Performance and Stability of Tenofovir Alafenamide Formulations within Subcutaneous Biodegradable Implants for HIV Pre-Exposure Prophylaxis (PrEP)
<p>(<b>Left</b>) A digital camera image of the biodegradable implant. (<b>Right</b>) A schematic of a poly(ε-caprolactone) (PCL) reservoir-style implant for sustained delivery of tenofovir alafenamide (TAF) formulations.</p> "> Figure 2
<p>Cumulative release profiles of various TAF<sub>HF</sub> (<b>a</b>) and TAF<sub>FB</sub> (<b>b</b>) formulations.</p> "> Figure 3
<p>Degradation profiles of TAF<sub>HF</sub> (<b>a</b>,<b>b</b>) and TAF<sub>FB</sub> (<b>c</b>,<b>d</b>) formulations within implants with a wall thickness of 100 μm after exposure to simulated physiological conditions (37 °C, PBS). The fits (black lines) correspond to a two-line model for each formulation.</p> "> Figure 4
<p>Water ingress profiles of TAF<sub>HF</sub>-CO (<b>a</b>), TAF<sub>HF</sub>-PEG600 (<b>b</b>), TAF<sub>FB</sub>-CO (<b>c</b>), and TAF<sub>FB</sub>-SO (<b>d</b>) formulations within PCL implants exposed to simulated physiological conditions (37 °C, PBS). Two-line model (depicted in black lines) has been applied to TAF<sub>HF</sub>-CO, TAF<sub>FB</sub>-CO and TAF<sub>FB</sub>-SO formulations in mass ratios of 2:1.</p> "> Figure 5
<p>TAF purity and water uptake for the TAF<sub>HF</sub> implants (<b>a</b>) and TAF<sub>FB</sub> implants (<b>b</b>) as a function of time.</p> "> Figure 6
<p>Chromatographic impurity profile of TAF<sub>HF</sub>-CO (<b>a</b>), TAF<sub>HF</sub>-PEG600 (<b>b</b>), TAF<sub>FB</sub>-CO (<b>c</b>), and TAF<sub>FB</sub>-SO (<b>d</b>) formulations.</p> "> Figure 7
<p>Postulated predominant TAF degradation pathway inside the implant reservoir.</p> "> Figure 8
<p>High-performance liquid chromatography (HPLC) chromatographic purity profile of 2:1 TAF<sub>HF</sub>-CO (<b>a</b>) and 2:1 TAF<sub>FB</sub>-SO (<b>b</b>) implants stored in open and closed foil pouches at 22 °C/50% RH and 40 °C/75% RH over 6-months.</p> "> Figure 9
<p>Chromatographic impurity of TAF<sub>HF</sub>-CO (<b>a</b>) and TAF<sub>FB</sub>-SO (<b>b</b>) formulations within the implant at 180 days under various storage conditions.</p> "> Figure 10
<p>Cumulative release profiles of TAF<sub>FB</sub>-CO (<b>a</b>) and TAF<sub>FB</sub>-SO (<b>b</b>) formulations from implants of differing wall thicknesses. All samples were performed in triplicate.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solubility and Stability Screens
2.2. Implant Fabrication
2.3. Implant Sterilization
2.4. In Vitro Release Studies
2.5. Stability Analysis of TAF Formulation
2.6. Loss on Drying Analysis
2.7. Shelf Stability
2.8. Differential Scanning Calorimetry (DSC)
2.9. Gel Permeation Chromatography (GPC)
3. Results and Discussion
3.1. In Vitro Performance of PCL Reservoir Implants with TAFHF and TAFFB Formulations
3.2. In Vitro Stability Assessment of Implant Formulations
3.3. Hydrolytic Degradants of TAF
3.4. Six-Month Shelf-Stability of Implants with TAF Formulations
3.5. Improving the Stability of TAFFB Formulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNAIDS Data 2020. Joint United Nations Programme on HIV/AIDS (UNAIDS). Available online: https://www.unaids.org/en/resources/documents/2020/unaids-data (accessed on 6 July 2020).
- UNAIDS. Global AIDS Update—Executive Summary: Seizing the Moment. Available online: https://www.unaids.org/sites/default/files/media_asset/2020_global-aids-report_executive-summary_en.pdf (accessed on 10 October 2020).
- Dapivirine Vaginal Ring 25 mg–Summary of Opinion; EMA/CHMP/330850/2020; Eropean Medical Agency: Amsterdam, The Netherlands, 2020.
