Development and Evaluation of Anti-Pollution Film-Forming Facial Spray Containing Coffee Cherry Pulp Extract
<p>(<b>a</b>) Fresh coffee cherries from <span class="html-italic">Coffea arabica</span> L., (<b>b</b>) processing and collection of coffee cherry pulp as a by-product, (<b>c</b>) dried coffee cherry pulp before extraction, (<b>d</b>) ground coffee cherry pulp powder for extraction, (<b>e</b>) coffee cherry pulp extract (CCS extract) in semi-solid form.</p> "> Figure 2
<p>Schematic illustration of modified fine dust spraying box for dust protection performance test. The blue arrows indicate airflow direction within the system, ensuring uniform dust dispersion. The dust particles are introduced into the box and monitored using a PM detector, while pig skin samples are placed at the bottom to evaluate dust adhesion. The recirculation system helps maintain consistent particulate distribution during the test.</p> "> Figure 3
<p>Flowchart illustrating the clinical trial process. A total of 42 subjects were assessed for eligibility, all of whom were enrolled and subsequently randomized into two groups using a blocked randomization approach. One group (<span class="html-italic">n</span> = 21) received the test product, while the other group (<span class="html-italic">n</span> = 21) was assigned placebo product. Skin evaluations were conducted at baseline and during the first and second follow-up visits. All 42 participants completed the study, and their data were included in the final analysis.</p> "> Figure 4
<p>Appearance of (<b>a</b>) FFS1, (<b>b</b>) FFS2, (<b>c</b>) FFS1−CCS, and (<b>d</b>) FFS2−CCS after spraying under 20× magnification. The blue arrows indicate film boundaries in the sprayed formulations.</p> "> Figure 5
<p>Comparison of FFS1, FFS1-CCS, FFS2, and FFS2-CCS formulations versus untreated control in dust protection efficacy using pig skin. (<b>a</b>) Standard camera image comparing untreated and FFS1-CCS-treated skin. (<b>b</b>) Visioscan image comparing untreated and FFS1-CCS-treated skin. (<b>c</b>) Standard camera image comparing untreated and FFS2-CCS-treated skin. (<b>d</b>) Visioscan image comparing untreated and FFS2-CCS-treated skin. (<b>e</b>) Quantitative analysis of skin lightness (L* value) comparing baseline, untreated, and treated groups. FFS1-CCS-treated skin showed less dust adhesion and higher L* values, indicating better dust protection and skin clarity than FFS2-CCS, confirming its superior barrier-forming ability. Statistical analysis (Tukey’s HSD test, <span class="html-italic">p</span> < 0.05) confirmed that groups sharing the same letters (a–c) were not significantly different. An asterisk (*) indicates a statistically significant improvement in dust protection compared to the untreated control. Data are expressed as mean ± standard deviation (S.D.) from three independent replicates (<span class="html-italic">n</span> = 3). (<b>b</b>,<b>d</b>) Visioscan images were captured using the Skin Visioscan VC20 with a scale bar representing 2 mm.</p> "> Figure 6
<p>Physical stability profiles, including (<b>a</b>) physical appearance, (<b>b</b>) viscosity, (<b>c</b>) percentage of chlorogenic acid content, (<b>d</b>) percentage of caffeine content, and (<b>e</b>) percentages of theophylline content over 90-day storage under different conditions: heating and cooling cycle (H/C), 4 °C, room temperature (RT), and 45 °C. FFS1−CCS remained physically stable with no phase separation. Viscosity was consistent, except for a slight decrease at 45 °C. Chlorogenic acid degraded most at 45 °C, while caffeine and theophylline remained stable. Storage at 4 °C ensured optimal stability. An asterisk (*) indicates a significant difference (<span class="html-italic">p</span> < 0.05) compared to Day 0. Data are expressed as mean ± standard deviation (S.D.) from three independent replicates (<span class="html-italic">n</span> = 3).</p> "> Figure 6 Cont.
