Influence of Different Cationic Polymer-Based Micelles on the Corneal Behavior and Anti-Cataract Effect of Diosmetin
<p>(<b>A</b>) TEM images of D-M-T (1), D-M-P (2), and D-M-D (3) (Bar = 100 nm); (<b>B</b>) in vitro release of DIO from different preparations at scheduled time points (n = 3); (<b>C</b>) cell viability of different concentrations of DIO (1), D-M-T (2), D-M-P (3), D-M-D (4) on L929 cells.</p> "> Figure 2
<p>(<b>A</b>) Cellular uptake of vehicles in HLECs after incubation with different preparations (Bar = 50 μm); (<b>B</b>) intracellular fluorescence intensity of HLECs after incubation with different preparations (*, <span class="html-italic">p</span> < 0.05; ****, <span class="html-italic">p</span> < 0.0001; ns, not significantly); (<b>C</b>) precorneal fluorescence signals of each group in rabbit corneas under IVIS imaging at different time points within 20 min.</p> "> Figure 3
<p>Corneal transmission curve in vitro of each preparation.</p> "> Figure 4
<p>(<b>A</b>) Corneal penetration depth of different preparations at 2 h; (<b>B</b>) corneal penetration depth of different preparations at 4 h.</p> "> Figure 5
<p>Horizontal corneal imaging of rabbit treated with C-M-T for 2 h (1–7: 5–35 μm for every 5 μm depth). Bar equals 50 μm.</p> "> Figure 6
<p>Slit lamp view of a lens with selenium-induced cataract in rats from day 1 to day 7 in each group.</p> "> Figure 7
<p>Contents of CAT, MDA, and SOD in the lens of rats in each group (***, <span class="html-italic">p</span> < 0.001; **, <span class="html-italic">p</span> < 0.005; *, <span class="html-italic">p</span> < 0.01).</p> "> Figure 8
<p>Histopathological sections of rabbit eyes in different preparation groups (Bar = 100 μm).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cationic Polymer Micelles
2.3. Characterization of Cationic Polymer Micelles
2.3.1. Particle Size, Potential, and Morphology
2.3.2. Encapsulation Efficiency
2.3.3. In Vitro Release Experiment
2.4. Cell Viability Assay
2.5. Cell Uptake Assay
2.6. Precorneal Retention Ability
2.7. Transcorneal Permeability
2.7.1. DIO Transcorneal Penetration
2.7.2. Micellar Vesicle Penetration
2.8. Evaluation of Anticataract Efficacy
2.9. Eye Irritation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of DIO-Loaded Preparations
3.2. In Vitro Release
3.3. Cytotoxicity
3.4. Cellular Uptake
3.5. Precorneal Retention
3.6. Corneal Penetration of DIO
3.7. Corneal Penetration of Vesicles
3.8. Evaluation of In Vivo Efficacy
3.9. Evaluation of Eye Irritation in Rabbits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mahaling, B.; Baruah, N.; Dinabandhu, A. Nanomedicine in Ophthalmology: From Bench to Bedside. J. Clin. Med. 2024, 13, 7651. [Google Scholar] [CrossRef]
- Huang, K.X.; Chen, Q.F. Analysis of the changing trend of cataract disease burden in China from 1990 to 2021 and the prediction of the development trend. J. Math. Med. 2024, 37, 888–898. [Google Scholar]
- Lian, R.R.; Afshari, N.A. The quest for homeopathic and nonsurgical cataract treatment. Curr. Opin. Ophthalmol. 2020, 31, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Zhang, Q.; Liu, Q.; Han, Y.; Liu, Z. Advances in adhesive hydrogels applied for ophthalmology: An overview focused on the treatment. Theranostics 2025, 15, 915–942. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, S.; Zheng, Y.; Zhou, T.; Hu, L.; Xiong, L.; Li, D.W.; Liu, Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog. Retin. Eye Res. 2023, 92, 101112. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, P.; Lewis, S.A.; Ghate, V. Nanotechnology-based non-invasive strategies in ocular therapeutics: Approaches, limitations to clinical translation, and safety concerns. Cont. Lens Anterior Eye 2025, 102367. [Google Scholar] [CrossRef] [PubMed]