- Landovitz, R.J.; Donnell, D.; Clement, M.; Hanscom, B.; Cottle, L.; Coelho, L.; Cabello, R.; Chariyalestak, S.; Dunne, E.; Frank, I.; et al. Pre-exposure prophylaxis (PrEP) containing long-acting injectable cabotegravir (CAB-LA) is safe and highly effective for cisgender men and transgender women who have sex with men (MSM, TGW). Late breaker oral abstract OAXLB0101. In Proceedings of the Oral Abstracts from the 23rd International AIDS Conference, San Francisco, CA, USA, 6–10 July 2020. [Google Scholar]
- Ollila, E.; Sihvo, S.; Merilainen, J.; Hcmminki, E. Experience of Finnish Women with Norplant Insertions and Removals. BJOG Int. J. Obstet. Gynaecol. 1997, 104, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Flexner, C. Antiretroviral Implants for Treatment and Prevention of HIV Infection. Curr. Opin. HIV AIDS 2018, 13, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-C.; Follis, K.E.; Sabo, A.; Beck, T.W.; Grant, R.F.; Bischofberger, N.; Benveniste, R.E.; Black, R. Prevention of SIV Infection in Macaques by (R)-9-(2-Phosphonylmethoxypropyl) adenine. Science 1995, 270, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. The role of tenofovir in the prevention of HIV infections. AIDS 2006, 20, 1990–1991. [Google Scholar] [CrossRef]
- Ray, A.S.; Fordyce, M.W.; Hitchcock, M.J. Tenofovir Alafenamide: A Novel Prodrug of Tenofovir for The Treatment of Human Immunodeficiency Virus. Antivir. Res. 2016, 125, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.A.; He, G.-X.; Eisenberg, E.; Cihlar, T.; Swaminathan, S.; Mulato, A.; Cundy, K.C. Selective Intracellular Activation of a Novel Prodrug of the Human Immunodeficiency Virus Reverse Transcriptase Inhibitor Tenofovir Leads to Preferential Distribution and Accumulation in Lymphatic Tissue. Antimicrob. Agents Chemother. 2005, 49, 1898–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowitz, M.; Zolopa, A.; Squires, K.; Ruane, P.; Coakley, D.; Kearney, B.; Zhong, L.; Wulfsohn, M.; Miller, M.D.; Lee, W.A. Phase I/II Study of the Pharmacokinetics, Safety and Antiretroviral Activity of Tenofovir Alafenamide, A New Prodrug of The Hiv Reverse Transcriptase Inhibitor Tenofovir, in HIV-infected adults. J. Antimicrob. Chemother. 2014, 69, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emtricitabine/Tenofovir Alafenamide—Nonclinical Overview. Available online: https://www.pmda.go.jp/drugs/2016/P20161209001/530614000_22800AMX00716_F100.pdf (accessed on 7 July 2020).
- Golla, V.M.; Kurmi, M.; Shaik, K.; Singh, S. Stability Behaviour of Antiretroviral Drugs and Their Combinations. 4: Characterization of Degradation Products of Tenofovir Alafenamide Fumarate and Comparison of Its Degradation and Stability Behaviour with Tenofovir Disoproxil Fumarate. J. Pharm. Biomed. Anal. 2016, 131, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Gunawardana, M.; Remedios-Chan, M.; Miller, C.S.; Fanter, R.; Yang, F.; Marzinke, M.A.; Hendrix, C.W.; Beliveau, M.; Moss, J.A.; Smith, T.J.; et al. Pharmacokinetics of Long-Acting Tenofovir Alafenamide (GS-7340) Subdermal Implant for HIV Prophylaxis. Antimicrob. Agents Chemother. 2015, 59, 3913–3919. [Google Scholar] [CrossRef] [Green Version]
- Su, J.T.; Simpson, S.M.; Sung, S.; Tfaily, E.B.; Veazey, R.; Marzinke, M.; Qiu, J.; Watrous, D.; Widanapathirana, L.; Pearson, E.; et al. A Subcutaneous Implant of Tenofovir Alafenamide Fumarate Causes Local Inflammation and Tissue Necrosis in Rabbits and Macaques. Antimicrob. Agents Chemother. 2019, 64. [Google Scholar] [CrossRef] [Green Version]
- Pons-Faudoa, F.P.; Sizovs, A.; Shelton, K.A.; Momin, Z.; Bushman, L.R.; Xu, J.; Chua, C.Y.X.; Nichols, J.E.; Hawkins, T.; Rooney, J.F.; et al. Preventive Efficacy of A Tenofovir Alafenamide Fumarate Nanofluidic Implant in Shiv-Challenged Nonhuman Primates. BioRxiv 2020. [Google Scholar] [CrossRef]
- Johnson, L.M.; Krovi, S.A.; Li, L.; Girouard, N.; Demkovich, Z.R.; Myers, D.; Creelman, B.; Van Der Straten, A. Characterization of a Reservoir-Style Implant for Sustained Release of Tenofovir Alafenamide (TAF) for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics 2019, 11, 315. [Google Scholar] [CrossRef] [Green Version]
- CAPRISA 018: A phase I/II trial to assess the safety, acceptability and pharmacokinetics of a sustained-release tenofovir alafenamide sub-dermal implant for HIV prevention in women. V2.0. 12 August 2019. Available online: https://www.caprisa.org/DBFile/Files/0a88623f-c1ce-455d-9ecd-648dfd03b620/CAPRISA%20018_Study%20protocol%20V2.0_12%20Aug%202019.pdf (accessed on 10 October 2020).
