Lipid Nanoparticles for Enhancing the Physicochemical Stability and Topical Skin Delivery of Orobol
"> Figure 1
<p>Scheme of orobol-loaded nanostructured lipid carriers (NLCs) to enhance photostability and topical skin delivery.</p> "> Figure 2
<p>(<b>a</b>) Morphological shapes of the orobol-loaded formulations (F1 to F4) observed by transmission electron microscopy (TEM) and (<b>b</b>) their particle size distribution. The scale bars represent 0.2 μm.</p> "> Figure 3
<p>X-ray diffraction patterns (relative intensity) of the orobol, solid lipids (i.e., cocoa butter and shea butter), physical mixtures (PMs) of F1 and F3, and lyophilized SLNs and NLCs formulations (F1 to F4). Crystalline peaks of the orobol are presented at 25.5° and 28.8° 2θ (red arrows), while those of the lipids are presented at 19.3°, 22.1°, and 24.2° 2θ (blue arrows).</p> "> Figure 4
<p>Fourier transform infrared (FTIR) analysis (relative intensity) of the orobol, solid lipids (i.e., cocoa butter and shea butter), PMs of F1 and F3, and lyophilized SLNs and NLCs formulations (F1 to F4). Distinctive bands of the orobol are presented at 1654 cm<sup>−1</sup> and 3378 cm<sup>−1</sup> (red arrows), while those of the lipids are presented at 717 cm<sup>−1</sup>, 1733 cm<sup>−1</sup>, 2849 cm<sup>−1</sup>, and 2914 cm<sup>−1</sup> (blue arrows).</p> "> Figure 5
<p>(<b>a</b>) The change of the mean particle size and (<b>b</b>) orobol content (% of initial day) in orobol-loaded formulations at room temperature under sunlight.</p> "> Figure 6
<p>In vitro deposition of orobol into (<b>a</b>) Strat-M membranes and (<b>b</b>) human cadaver skin after applying the orobol-loaded SLNs and NLCs formulations (F1–F4) or orobol suspension in deionized water (DW) at a concentration of 0.5 mg/mL of orobol for 3 h and 6 h. Significantly different from one another at * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001; Significantly different from the suspension group at # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01, and ### <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Orobol-Loaded Formulations
2.2.1. Solubility Study
2.2.2. Preparation of Orobol-Loaded NLCs and SLNs
2.3. Characterization of Orobol-Loaded Formulations
2.3.1. Mean Particle Size and Size Distribution
2.3.2. Particle Morphology
2.3.3. Entrapment Efficiency (EE) and Content of Orobol
2.3.4. Powder X-ray Diffraction (pXRD) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Study
2.4. Stability Study
2.5. In Vitro Deposition Study Using Artificial Membrane and Human Cadaver Skin
2.6. LC-MS/MS Analysis of Orobol
2.7. Skin Irritation Study in Humans
2.8. Statistical Analysis
3. Results
3.1. Preparation of Orobol-Loaded NLCs and SLNs
3.2. Characterization of Orobol-Loaded SLNs and NLCs
3.3. Stability of Orobol-Loaded SLNs and NLCs
3.4. In Vitro Strat-M Membranes and Human Cadaver Skin Deposition of Orobol
3.5. Skin Irritation of Orobol-Loaded NLCs in Humans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bi, Y.; Xia, H.; Li, L.; Lee, R.J.; Xie, J.; Liu, Z.; Qiu, Z.; Teng, L. Liposomal vitamin D3 as an anti-aging agent for the skin. Pharmaceutics 2019, 11, 311. [Google Scholar] [CrossRef] [Green Version]
- Kahari, V.M.; Saarialho-Kere, U. Matrix metalloproteinases in skin. Exp. Dermatol. 1997, 6, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.J.; Datta, S.; Wang, Z.; Li, X.Y.; Quan, T.; Chung, J.H.; Kang, S.; Voorhees, J.J. c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J. Clin. Investig. 2000, 106, 663–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Huang, C.C.; Hsu, B.Y.; Wu, N.L.; Tsui, W.H.; Lin, T.J.; Su, C.C.; Hung, C.F. Anti-photoaging effects of soy isoflavone extract (aglycone and acetylglucoside form) from soybean cake. Int. J. Mol. Sci. 2010, 12, 4782–4795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campa, M.; Baron, E. Anti-aging effects of select botanicals: Scientific evidence and current trends. Cosmetics 2018, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Irrera, N.; Pizzino, G.; D’Anna, R.; Vaccaro, M.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Dietary management of skin health: The role of genistein. Nutrients 2017, 9, 622. [Google Scholar] [CrossRef]