- Onugwu, A.L.; Nwagwu, C.S.; Onugwu, O.S.; Echezona, A.C.; Agbo, C.P.; Ihim, S.A.; Emeh, P.; Nnamani, P.O.; Attama, A.A.; Khutoryanskiy, V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023, 354, 465–488. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Jain, A.; Tiwari, A.; Saraf, S.; Panda, P.K.; Jain, S.K. Promising Antifungal Potential of Engineered Non-ionic Surfactant-Based Vesicles: In Vitro and In Vivo Studies. AAPS PharmSciTech 2021, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, S.; Wang, Z.; Chen, X.; Dana, R.; Annabi, N. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov. Today 2021, 26, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, S.K.; Jain, A.; Jain, A.; Jain, S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J. 2019, 120, 109191. [Google Scholar] [CrossRef]
- Choi, C.; Nam, J.P.; Nah, J.W. Application of chitosan and chitosan derivatives as biomaterials—ScienceDirect. J. Ind. Eng. Chem. 2016, 33, 1–10. [Google Scholar] [CrossRef]
- Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N.B.; D’Emanuele, A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 2003, 252, 263–266. [Google Scholar] [CrossRef]
- Yao, C.; Wang, W.; Zhou, X.; Qu, T.; Mu, H.; Liang, R.; Wang, A.; Sun, K. Effects of poly(amidoamine) dendrimers on ocular absorption of puerarin using microdialysis. J. Ocul. Pharmacol. Ther. 2011, 27, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Smith, B.D. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: Membrane bending model. Bioconjugate Chem. 2000, 11, 805–814. [Google Scholar] [CrossRef]
- Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W.; Meijer, E.W.; Paulus, W.; Duncan, R. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 2000, 65, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Hagigit, T.; Abdulrazik, M.; Orucov, F.; Valamanesh, F.; Hagedorn, M.; Lambert, G.; Behar-Cohen, F.; Benita, S. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J. Control. Release 2010, 145, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Tian, Y.; Liu, Y.; Li, D.; Zhang, H.; Yang, Y.; Qi, J.; Wang, H.; Gan, L. Hyaluronic acid-modified cationic niosomes for ocular gene delivery: Improving transfection efficiency in retinal pigment epithelium. J. Pharm. Pharmacol. 2018, 70, 1139–1151. [Google Scholar] [CrossRef]
- de Sá, F.A.; Taveira, S.F.; Gelfuso, G.M.; Lima, E.M.; Gratieri, T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf. B Biointerfaces 2015, 133, 331–338. [Google Scholar] [CrossRef]
- Zhang, J.; Su, W.; Filipczak, N.; Luo, Y.; Wan, A.; He, Y.; Yan, S.; Li, X.; Yang, M. Pharmacological effects of volatile oil from chrysanthemum and its associated mechanisms: A review. Acupunct. Herbal. Med. 2024, 4, 79–91. [Google Scholar] [CrossRef]
- Guo, G.; Dong, J. Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway. Bioengineered 2022, 13, 11072–11081. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Liu, Y.; He, F.; Gong, Y.; Li, J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024, 10, e26044. [Google Scholar] [CrossRef] [PubMed]