- Simpson, S.M.; Widanapathirana, L.; Su, J.T.; Sung, S.; Watrous, D.; Qiu, J.; Pearson, E.; Evanoff, A.; Karunakaran, D.; Chacon, J.E.; et al. Design of a Drug-Eluting Subcutaneous Implant of the Antiretroviral Tenofovir Alafenamide Fumarate. Pharm. Res. 2020, 37, 83. [Google Scholar] [CrossRef]
- Chua, C.Y.X.; Jain, P.; Ballerini, A.; Bruno, G.; Hood, R.L.; Gupte, M.; Gao, S.; Di Trani, N.; Susnjar, A.; Shelton, K.; et al. Transcutaneously Refillable Nanofluidic Implant Achieves Sustained Level of Tenofovir Diphosphate for HIV Pre-Exposure Prophylaxis. J. Control. Release 2018, 286, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Sizovs, A.; Pons-Faudoa, F.P.; Malgir, G.; Shelton, K.A.; Bushman, L.R.; Chua, C.Y.X.; Anderson, P.L.; Nehete, P.N.; Sastry, K.J.; Grattoni, A. Trans-Urocanic Acid Enhances Tenofovir Alafenamide Stability for Long-Acting HIV Applications. Int. J. Pharm. 2020, 587, 119623. [Google Scholar] [CrossRef] [PubMed]
- Gatto, G.J.; Krovi, S.A.; Johnson, L.M.; Demkovich, Z.R.; Marzinke, M.A.; Luecke, E.; van der Straten, A. Sustained 6-month Release Of Tenofovir Alafenamide (TAF) from A Biodegradable Implant For Long-acting (LA)-HIV Pre-Exposure Prophylaxis (PrEP). In Proceedings of the Controlled Release Society, Las Vegas, NV, USA, 27 June–1 July 2020. [Google Scholar]
- Gupta, B.; Geeta; Ray, A.R. Preparation of poly(ε-caprolactone)/poly(ε-caprolactone-co-lactide) (PCL/PLCL) Blend Filament by Melt Spinning. J. Appl. Polym. Sci. 2011, 123, 1944–1950. [Google Scholar] [CrossRef]
- Obregon, N.; Agubra, V.; Pokhrel, M.; Campos, H.; Flores, D.; De La Garza, D.; Mao, Y.; Macossay, J.; Alcoutlabi, M. Effect of Polymer Concentration, Rotational Speed, and Solvent Mixture on Fiber Formation Using Forcespinning®. Fibers 2016, 4, 20. [Google Scholar] [CrossRef]
- Schlesinger, E.; Ciaccio, N.; Desai, T.A. Polycaprolactone Thin-Film Drug Delivery Systems: Empirical and Predictive Models for Device Design. Mater. Sci. Eng. C 2015, 57, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Siepmann, J.; Siege, R.A.; Rathbone, M.J. Fundamentals and Applications of Controlled Release Drug Delivery; Springer: Boston, MA, USA, 2012. [Google Scholar] [CrossRef]
- Berger, J.E.; Wittner, E. Adsorption of Phosphoramidates on Iron. J. Phys. Chem. 1966, 70, 1025–1030. [Google Scholar] [CrossRef]
- Garrison, A.W.; Boozer, C.E. The Acid-Catalyzed Hydrolysis of A Series of Phosphoramidates. J. Am. Chem. Soc. 1968, 90, 3486–3494. [Google Scholar] [CrossRef]
- FDA Guidance for Industry. Q1A(R2) Stability Testing of New Drug Substances and Products. Available online: https://www.fda.gov/media/71707/download (accessed on 31 July 2020).
- Shah, T. Stabilization of a Tenofovir Alafenamide Fumarate Formulation for Use in a Subcutaneous Implant. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2019. [Google Scholar]
- Bagia, C.; Shah, T.; Johnson, L.M.; Krovi, S.A.; Demkovich, Z.R.; van der Straten, A. Development of Novel Accelerated Stability Testing Models for Tenofovir Alafenamide (TAF) in Long-Acting Implants for HIV Prevention. In Proceedings of the Controlled Release Society, Las Vegas, NV, USA, 27 June–1 July 2020. [Google Scholar]
- Product Pipeline. PROBUPHINE® (buprenorphine) Implant. Available online: https://www.titanpharm.com/pipeline/probuphine (accessed on 15 September 2020).
