the compression stress on the powder blend according to minimal in-die height hmin under consideration of the elastic deformation of the tablet press | Creating a stress based on product agent properties, creating tablet, triggering feed frame | Compression stress (Equations (3) and (4)) |
Tablet in-die density (Equation (3)) | ||||
Ejection | Waiting according to turret speed | Tablet out-die porosity (Equations (5)–(7)) | ||
Tablet tensile strength (Equation (8)) |
Material | x10 (µm) | x50 (µm) | x90 (µm) | ρs (g/cm3) | ρb (g/cm3) | ρt (g/cm3) |
---|---|---|---|---|---|---|
DCPA A60 | 34 | 64 | 116 | 2.849 | 1.33 | 1.51 |
DCPA A150 | 96 | 167 | 263 | 2.842 | 0.68 | 0.75 |
Excipient | ρ0 | a | b | R² |
---|---|---|---|---|
DCPA A150 | 1.22954 | 0.4981 | 0.0072 | 0.9962 |
DCPA A60 | 1.62302 | 0.4891 | 0.0041 | 0.9959 |
Coefficients to Determine σ0 | Coefficients to Determine kb | ||
---|---|---|---|
c1 | 19.99 | m | 3.80 |
c2 | 5.56 | n | 15.09 |
c3 | 28.32 |
Midstream Diameter (mm) | 42 | 36 | 33 | 30 | 24 | 18 | 12 | 6 |
Mean Absolute Value of the Relative Error (f) (%) | 6.02 | 1.86 | 1.32 | 2.23 | 5.19 | 7.27 | 8.82 | 9.05 |
Filling ratio (%) | 1. Compartment | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 34 |
2. Compartment | 0 | 5 | 15 | 25 | 35 | 40 | 35 | 33 | |
3. Compartment | 0 | 5 | 5 | 5 | 5 | 10 | 25 | 33 | |
Mean Absolute Value of the Relative Error (%) | 5.35 | 5.04 | 4.64 | 4.11 | 3.38 | 2.46 | 1.32 | 1.24 |
Critical Quality Attributes | Tablet Weight | Mass Fraction | Out-Die Porosity | Tensile Strength | |
---|---|---|---|---|---|
Mean absolute relative error (f) (%) | 1.34 | 6.99 | 2.13 | 17.69 | |
Deviation (%) | Max | 7.60 | 43.82 | 8.93 | 112.74 |
Upper quartile | 2.15 | 9.34 | 3.25 | 27.06 | |
Median | 0.83 | 2.41 | 1.55 | 5.21 | |
Lower quartile | 0.20 | 0.00 | 0.63 | 2.38 | |
Min | 0.00 | 0.00 | 0.02 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, N.L.; Schomberg, A.K.; Finke, J.H.; Abraham, T.G.-m.; Kwade, A.; Herrmann, C. Process Modeling and Simulation of Tableting—An Agent-Based Simulation Methodology for Direct Compression. Pharmaceutics 2021, 13, 996. https://doi.org/10.3390/pharmaceutics13070996
Martin NL, Schomberg AK, Finke JH, Abraham TG-m, Kwade A, Herrmann C. Process Modeling and Simulation of Tableting—An Agent-Based Simulation Methodology for Direct Compression. Pharmaceutics. 2021; 13(7):996. https://doi.org/10.3390/pharmaceutics13070996
Chicago/Turabian StyleMartin, Niels Lasse, Ann Kathrin Schomberg, Jan Henrik Finke, Tim Gyung-min Abraham, Arno Kwade, and Christoph Herrmann. 2021. "Process Modeling and Simulation of Tableting—An Agent-Based Simulation Methodology for Direct Compression" Pharmaceutics 13, no. 7: 996. https://doi.org/10.3390/pharmaceutics13070996
APA StyleMartin, N. L., Schomberg, A. K., Finke, J. H., Abraham, T. G. -m., Kwade, A., & Herrmann, C. (2021). Process Modeling and Simulation of Tableting—An Agent-Based Simulation Methodology for Direct Compression. Pharmaceutics, 13(7), 996. https://doi.org/10.3390/pharmaceutics13070996