- Yalamarty, S.S.K.; Filipczak, N.; Li, X.; Pathrikar, T.V.; Cotter, C.; Torchilin, V.P. Co-Delivery of siRNA and Chemotherapeutic Drug Using 2C5 Antibody-Targeted Dendrimer-Based Mixed Micelles for Multidrug Resistant Cancers. Pharmaceutics 2022, 14, 1470. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Q.; Zhou, C.; Lin, Y. Liposomes co-loaded with ursolic acid and ginsenoside Rg3 in the treatment of hepatocellular carcinoma. Acta Biochim. Pol. 2021, 68, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xue, Y. Preparation of transferrin-targeted temozolomide nano-micelles and their anti-glioma effect. PeerJ 2024, 12, e17979. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tan, G.; Cheng, B.; Liu, D.; Pan, W. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular. Eur. J. Pharm. Biopharm. 2017, 120, 89–97. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, X.; Li, X.; Guan, Z.; Liao, Z.; Luo, Y.; Luo, Y. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress. Drug Dev. Ind. Pharm. 2016, 42, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Cimino, C.; Sánchez López, E.; Bonaccorso, A.; Bonilla, L.; Musumeci, T.; Badia, J.; Baldomà, L.; Pignatello, R.; Marrazzo, A.; Barbaraci, C.; et al. In vitro and in vivo studies of ocular topically administered NLC for the treatment of uveal melanoma. Int. J. Pharm. 2024, 660, 124300. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, L.; Yin, D.; Yang, H.; ZHou, J.Y.; Song, Y.; Zhang, Y.; Zou, L. Preparation and in vivo and in vitro characteristic evaluation of ligustrazine ophthalmic liposome thermosensitive gel. China Pharm. 2021, 32, 320–327. [Google Scholar]
- Esteruelas, G.; Halbaut, L.; García-Torra, V.; Espina, M.; Cano, A.; Ettcheto, M.; Camins, A.; Souto, E.B.; Luisa García, M.; Sánchez-López, E. Development and optimization of Riluzole-loaded biodegradable nanoparticles incorporated in a mucoadhesive in situ gel for the posterior eye segment. Int. J. Pharm. 2022, 612, 121379. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Ujjwal, R.R.; Naqvi, S.; Verma, R.K.; Tiwari, S.; Kesharwani, P.; Shukla, R. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease. J. Drug Target. 2022, 30, 777–791. [Google Scholar] [CrossRef] [PubMed]
- Sonaje, K.; Tyagi, V.; Chen, Y.; Kalia, Y.N. Iontosomes: Electroresponsive Liposomes for Topical Iontophoretic Delivery of Chemotherapeutics to the Buccal Mucosa. Pharmaceutics 2021, 13, 88. [Google Scholar] [CrossRef] [PubMed]
- Sakashita, M.; Mochizuki, S.; Sakurai, K. Hepatocyte-targeting gene delivery using a lipoplex composed of galactose-modified aromatic lipid synthesized with click chemistry. Bioorganic Med. Chem. 2014, 22, 5212–5219. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, C.V.; Belgamwar, V.S. Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability. Int. J. Biol. Macromol. 2016, 82, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Soroushnia, A.; Ganji, F.; Vasheghani-Farahani, E.; Mobedi, H. Preparation, optimization, and evaluation of midazolam nanosuspension: Enhanced bioavailability for buccal administration. Prog. Biomater. 2021, 10, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Wu, L.J.; Lin, M.T.; Lu, Y.Y.; Wang, T.T.; Han, M.; Zhang, B.; Xu, D.H. Construction and Evaluation of Chitosan-Based Nanoparticles for Oral Administration of Exenatide in Type 2 Diabetic Rats. Polymers 2022, 14, 2181. [Google Scholar] [CrossRef]