- Liu, T.; Li, N.; Yan, Y.Q.; Liu, Y.; Xiong, K.; Liu, Y.; Xia, Q.M.; Zhang, H.; Liu, Z.D. Recent advances in the anti-aging effects of phytoestrogens on collagen, water content, and oxidative stress. Phytother. Res. 2020, 34, 435–447. [Google Scholar] [CrossRef]
- Kitagawa, S.; Inoue, K.; Teraoka, R.; Morita, S.Y. Enhanced skin delivery of genistein and other two isoflavones by microemulsion and prevention against UV irradiation-induced erythema formation. Chem. Pharm. Bull. 2010, 58, 398–401. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.H.; Kang, M.J.; Lee, J.; Choi, Y.W. Influence of liposome type and skin model on skin permeation and accumulation properties of genistein. J. Dispers. Sci. Technol. 2010, 31, 1061–1066. [Google Scholar] [CrossRef]
- Andrade, L.M.; de Fátima Reis, C.; Maione-Silva, L.; Anjos, J.L.V.; Alonso, A.; Serpa, R.C.; Marreto, R.N.; Lima, E.M.; Taveira, S.F. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm. 2014, 88, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lee, S.H.; Ji, H.; Kim, J.E.; Yoo, R.; Kim, J.H.; Suk, S.; Huh, C.S.; Park, J.H.Y.; Heo, Y.S.; et al. Orobol, an enzyme-convertible product of genistein, exerts anti-obesity effects by targeting casein kinase 1 epsilon. Sci. Rep. 2019, 9, 8942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.W.; Kwon, J.; Sim, S.J.; Lee, D.; Mar, W. Orobol derivatives and extracts from Cudrania tricuspidata fruits protect against 6-hydroxydomamine-induced neuronal cell death by enhancing proteasome activity and the ubiquitin/proteasome-dependent degradation of α-synuclein and synphilin-1. J. Funct. Food. 2017, 29, 104–114. [Google Scholar] [CrossRef]
- Nam, G.; Ji, Y.; Lee, H.J.; Kang, J.; Yi, Y.; Kim, M.; Lin, Y.; Lee, Y.H.; Lim, M.H. Orobol: An isoflavone exhibiting regulatory multifunctionality against four pathological features of alzheimer’s disease. ACS Chem. Neurosci. 2019, 10, 3386–3390. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Orobol Prevents Solar Ultraviolet-Induced Skin Photoaging by Targeting T-LAK Cell-Originated Protein Kinase. Master’s Thesis, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea, 31 August 2016. [Google Scholar]
- Kim, K.T.; Kim, M.H.; Park, J.H.; Lee, J.Y.; Cho, H.J.; Yoon, I.S.; Kim, D.D. Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(S)-protopanaxadiol: In vitro and in vivo evaluation studies. J. Ginseng Res. 2018, 42, 512–523. [Google Scholar] [CrossRef]
- Han, F.; Yin, R.; Che, X.; Yuan, J.; Cui, Y.; Yin, H.; Li, S. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: Design, characterization and in vivo evaluation. Int. J. Pharm. 2012, 439, 349–357. [Google Scholar] [CrossRef]
- Montenegro, L.; Parenti, C.; Turnaturi, R.; Pasquinucci, L. Resveratrol-loaded lipid nanocarriers: Correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics 2017, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Mirhadi, E.; Nassirli, H.; Malaekeh-Nikouei, B. An updated review on therapeutic effects of nanoparticle-based formulations of saffron components (safranal, crocin, and crocetin). J. Pharm. Investig. 2020, 50, 47–58. [Google Scholar] [CrossRef]
- Rigon, R.B.; Fachinetti, N.; Severino, P.; Santana, M.H.; Chorilli, M. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules 2016, 21, 116. [Google Scholar] [CrossRef] [Green Version]
- Tran, P.; Lee, S.E.; Kim, D.H.; Pyo, Y.C.; Park, J.S. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J. Pharm. Investig. 2020, 50, 261–270. [Google Scholar] [CrossRef]