<p>Physical stability profiles, including (<b>a</b>) physical appearance, (<b>b</b>) viscosity, (<b>c</b>) percentage of chlorogenic acid content, (<b>d</b>) percentage of caffeine content, and (<b>e</b>) percentages of theophylline content over 90-day storage under different conditions: heating and cooling cycle (H/C), 4 °C, room temperature (RT), and 45 °C. FFS1−CCS remained physically stable with no phase separation. Viscosity was consistent, except for a slight decrease at 45 °C. Chlorogenic acid degraded most at 45 °C, while caffeine and theophylline remained stable. Storage at 4 °C ensured optimal stability. An asterisk (*) indicates a significant difference (<span class="html-italic">p</span> < 0.05) compared to Day 0. Data are expressed as mean ± standard deviation (S.D.) from three independent replicates (<span class="html-italic">n</span> = 3).</p> "> Figure 7
<p>Skin penetration and retention profiles of FFS1-CCS compared to CCS solution. (<b>a</b>) Skin penetration study at various times within 12 h and (<b>b</b>) skin retention profile at 12 h of the FFS1-CCS formulation compared to the CCS extract solution. The FFS1−CCS formulation significantly improved skin retention of CGA, CAF, and THP, indicating localized delivery, reduced systemic absorption, and prolonged bioactive effects. Abbreviations: CGA, chlorogenic acid; CAF, caffeine; THP, theophylline. An asterisk (*) denotes a statistically significant difference (<span class="html-italic">p</span> < 0.05) compared to the CCS solution. Data are expressed as mean ± standard deviation (S.D.) from three independent replicates (<span class="html-italic">n</span> = 3).</p> "> Figure 7 Cont.
<p>Skin penetration and retention profiles of FFS1-CCS compared to CCS solution. (<b>a</b>) Skin penetration study at various times within 12 h and (<b>b</b>) skin retention profile at 12 h of the FFS1-CCS formulation compared to the CCS extract solution. The FFS1−CCS formulation significantly improved skin retention of CGA, CAF, and THP, indicating localized delivery, reduced systemic absorption, and prolonged bioactive effects. Abbreviations: CGA, chlorogenic acid; CAF, caffeine; THP, theophylline. An asterisk (*) denotes a statistically significant difference (<span class="html-italic">p</span> < 0.05) compared to the CCS solution. Data are expressed as mean ± standard deviation (S.D.) from three independent replicates (<span class="html-italic">n</span> = 3).</p> "> Figure 8
<p>Skin Visioscan images illustrating the skin before (Day 0) and after application of the FFS base formulation (placebo group) and FFS1−CCS (tested group) for 30 and 60 days.</p> "> Figure 9
<p>The change in (<b>a</b>) skin hydration, (<b>b</b>) melanin content, (<b>c</b>) erythema content, (<b>d</b>) average roughness (R3), (<b>e</b>) arithmetic average roughness (R5), and (<b>f</b>) skin volume before (Day 0) and after application of the FFS1−CCS (tested group) and FFS base formulation (placebo group) for 30 and 60 days. An asterisk (*) indicates a significant difference compared to that of placebo group at <span class="html-italic">p</span> < 0.05. Data are expressed as mean ± standard deviation (S.D.) based on 21 volunteers per group (<span class="html-italic">n</span> = 21 per group) and three replicates per participant (<span class="html-italic">n</span> = 3 per participant).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Coffee Cherry Pulp Extract
2.3. Solubility Classification of CCS Extract
2.4. Preparation of Film-Forming Spray
2.5. Characterizations and Stability Tests of Film-Forming Spray
2.5.1. Physical Appearance and Film Formation After Drying of Spray
2.5.2. Viscosity and pH
2.5.3. Uniformity of Weight per Spray
2.5.4. Spray Pattern and Spray Angle
2.5.5. Theoretical Film Thickness
2.5.6. Particle Adhesion
2.5.7. Stability Study of Film-Forming Spray Containing CCS Extract
2.6. Skin Penetration and Skin Retention Studies of Film-Forming Spray Containing CCS Extract
2.6.1. Skin Penetration Determination
2.6.2. Skin Retention Determination
2.7. Clinical Study
2.7.1. Study Design and Participants
2.7.2. In Vivo Human Skin Patch Test
2.7.3. Clinical Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Solubility Study of CCS Extract