- Balla, A.; Ruponen, M.; Valtari, A.; Toropainen, E.; Tuomainen, M.; Alvarez-Lorenzo, C.; Del Amo, E.M.; Urtti, A.; Vellonen, K.S. Understanding dexamethasone kinetics in the rabbit tear fluid: Drug release and clearance from solution, suspension and hydrogel formulations. Eur. J. Pharm. Biopharm. 2022, 172, 53–60. [Google Scholar] [CrossRef]
- Thareja, A.; Leigh, T.; Hakkarainen, J.J.; Hughes, H.; Alvarez-Lorenzo, C.; Fernandez-Trillo, F.; Blanch, R.J.; Ahmed, Z. Improving corneal permeability of dexamethasone using penetration enhancing agents: First step towards achieving topical drug delivery to the retina. Int. J. Pharm. 2024, 660, 124305. [Google Scholar] [CrossRef] [PubMed]
- Lanier, O.L.; Manfre, M.G.; Bailey, C.; Liu, Z.; Sparks, Z.; Kulkarni, S.; Chauhan, A. Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations. AAPS PharmSciTech 2021, 22, 107. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Craig, J.P.; Rupenthal, I.D. Formulation Considerations for the Management of Dry Eye Disease. Pharmaceutics 2021, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, S. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: Tolerance, precorneal retention and anti-cataract effect. Int. J. Pharm. 2009, 372, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, N.; Gao, Y.; Li, N.; Guo, Y.; Liu, H.; Chen, X.; Zhu, C.; Dong, Z.; Yamamoto, A. The Effect of Absorption-Enhancement and the Mechanism of the PAMAM Dendrimer on Poorly Absorbable Drugs. Molecules 2018, 23, 2001. [Google Scholar] [CrossRef]
- Sadekar, S.; Ghandehari, H. Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery. Adv. Drug Deliv. Rev. 2012, 64, 571–588. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Fujimori, T.; Kawaguchi, N.; Tsujimoto, Y.; Nishimi, M.; Dong, Z.; Katsumi, H.; Sakane, T.; Yamamoto, A. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats. J. Control. Release 2011, 149, 21–28. [Google Scholar] [CrossRef]
- Kitchens, K.M.; Kolhatkar, R.B.; Swaan, P.W.; Ghandehari, H. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol. Pharm. 2008, 5, 364–369. [Google Scholar] [CrossRef]
- Souza, J.G.; Dias, K.; Silva, S.A.; de Rezende, L.C.; Rocha, E.M.; Emery, F.S.; Lopez, R.F. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery. J. Control. Release 2015, 200, 115–124. [Google Scholar] [CrossRef]
- Eid, H.M.; Elkomy, M.H.; El Menshawe, S.F.; Salem, H.F. Development, Optimization, and In Vitro/In Vivo Characterization of Enhanced Lipid Nanoparticles for Ocular Delivery of Ofloxacin: The Influence of Pegylation and Chitosan Coating. AAPS PharmSciTech 2019, 20, 183. [Google Scholar] [CrossRef] [PubMed]
- Ghalavand, M.; Saadati, M.; Salimian, J.; Abbasi, E.; Hosseinzadeh, G.; Gouvarchin Ghaleh, H.E.; Ahmadi, A. Biological properties the novel application of N-trimethyl chitosan nanospheres as a stabilizer and preservative in tetanus vaccine. Clin. Exp. Vaccine Res. 2021, 10, 24–34. [Google Scholar] [CrossRef]
- Manna, S.; Seth, A.; Gupta, P.; Nandi, G.; Dutta, R.; Jana, S.; Jana, S. Chitosan Derivatives as Carriers for Drug Delivery and Biomedical Applications. ACS Biomater. Sci. Eng. 2023, 9, 2181–2202. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Pandey, R.S.; Patra, K.C.; Jain, S.K.; Soni, M.L.; Dangi, J.S.; Madan, J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int. J. Biol. Macromol. 2013, 61, 189–195. [Google Scholar] [CrossRef]
- Amidi, M.; Romeijn, S.G.; Borchard, G.; Junginger, H.E.; Hennink, W.E.; Jiskoot, W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release 2006, 111, 107–116. [Google Scholar] [CrossRef] [PubMed]