- Jee, J.P.; Pangeni, R.; Jha, S.K.; Byun, Y.; Park, J.W. Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. Int. J. Nanomed. 2019, 14, 5449–5475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, Z.; Yu, M.; Ding, Y.; Zhang, H.; Shen, Y.; Jiang, M.; Liu, P.; Opoku-Damoah, Y.; Webster, T.J.; Zhou, J. Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int. J. Nanomed. 2019, 14, 119–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.E.; Lee, J.K.; Jang, W.S.; Kim, T.H.; Tunsirikongkon, A.; Choi, J.S.; Park, J.S. Enhancement of stability and controlled drug release of lipid nanoparticles by modified solvent-evaporation method. Colloids Surf. A Phys. Eng. Asp. 2016, 508, 294–300. [Google Scholar] [CrossRef]
- Kim, K.T.; Lee, J.; Kim, M.H.; Park, J.H.; Lee, J.Y.; Song, J.H.; Jung, M.; Jang, M.H.; Cho, H.J.; Yoon, I.S.; et al. Novel reverse electrodialysis-driven iontophoretic system for topical and transdermal delivery of poorly permeable therapeutic agents. Drug Deliv. 2017, 24, 1204–1215. [Google Scholar] [CrossRef] [Green Version]
- Saba, A.M.; Tsado, D.G.; Okafor, J.O. Determination of the effect of storage time and condition on the properties of shea butter. J. Chem. Eng. Process. Technol. 2018, 9, 382. [Google Scholar]
- Iqbal, B.; Ali, J.; Baboota, S. Silymarin loaded nanostructured lipid carrier: From design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. J. Mol. Liq. 2018, 255, 513–529. [Google Scholar] [CrossRef]
- Bose, S.; Du, Y.; Takhistov, P.; Michniak-Kohn, B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm. 2013, 441, 56–66. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, K.T.; Sohn, S.Y.; Lee, J.Y.; Lee, C.H.; Yang, H.; Lee, B.K.; Lee, K.W.; Kim, D.D. Formulation and evaluation of nanostructured lipid carriers (NLCs) of 20(S)-protopanaxadiol (PPD) by box-behnken desgin. Int. J. Nanomed. 2019, 14, 8509–8520. [Google Scholar] [CrossRef] [Green Version]
- Elmowafy, M.; Samy, A.; Raslan, M.A.; Salama, A.; Said, R.A.; Abdelaziz, A.E.; El-Eraky, W.; El Awdan, S.; Viitala, T. Enhancement of bioavailability and pharmacodynamic effects of thymoquinone via nanostructured lipid carrier (NLC) formulation. AAPS Pharm. Sci. Technol. 2016, 17, 663–672. [Google Scholar] [CrossRef]
- Babazadeh, A.; Ghanbarzadeh, B.; Hamishehkar, H. Formulation of food grade nanostructured lipid carrier (NLC) for potential applications in medicinal-functional foods. J. Drug Deliv. Sci. Technol. 2017, 39, 50–58. [Google Scholar] [CrossRef]
- Neelakandan, C.; Kyu, T. Effects of genistein modification on miscibility and hydrogen bonding interactions in poly(amide)/poly(vinyl pyrrolidone) blends and membrane morphology development during coagulation. Polymer 2010, 51, 5135–5144. [Google Scholar] [CrossRef]
- Yatsu, F.K.; Koester, L.S.; Lula, I.; Passos, J.J.; Sinisterra, R.; Bassani, V.L. Multiple comlexation of cyclodextrin with soy isoflavones present in an enriched fraction. Carbohydr. Polym. 2013, 98, 726–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, H.H.; Michaux, F.; Bouelet Ntsama, I.S.; Durand, P.; Jasniewski, J.; Linder, M. Shea butter solid nanoparticles for curcumin encapsulation: Influence of nanoparticles size on drug loading. Eur. J. Lipid Sci. Technol. 2016, 118, 1168–1178. [Google Scholar]
- Ribeiro, L.N.M.; Breitkreitz, M.C.; Guilherme, V.A.; da Silva, G.H.R.; Couto, V.M.; Castro, S.R.; de Paula, B.O.; Machado, D.; de Paula, E. Natural lipids-based NLC containing lidocaine: From pre-formulation to in vivo studies. Eur. J. Pharm. Sci. 2017, 106, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.W.; Kim, M.H.; Sohn, S.Y.; Kim, K.T.; Park, J.H.; Lee, S.Y.; Lee, J.Y.; Kim, D.D. Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials 2018, 182, 245–258. [Google Scholar] [CrossRef]
- Rostagno, M.c.A.; Palma, M.; Barroso, C.G. Short-term stability of soy isoflavones extracts: Sample conservation aspects. Food Chem. 2005, 93, 557–564. [Google Scholar] [CrossRef]