3.2. Characterizations and Stability Test of Film-Forming Spray
3.2.1. Characterizations of Physical Appearance and Spray Parameters
3.2.2. Dust Protection Effect of Film-Forming Spray
3.2.3. Stability Study of Film-Forming Spray Containing CCS Extract
3.3. Skin Penetration and Skin Retention Studies
3.4. In Vivo Human Skin Patch Test
3.5. Clinical Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Martic, I.; Jansen-Dürr, P.; Cavinato, M. Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022, 11, 2220. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, T.U.; Sanjeewa, K.K.A.; Wang, L.; Kim, W.S.; Lee, T.K.; Kim, Y.T.; Jeon, Y.J. Alginic Acid from Padina boryana Abate Particulate Matter-Induced Inflammatory Responses in Keratinocytes and Dermal Fibroblasts. Molecules 2020, 25, 5746. [Google Scholar] [CrossRef] [PubMed]
- Mistry, N. Guidelines for Formulating Anti-Pollution Products. Cosmetics 2017, 4, 57. [Google Scholar] [CrossRef]
- McAuley, W.J.; Caserta, F. Film-Forming and Heated Systems. In Novel Delivery Systems for Transdermal and Intradermal Drug Delivery; Wiley: Hoboken, NJ, USA, 2015; pp. 97–124. [Google Scholar]
- Coldman, M.F.; Poulsen, B.J.; Higuchi, T. Enhancement of percutaneous absorption by the use of volatile: Nonvolatile systems as vehicles. J. Pharm. Sci. 1969, 58, 1098–1102. [Google Scholar] [CrossRef]
- Frederiksen, K.; Guy, R.H.; Petersson, K. The potential of polymeric film-forming systems as sustained delivery platforms for topical drugs. Expert. Opin. Drug Deliv. 2016, 13, 349–360. [Google Scholar] [CrossRef]
- Preedalikit, W.; Chittasupho, C.; Leelapornpisid, P.; Potprommanee, S.; Kiattisin, K. Comparison of Biological Activities and Protective Effects on PAH-Induced Oxidative Damage of Different Coffee Cherry Pulp Extracts. Foods 2023, 12, 4292. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Surma, S.; Sahebkar, A.; Banach, M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol. Res. 2023, 187, 106596. [Google Scholar] [CrossRef]
- Saewan, N. Effect of Coffee Berry Extract on Anti-Aging for Skin and Hair—In Vitro Approach. Cosmetics 2022, 9, 66. [Google Scholar] [CrossRef]
- Saewan, N.; Jimtaisong, A.; Panyachariwat, N.; Chaiwut, P. In Vitro and In Vivo Anti-Aging Effect of Coffee Berry Nanoliposomes. Molecules 2023, 28, 6830. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, D.H. Clinical Safety and Efficacy in Photoaged Skin With CoffeeBerry Extract, a Natural Antioxidant. Cosmet. Dermatol. 2009, 22, 610–616. [Google Scholar]
- Preedalikit, W.; Chittasupho, C.; Leelapornpisid, P.; Duangnin, N.; Kiattisin, K. Potential of Coffee Cherry Pulp Extract against Polycyclic Aromatic Hydrocarbons in Air Pollution Induced Inflammation and Oxidative Stress for Topical Applications. Int. J. Mol. Sci. 2024, 25, 9416. [Google Scholar] [CrossRef]
- Ammar, H.O.; Ghorab, M.; Mahmoud, A.A.; Makram, T.S.; Ghoneim, A.M. Rapid pain relief using transdermal film forming polymeric solution of ketorolac. Pharm. Dev. Technol. 2013, 18, 1005–1016. [Google Scholar] [CrossRef]
- Ranade, S.; Bajaj, A.; Londhe, V.; Babul, N.; Kao, D. Fabrication of topical metered dose film forming sprays for pain management. Eur. J. Pharm. Sci. 2017, 100, 132–141. [Google Scholar] [CrossRef]
- Geh, K.J.; Stelzl, A.; Gröne, A.; Wagner, L.; Förster, B.; Winter, G. Development of a sprayable hydrogel formulation for the skin application of therapeutic antibodies. Eur. J. Pharm. Biopharm. 2019, 142, 123–132. [Google Scholar] [CrossRef]
- Umar, A.K.; Sriwidodo, S.; Maksum, I.P.; Wathoni, N. Film-Forming Spray of Water-Soluble Chitosan Containing Liposome-Coated Human Epidermal Growth Factor for Wound Healing. Molecules 2021, 26, 5326. [Google Scholar] [CrossRef]
- Bakshi, A.; Bajaj, A.; Malhotra, G.; Madan, M.; Amrutiya, N. A novel metered dose transdermal spray formulation for oxybutynin. Indian J. Pharm. Sci. 2008, 70, 733–739. [Google Scholar] [CrossRef]
- Gohel, M.C.; Nagori, S.A. Fabrication of modified transport fluconazole transdermal spray containing ethyl cellulose and Eudragit RS100 as film formers. AAPS PharmSciTech 2009, 10, 684–691. [Google Scholar] [CrossRef]
- ASTM E252-06(2013); Standard Test Method for Thickness of Foil, Thin Sheet, and Film by Mass Measurement. ASTM International: West Conshohocken, PA, USA, 2013.