- van der Merwe, S.M.; Verhoef, J.C.; Verheijden, J.H.; Kotzé, A.F.; Junginger, H.E. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur. J. Pharm. Biopharm. 2004, 58, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Sugano, M.; Morisaki, H.; Negishi, Y.; Endo-Takahashi, Y.; Kuwata, H.; Miyazaki, T.; Yamamoto, M. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms. J. Liposome Res. 2016, 26, 156–162. [Google Scholar] [CrossRef]
- Touti, R.; Noun, M.; Guimberteau, F.; Lecomte, S.; Faure, C. What is the fate of multi-lamellar liposomes of controlled size, charge and elasticity in artificial and animal skin? Eur. J. Pharm. Biopharm. 2020, 151, 18–31. [Google Scholar] [CrossRef]
- Sun, D.; Cui, H.; Rong, L.; Ma, T.; Li, X.; Ye, Z.; Li, Z. Sestrin2 Protects Human Lens Epithelial Cells (HLECs) Against Apoptosis in Cataracts Formation: Interaction Between Endoplasmic Reticulum (ER) Stress and Oxidative Stress (OS) is Involved. Curr. Eye Res. 2024, 49, 949–960. [Google Scholar] [CrossRef]
- Lou, M.F. Redox regulation in the lens. Prog. Retin. Eye Res. 2003, 22, 657–682. [Google Scholar] [CrossRef] [PubMed]
- Kundakci, Y.E.; Bilir, A.; Atay, E.; Vurmaz, A.; Firat, F.; Arikan, E.S. Protective Effects of Different Doses of Ginsenoside-Rb1 Experimental Cataract Model That in Chick Embryos. Curr. Eye Res. 2023, 48, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, H.; Du, X. The therapeutic use of quercetin in ophthalmology: Recent applications. Biomed. Pharmacother. 2021, 137, 111371. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, C.G.; Mansfield, K.J.; Cerra, A. Glutathione and catalase suppress TGFbeta-induced cataract-related changes in cultured rat lenses and lens epithelial explants. Mol. Vis. 2009, 15, 895–905. [Google Scholar]
- Zheng, Y.; Yang, X.; Wu, S.; Yi, G.; Huang, X.; Feng, Z.; Qu, L.; Liu, L.; Li, Q.; Xia, Z. Paired Box Gene 6 Regulates Heme Oxygenase-1 Expression and Mitigates Hydrogen Peroxide-Induced Oxidative Stress in Lens Epithelial Cells. Curr. Eye Res. 2022, 47, 1516–1524. [Google Scholar] [CrossRef] [PubMed]
Preparations | Papp/106·cm·s−1 | Jss/103·μg·cm−2·s−1 |
---|---|---|
DIO suspension | 1.68 ± 0.02 | 0.90 ± 0.03 |
D-M-D | 2.34 ± 0.11 | 1.26 ± 0.17 |
D-M-P | 4.87 ± 0.09 | 2.63 ± 0.16 |
D-M-T | 7.28 ± 0.28 | 3.93 ± 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zha, M.; Wan, A.; Yalamarty, S.S.K.; Filipczak, N.; Li, X. Influence of Different Cationic Polymer-Based Micelles on the Corneal Behavior and Anti-Cataract Effect of Diosmetin. Pharmaceutics 2025, 17, 302. https://doi.org/10.3390/pharmaceutics17030302
Zhang J, Zha M, Wan A, Yalamarty SSK, Filipczak N, Li X. Influence of Different Cationic Polymer-Based Micelles on the Corneal Behavior and Anti-Cataract Effect of Diosmetin. Pharmaceutics. 2025; 17(3):302. https://doi.org/10.3390/pharmaceutics17030302
Chicago/Turabian StyleZhang, Jing, Min Zha, Anping Wan, Satya Siva Kishan Yalamarty, Nina Filipczak, and Xiang Li. 2025. "Influence of Different Cationic Polymer-Based Micelles on the Corneal Behavior and Anti-Cataract Effect of Diosmetin" Pharmaceutics 17, no. 3: 302. https://doi.org/10.3390/pharmaceutics17030302
APA StyleZhang, J., Zha, M., Wan, A., Yalamarty, S. S. K., Filipczak, N., & Li, X. (2025). Influence of Different Cationic Polymer-Based Micelles on the Corneal Behavior and Anti-Cataract Effect of Diosmetin. Pharmaceutics, 17(3), 302. https://doi.org/10.3390/pharmaceutics17030302