- Yatsu, F.K.J.; Koester, L.S.; Bassani, V.L. Isoflavone-aglycone fraction from glycine max: A promising raw material for isoflavone-based pharmaceutical or nutraceutical products. Braz. J. Pharm. 2016, 26, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.E.; Jung, Y.J.; Choi, Y.J.; Choi, J.S.; Cho, Y.W. Artificial skin models for animal-free testing. J. Pharm. Investig. 2018, 48, 215–223. [Google Scholar] [CrossRef]
- Zsiko, S.; Cutcher, K.; Kovacs, A.; Budai-Szucs, M.; Gacsi, A.; Baki, G.; Csanyi, E.; Berko, S. Nanostructured lipid carrier gel for the dermal application of lidocaine: Comparison of skin penetration testing methods. Pharmaceutics 2019, 11, 310. [Google Scholar] [CrossRef] [Green Version]
- Mbah, C.C.; Builders, P.F.; Agubata, C.O.; Attama, A.A. Development of ethosomal vesicular carrier for topical application of griseofulvin: Effect of ethanol concentration. J. Pharm. Investig. 2019, 49, 27–36. [Google Scholar] [CrossRef]
- Rajinikanth, P.S.; Chellian, J. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int. J. Nanomed. 2016, 11, 5067–5077. [Google Scholar] [CrossRef] [Green Version]
- Stees, M.; Adjei, I.; Labhasetwar, V. A method for quantification of penetration of nanoparticles through skin layers using near-infrared optical imaging. Cosmetics 2015, 2, 225–235. [Google Scholar] [CrossRef]
- Raza, K.; Singh, B.; Lohan, S.; Sharma, G.; Negi, P.; Yachha, Y.; Katare, O.P. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int. J. Pharm. 2013, 456, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Fang, C.L.; Liu, C.H.; Su, Y.H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 2008, 70, 633–640. [Google Scholar] [CrossRef]
Phase | Vehicle | Solubility (mg/mL) |
---|---|---|
Water | DW | 0.04 ± 0.01 |
Oil | Capmul MCM EP | 12.37 ± 0.12 |
Miglyol | 1.03 ± 0.03 | |
MCT | 1.03 ± 0.05 | |
Larbrafac CC | 0.89 ± 0.07 | |
Surfactant | Transcutol | 67.94 ± 1.98 |
Labrasol | 54.53 ± 3.62 | |
Tween 20 | 23.81 ± 0.80 |
Phase | Vehicle | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|
Solid lipid | Cocoa butter | 1.5 | 1.5 | - | - |
Shea butter | - | - | 1.5 | 1.5 | |
Oil | Capmul MCM EP | - | 0.3 | - | 0.3 |
Surfactant | Transcutol | 2 | 2 | 2 | 2 |
Tween 20 | 2 | 2 | 2 | 2 | |
Water | DW | 94.45 | 94.15 | 94.45 | 94.15 |
Formulation | Particle Size (nm) | Polydispersity Index (PDI) | Entrapment Efficiency (EE, %) | Loading Content (%) |
F1 | 165 ± 3 | 0.211 ± 0.001 | 95.7 ± 2.5 | 0.96 ± 0.09 |
F2 | 498 ± 8 | 0.166 ± 0.042 | 95.9 ± 10.5 | 0.97 ± 0.07 |
F3 | 133 ± 6 | 0.140 ± 0.016 | 97.2 ± 4.1 | 0.93 ± 0.04 |
F4 | 246 ± 9 | 0.196 ± 0.016 | 96.8 ± 2.1 | 0.91 ± 0.04 |
Formulation | 30 Min | 24 H | 48 H |
---|---|---|---|
not-treated | 0 | 0 | 0 |
blank F4 | 0.0167 | 0.0167 | 0.0167 |
F4 | 0.0167 | 0.0167 | 0.0167 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-H.; Jeon, Y.-E.; Kang, S.; Lee, J.-Y.; Lee, K.W.; Kim, K.-T.; Kim, D.-D. Lipid Nanoparticles for Enhancing the Physicochemical Stability and Topical Skin Delivery of Orobol. Pharmaceutics 2020, 12, 845. https://doi.org/10.3390/pharmaceutics12090845
Kim M-H, Jeon Y-E, Kang S, Lee J-Y, Lee KW, Kim K-T, Kim D-D. Lipid Nanoparticles for Enhancing the Physicochemical Stability and Topical Skin Delivery of Orobol. Pharmaceutics. 2020; 12(9):845. https://doi.org/10.3390/pharmaceutics12090845
Chicago/Turabian StyleKim, Min-Hwan, Yae-Eun Jeon, Soobeen Kang, Jae-Young Lee, Ki Won Lee, Ki-Taek Kim, and Dae-Duk Kim. 2020. "Lipid Nanoparticles for Enhancing the Physicochemical Stability and Topical Skin Delivery of Orobol" Pharmaceutics 12, no. 9: 845. https://doi.org/10.3390/pharmaceutics12090845
APA StyleKim, M.-H., Jeon, Y.-E., Kang, S., Lee, J.-Y., Lee, K. W., Kim, K.-T., & Kim, D.-D. (2020). Lipid Nanoparticles for Enhancing the Physicochemical Stability and Topical Skin Delivery of Orobol. Pharmaceutics, 12(9), 845. https://doi.org/10.3390/pharmaceutics12090845