- Angsusing, J.; Samee, W.; Tadtong, S.; Mangmool, S.; Okonogi, S.; Toolmal, N.; Chittasupho, C. Development, Optimization, and Stability Study of a Yataprasen Film-Forming Spray for Musculoskeletal Pain Management. Gels 2025, 11, 64. [Google Scholar] [CrossRef]
- United States Pharmacopeial (USP). The United States Pharmacopeia; United States Pharmacopeia: Rockville, MD, USA, 2019. [Google Scholar]
- Kassakul, W.; Praznik, W.; Viernstein, H.; Hongwiset, D.; Phrutivorapongkul, A.; Leelapornpisid, P. Characterization of the mucilages extracted from hibiscus rosa-sinensis linn and hibiscus mutabilis linn and their skin moisturizing effect. Int. J. Pharm. Pharm. 2014, 6, 453–457. [Google Scholar]
- Wacharalertvanich, R.; Aimwattana, R.; Panraksa, P.; Jantrawut, P. Development of skin anti-pollution film-forming spray. Turk. J. Pharm. Sci. 2021, 16, 47–59. [Google Scholar]
- Narda, M.; Ramos-Lopez, D.; Bustos, J.; Trullàs, C.; Granger, C. A novel water-based anti-aging suncare formulation provides multifaceted protection and repair against environmental aggressors: Evidence from in vitro, ex vivo, and clinical studies. Clin. Cosmet. Investig. Dermatol. 2019, 12, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, R.; Moreno, S.; Smythers, A.L.; Sullins, C.; Pijor, H.; Brown, G.; Trouten, A.; Richards Waugh, L.L.; Siddig, A. Quantification of cannabis in infused consumer products and their residues on skin. Pharmacol. Transl. Sci. 2022, 5, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef]
- Na Takuathung, M.; Klinjan, P.; Sakuludomkan, W.; Dukaew, N.; Inpan, R.; Kongta, R.; Chaiyana, W.; Teekachunhatean, S.; Koonrungsesomboon, N. Efficacy and Safety of the Genistein Nutraceutical Product Containing Vitamin E, Vitamin B3, and Ceramide on Skin Health in Postmenopausal Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Clin. Med. 2023, 12, 1326. [Google Scholar] [CrossRef]
- Johansen, J.D.; Aalto-Korte, K.; Agner, T.; Andersen, K.E.; Bircher, A.; Bruze, M.; Cannavó, A.; Giménez-Arnau, A.; Gonçalo, M.; Goossens, A.; et al. European Society of Contact Dermatitis guideline for diagnostic patch testing—Recommendations on best practice. Contact Dermat. 2015, 73, 195–221. [Google Scholar] [CrossRef]
- Alsaadi, S.A.R.A.; Abass, K.S. Benincasa hispida is an antioxidant of possible physiological importance: A comparative review. Plant Arch. 2020, 20, 2833–2838. [Google Scholar]
- Amirah; Prasad, D.M.R.; Khan, M.R. Comparison of extraction techniques on extraction of gallic acid from stem bark of Jatropha curcas. Res. J. Appl. Sci. 2012, 12, 1106–1111. [Google Scholar] [CrossRef]
- Poomanee, W.; Yaowiwat, N.; Pattarachaidaecharuch, T.; Leelapornpisid, P. Optimized multiherbal combination and in vivo anti-skin aging potential: A randomized double blind placebo controlled study. Sci. Rep. 2023, 13, 5633. [Google Scholar] [CrossRef]
- Somwongin, S.; Chaiyana, W. Clinical Efficacy in Skin Hydration and Reducing Wrinkles of Nanoemulsions Containing Macadamia integrifolia Seed Oil. Nanomaterials 2024, 14, 724. [Google Scholar] [CrossRef] [PubMed]
- Kumari, L.; Choudhari, Y.; Patel, P.; Gupta, G.D.; Singh, D.; Rosenholm, J.M.; Bansal, K.K.; Kurmi, B.D. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life 2023, 13, 1099. [Google Scholar] [CrossRef] [PubMed]