- Pasquale, S.A.; Brandeis, V.; Cruz, R.; Kelly, S.; Sweeney, M. Norplant® Contraceptive Implants: Rods Versus Capsules. Contraception 1987, 36, 305–316. [Google Scholar] [CrossRef]
- Schlesinger, E.; Johengen, D.; Luecke, E.; Rothrock, G.; McGowan, I.; van der Straten, A.; Desai, T. A Tunable, Biodegradable, Thin-Film Polymer Device as a Long-Acting Implant Delivering Tenofovir Alafenamide Fumarate for HIV Pre-exposure Prophylaxis. Pharm. Res. 2016, 33, 1649–1656. [Google Scholar] [CrossRef]
Excipients | TAFHF Solubility (mg/mL) | TAFHF % Impurities at Day-9 | TAFFB Solubility (mg/mL) | TAFFB % Impurities at Day-9 |
---|---|---|---|---|
Castor Oil | 12.4 | 1.1 | 16.5 | 2.3 |
Sesame Oil | 0.34 | 8.2 | 0.06 | 2.1 |
PEG600 | 57.6 | 18.5 | 56.8 | 7.2 |
API only | ---- | 4.4 | ---- | 1.9 |
API exposed to 37 °C | ---- | 4.4 | ---- | 2.0 |
Formulations | API | Excipient | Wall Thickness (µm) | Length of Implant (mm) | PCL Mw (kDa) | Approximate TAF Payload (mg) |
---|---|---|---|---|---|---|
TAFHF-CO | TAFHF | Castor oil | 100 | 40 | 145 | 120 |
TAFHF-PEG600 | TAFHF | PEG600 | 122 | |||
TAFFB-CO | TAFFB | Castor oil | 118 | |||
TAFFB-SO | TAFFB | Sesame oil | 113 |
Formulation | Inflection Point (Day) | Drug Remaining at the Inflection Point | Stability Near the Inflection Point | Water Content (mg) Near the Inflection Point | % of Water Ingress Near the Inflection Point |
---|---|---|---|---|---|
TAFHF-CO | 78 | 91.8 mg/75.6% | 93.9% | 4.0 | 4.8% |
TAFHF-PEG600 | 38 | 97.7 mg/79.3% | 91.3% | 8.4 | 10.1% |
TAFFB-CO | 130 | 82.5 mg/71.2% | 96.3% | 19.6 | 8.4% |
TAFFB-SO | 132 | 86.7 mg/78.7% | 97.6% | 10.0 | 4.6% |
Implants | Release Rate (mg/day) | Purity at 210 Days (%) | Purity at 240 Days (%) |
---|---|---|---|
TAFFB-SO 150 µm | 0.18 ± 0.03 | 94.3 | 88.8 |
TAFFB-SO 200 µm | 0.11 ± 0.04 | 91.8 | 86.7 |
TAFFB-SO 300 µm | 0.07 ± 0.02 | 96.1 | 93.2 |
TAFFB-CO 150 µm | 0.31 ± 0.06 | 80.0 | 63.5 |
TAFFB-CO 200 µm | 0.17 ± 0.07 | 81.2 | 67.9 |
TAFFB-CO 300 µm | 0.10 ± 0.02 | 90.3 | 79.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Johnson, L.M.; Krovi, S.A.; Demkovich, Z.R.; van der Straten, A. Performance and Stability of Tenofovir Alafenamide Formulations within Subcutaneous Biodegradable Implants for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics 2020, 12, 1057. https://doi.org/10.3390/pharmaceutics12111057
Li L, Johnson LM, Krovi SA, Demkovich ZR, van der Straten A. Performance and Stability of Tenofovir Alafenamide Formulations within Subcutaneous Biodegradable Implants for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics. 2020; 12(11):1057. https://doi.org/10.3390/pharmaceutics12111057
Chicago/Turabian StyleLi, Linying, Leah M. Johnson, Sai Archana Krovi, Zach R. Demkovich, and Ariane van der Straten. 2020. "Performance and Stability of Tenofovir Alafenamide Formulations within Subcutaneous Biodegradable Implants for HIV Pre-Exposure Prophylaxis (PrEP)" Pharmaceutics 12, no. 11: 1057. https://doi.org/10.3390/pharmaceutics12111057
APA StyleLi, L., Johnson, L. M., Krovi, S. A., Demkovich, Z. R., & van der Straten, A. (2020). Performance and Stability of Tenofovir Alafenamide Formulations within Subcutaneous Biodegradable Implants for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics, 12(11), 1057. https://doi.org/10.3390/pharmaceutics12111057