- Saewan, N.; Jimtaisong, D.A.; Vichit, W. Optimization of phenolic extraction from coffee by−product using response surface methodology and their antioxidant activities. Food Appl. Biosci. J. 2020, 8, 14–26. [Google Scholar]
- Myo, H.; Khat-udomkiri, N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason. Sonochem. 2022, 89, 106127. [Google Scholar] [CrossRef]
- Chokshi, A.; Vangara, K.; Chilampalli, S.; Narayanan, E.; Potta, T. Development of sublingual spray formulation containing ondansetron hydrochloride dihydrate. J. Drug Deliv. Sci. Technol. 2019, 53, 101160. [Google Scholar] [CrossRef]
- Wang, H.; Shao, Q.; Zhang, Y.; Ding, J.; Yang, M.; Yang, L.; Wang, W.; Cui, P.; Dai, Z.; Ma, L. Preparation and Evaluation of Liposomes Containing Ethanol and Propylene Glycol as Carriers for Nicotine. Curr. Drug Deliv. 2024, 21, 249–260. [Google Scholar] [CrossRef]
- Manconi, M.; Petretto, G.; D’Hallewin, G.; Escribano, E.; Milia, E.; Pinna, R.; Palmieri, A.; Firoznezhad, M.; Peris, J.E.; Usach, I.; et al. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf. B Biointerfaces 2018, 171, 115–122. [Google Scholar] [CrossRef]
- Segger, D.; Assmus, U.; Brock, M.; Erasmy, J.; Finkel, P.; Fitzner, A.; Heuss, H.; Kortemeier, U.; Munke, S.; Rheinländer, T.; et al. Multicenter study on measurement of the natural pH of the skin surface. Int. J. Cosmet. Sci. 2008, 30, 75. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Dumbuya, H.; Grimes, P.E.; Lynch, S.; Ji, K.; Brahmachary, M.; Zheng, Q.; Bouez, C.; Wangari-Talbot, J. Impact of Iron-Oxide Containing Formulations Against Visible Light-Induced Skin Pigmentation in Skin of Color Individuals. J. Drugs Dermatol. 2020, 19, 712–717. [Google Scholar] [CrossRef]
- El-Setouhy, D.A.; Abd El-Malak, N.S. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech 2010, 11, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; De Marco, I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef] [PubMed]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [PubMed]
- Kurakula, M.; Koteswara Rao, G.S.N. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur. Polym. J. 2020, 136, 109919. [Google Scholar] [CrossRef]
- Cheng, H.; Mao, L.; Zhang, S.; Lv, H. Impacts of Polymeric Additives on Nucleation and Crystal Growth of Indomethacin from Supersaturated Solutions. AAPS PharmSciTech 2019, 20, 193. [Google Scholar] [CrossRef]
- Mehaya, F.M.; Mohammad, A.A. Thermostability of bioactive compounds during roasting process of coffee beans. Heliyon 2020, 6, e05508. [Google Scholar] [CrossRef]
- Crozier, T.W.M.; Stalmach, A.; Lean, M.E.J.; Crozier, A. Espresso coffees, caffeine and chlorogenic acid intake: Potential health implications. Food Funct. 2012, 3, 30–33. [Google Scholar] [CrossRef]
- Liu, Y.; Kitts, D.D. Confirmation that the Maillard reaction is the principle contributor to the antioxidant capacity of coffee brews. Food Res. Int. 2011, 44, 2418–2424. [Google Scholar] [CrossRef]
- Hečimović, I.; Belščak-Cvitanović, A.; Horžić, D.; Komes, D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 2011, 129, 991–1000. [Google Scholar] [CrossRef]
- Barnes, A.R.; Hebron, B.S.; Smith, J. Stability of caffeine oral formulations for neonatal use. J. Clin. Pharm. Ther. 1994, 19, 391–396. [Google Scholar] [CrossRef]
- Erickson, G.; McAnulty, M.; Powers, C.; Luong, T.L.; Dobson, N.R.; Hunt, C.E. Stability for 6 months and accuracy of a specific enteral caffeine base preparation for a multisite clinical trial. Br. J. Clin. Pharmacol. 2023, 89, 2631–2635. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 2000, 9, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Pastore, M.N.; Kalia, Y.N.; Horstmann, M.; Roberts, M.S. Transdermal patches: History, development and pharmacology. Br. J. Pharmacol. 2015, 172, 2179–2209. [Google Scholar] [CrossRef]
- Hwa, C.; Bauer, E.A.; Cohen, D.E. Skin biology. Dermatol. Ther. 2011, 24, 464–470. [Google Scholar] [CrossRef]
- Rao, P.R.; Diwan, P.V. Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration. Drug Dev. Ind. Pharm. 1998, 24, 327–336. [Google Scholar] [CrossRef]
- ElNabarawi, M.; Shaker, D.S.; Attia, D.A.; Hamed, S.A. In vitro skin permeation and biological evaluation of lornoxicam monolithic transdermal patches. Int. J. Pharm. Pharm. Sci. 2013, 5, 242–248. [Google Scholar]
- Zhang, M.; Zhuang, X.; Li, S.; Wang, Y.; Zhang, X.; Li, J.; Wu, D. Designed Fabrication of Phloretin-Loaded Propylene Glycol Binary Ethosomes: Stability, Skin Permeability and Antioxidant Activity. Molecules 2024, 29, 66. [Google Scholar] [CrossRef]
- Frederiksen, K.; Guy, R.H.; Petersson, K. Formulation considerations in the design of topical, polymeric film-forming systems for sustained drug delivery to the skin. Eur. J. Pharm. Biopharm. 2015, 91, 9–15. [Google Scholar] [CrossRef]
- Fiume, M.M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics. Int. J. Toxicol. 2012, 31, 245s–260s. [Google Scholar] [CrossRef]
- Hu, R.; Xu, F.; Zhao, L.; Dong, W.; Xiao, X.; Chen, X. Comparative Evaluation of Flavor and Sensory Quality of Coffee Pulp Wines. Molecules 2024, 29, 3060. [Google Scholar] [CrossRef]
- Cornwell, P.A.; Barry, B.W.; Bouwstra, J.A.; Gooris, G.S. Modes of action of terpene penetration enhancers in human skin; Differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int. J. Pharm. 1996, 127, 9–26. [Google Scholar] [CrossRef]
- Perioli, L.; Ambrogi, V.; Angelici, F.; Ricci, M.; Giovagnoli, S.; Capuccella, M.; Rossi, C. Development of mucoadhesive patches for buccal administration of ibuprofen. J. Control Release 2004, 99, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Mukherjee, B. Development and in vitro evaluation of diltiazem hydrochloride transdermal patches based on povidone-ethylcellulose matrices. Drug Dev. Ind. Pharm. 2003, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Hernandez, L.; Ruiz, H.A.; Cristina Ramírez, T.; Ascacio, J.A.; Rodríguez-Herrera, R.; Aguilar, C.N. Fungal detoxification of coffee pulp by solid-state fermentation. Biocatal. Agric. Biotechnol. 2020, 23, 101467. [Google Scholar] [CrossRef]
- Murthy, P.S.; Madhava Naidu, M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Bonilla-Hermosa, V.A.; Duarte, W.F.; Schwan, R.F. Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresour. Technol. 2014, 166, 142–150. [Google Scholar] [CrossRef]
- Hejna, A. Potential applications of by-products from the coffee industry in polymer technology—Current state and perspectives. Waste Manag. 2021, 121, 296–330. [Google Scholar] [CrossRef]
- Pereira, G.; Fernandes, C.; Dhawan, V.; Dixit, V. 3—Preparation and development of nanoemulsion for skin moisturizing. In Nanotechnology for the Preparation of Cosmetics Using Plant-Based Extracts; Mohd Setapar, S.H., Ahmad, A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 27–47. [Google Scholar]
- Oh, S.; Jeong, J.; Kim, M.; Jin, X.; Zheng, S.; Kim, Y.M.; Yi, T.H. A study of anti-wrinkle functions and improvement of cream with Phaseolus angularis. Int. J. Cosmet. Sci. 2024, 46, 318–332. [Google Scholar] [CrossRef]
- Nemzer, B.; Abshiru, N.; Al-Taher, F. Identification of Phytochemical Compounds in Coffea arabica Whole Coffee Cherries and Their Extracts by LC-MS/MS. J. Agric. Food Chem. 2021, 69, 3430–3438. [Google Scholar] [CrossRef]
- Mullen, W.; Nemzer, B.; Stalmach, A.; Ali, S.; Combet, E. Polyphenolic and Hydroxycinnamate Contents of Whole Coffee Fruits from China, India, and Mexico. J. Agric. Food Chem. 2013, 61, 5298–5309. [Google Scholar] [CrossRef]
Descriptive Term | Parts of Solvent Required Per Part of Solute | Descriptive Term |
---|---|---|
Very soluble | <1 | >1000 |
Freely soluble | 1 to 10 | 100–1000 |
Soluble | 10 to 30 | 33–100 |
Sparingly soluble | 30 to 100 | 10–33 |
Slightly soluble | 100 to 1000 | 1–10 |
Ethanol (% w/w) | Water (% w/w) | Propylene Glycol (% w/w) |
---|---|---|
50 | 50 | 0 |
45 | 50 | 5 |
40 | 50 | 10 |
35 | 50 | 15 |
50 | 50 | 0 |
Formular | Ingredient | ||||||
---|---|---|---|---|---|---|---|
PVP K90 | PVP/VA 64 | ACP | PG | Ethanol | Water | CCS Extract | |
FFS1 | 0.6 | 0 | 0.1 | 10 | 40 | 50 | - |
FFS2 | 0 | 0.6 | 0.1 | 10 | 40 | 50 | - |
FFS1-CCS | 0.6 | 0 | 0.1 | 10 | 40 | 50 | 1 |
FFS2-CCS | 0 | 0.6 | 0.1 | 10 | 40 | 50 | 1 |
Formular | pH | Viscosity (mPa·s) | Spray Angle (θ) | Spray Weight (g) | Film Thickness (µm) |
---|---|---|---|---|---|
FFS1 | 5.5 | 46.9 ± 5.2 b | 69.2 ± 0.5 a | 0.12 ± 0.0 a | 2.0 ± 0.1 b |
FFS2 | 5.3 | 36.3 ± 5.1 a | 71.1 ± 0.8 b | 0.13 ± 0.0 a | 1.5 ± 0.0 a |
FFS1-CCS | 4.5 | 46.5 ± 7.6 b | 68.8 ± 1.8 a | 0.13 ± 0.0 a | 2.4 ± 0.0 b |
FFS2-CCS | 4.6 | 35.9 ± 5.2 a | 70.9 ± 0.7 b | 0.12 ± 0.0 a | 1.6 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preedalikit, W.; Chittasupho, C.; Leelapornpisid, P.; Qi, S.; Kiattisin, K. Development and Evaluation of Anti-Pollution Film-Forming Facial Spray Containing Coffee Cherry Pulp Extract. Pharmaceutics 2025, 17, 360. https://doi.org/10.3390/pharmaceutics17030360
Preedalikit W, Chittasupho C, Leelapornpisid P, Qi S, Kiattisin K. Development and Evaluation of Anti-Pollution Film-Forming Facial Spray Containing Coffee Cherry Pulp Extract. Pharmaceutics. 2025; 17(3):360. https://doi.org/10.3390/pharmaceutics17030360
Chicago/Turabian StylePreedalikit, Weeraya, Chuda Chittasupho, Pimporn Leelapornpisid, Sheng Qi, and Kanokwan Kiattisin. 2025. "Development and Evaluation of Anti-Pollution Film-Forming Facial Spray Containing Coffee Cherry Pulp Extract" Pharmaceutics 17, no. 3: 360. https://doi.org/10.3390/pharmaceutics17030360
APA StylePreedalikit, W., Chittasupho, C., Leelapornpisid, P., Qi, S., & Kiattisin, K. (2025). Development and Evaluation of Anti-Pollution Film-Forming Facial Spray Containing Coffee Cherry Pulp Extract. Pharmaceutics, 17(3), 360. https://doi.org/10.3390/pharmaceutics17030360