A Novel Natural Penetration Enhancer for Transdermal Drug Delivery: In Vitro/In Vivo Evaluation and Penetration Enhancement Mechanism
"> Figure 1
<p>Chemical structures of the model drugs.</p> "> Figure 2
<p>Flowchart for the PO preparation and evaluation processes. (GC-MS: gas chromatography–mass spectrometry; <sup>1</sup>H NMR: proton nuclear magnetic resonance; PEK: perilla ketone; SC: stratum corneum; ATR-FTIR: attenuated total reflectance–Fourier transform infrared spectroscopy; DSC: differential scanning calorimetry; CLSM: confocal laser scanning microscope; SEM: scanning electron microscope; MS: molecular dynamics simulation; MD: molecular docking; TEWL: transepidermal water loss).</p> "> Figure 3
<p>Chemical structures of the three compounds in PO. (PO: perilla essential oil; PEK: perilla ketone; β-CP: β-caryophyllene; α-FE: (<span class="html-italic">Z</span>,<span class="html-italic">E</span>)-α-farnesene).</p> "> Figure 4
<p>Dynamic skin irritation caused by penetration enhancers (<span class="html-italic">n</span> = 4, <span class="html-italic">EI</span>: erythema index; PEK: perilla ketone).</p> "> Figure 5
<p>Histological pictures of the skin treated with penetration enhancers. (<b>a</b>) Skin without treatment. (<b>b</b>) Skin treated with azone. (<b>c</b>) Skin treated with 3% PEK (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<b>d</b>) Skin treated with 5% PEK (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (H&E staining: 200×; PEK: perilla ketone).</p> "> Figure 6
<p>Enhancement effects of PEK on different model drugs (mean ± SD, <span class="html-italic">n</span> = 4; * <span class="html-italic">p</span> < 0.05 compared to the 3% PEK group; <span class="html-italic">QER</span>: quantitative enhancement ratio; PEK: perilla ketone).</p> "> Figure 7
<p>Response surface plot illustrating the effects of <span class="html-italic">KER</span> and <span class="html-italic">PER</span> on <span class="html-italic">QER</span>. (<b>a</b>) The perilla ketone concentration was 3% (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<b>b</b>) The perilla ketone concentration was 5% (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<span class="html-italic">QER</span>: quantitative enhancement ratio; <span class="html-italic">PER</span>: enhancement ratio of the drug permeability coefficient; <span class="html-italic">KER</span>: partition enhancement ratio for drug distribution to the stratum corneum).</p> "> Figure 8
<p>Response surface plot illustrating the effects of PSA and H-bond donor on <span class="html-italic">KER</span>. (<b>a</b>) The perilla ketone concentration was 3% (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<b>b</b>) The perilla ketone concentration was 5% (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<span class="html-italic">PSA</span>: polar surface area; <span class="html-italic">KER</span>: partition enhancement ratio for drug distribution to the stratum corneum).</p> "> Figure 9
<p>The correlation between the <span class="html-italic">PER</span> and ∆<span class="html-italic">δ</span>. (<span class="html-italic">PER</span>: enhancement ratio of the drug permeability coefficient; PEK: perilla ketone; Δ<span class="html-italic">δ</span>: the difference in solubility parameters).</p> "> Figure 10
<p>Mechanism by which PEK enhances a drug’s skin permeation (PEK: perilla ketone).</p> "> Figure 11
<p>ATR-FTIR spectra with or without PEK (PEK: perilla ketone).</p> "> Figure 12
<p>DSC curve of the SC with or without PEK (<span class="html-italic">T</span><sub>m</sub>: transition temperature; PEK: perilla ketone).</p> "> Figure 13
<p>CLSM optical images of the skin at different depths after treatment with PEK. (<b>a</b>) Skin without treatment. (<b>b</b>) Skin treated with 3% PEK (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<b>c</b>) Skin treated with 5% PEK (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (PEK: perilla ketone).</p> "> Figure 14
<p>Microstructure of the rat skin’s SC after treatment with PEK. (<b>a</b>) Skin without treatment. (<b>b</b>) Skin treated with donor vehicle IPP. (<b>c</b>) Skin treated with 3% PEK (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<b>d</b>) Skin treated with 5% PEK (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (IPP: isopropyl palmitate; PEK: perilla ketone).</p> "> Figure 15
<p>Snapshots of the optimal binding sites for hydrogen bonds between each group of molecules. (<b>a</b>) Binding site between NP and NP. (<b>b</b>) Binding site between NP and PEK. (<b>c</b>) Binding site between NP and ferulic acid. (<b>d</b>) Binding site between NP-PEK and ferulic acid. (<b>e</b>) Binding site between NP and rutin. (<b>f</b>) Binding site between NP-PEK and rutin. (<b>g</b>) Binding site between NP and paeoniflorin. (<b>h</b>) Binding site between NP-PEK and paeoniflorin. (<b>i</b>) Binding site between NP and puerarin. (<b>j</b>) Binding site between NP-PEK and puerarin. (<b>k</b>) Binding site between NP and luteolin. (<b>l</b>) Binding site between NP-PEK and luteolin. (Gray: carbon; red: oxygen; blue: nitrogen; white: hydrogen. H-bonds are presented as light green dotted lines; H-bond energy values are described in orange letters; NP: ceramide NP; PEK: perilla ketone).</p> "> Figure 16
<p>Snapshots of the simulated systems at the end stage of the MS. (<b>a</b>) PEK in NP box. (<b>b</b>) α-FE in NP box. (<b>c</b>) β-CP in NP box. (NP: ceramide NP; PEK: perilla ketone; β-CP: β-caryophyllene; α-FE: (<span class="html-italic">Z</span>,<span class="html-italic">E</span>)-α-farnesene).</p> "> Figure 17
<p>TEWL of the rat skin after treatment with different penetration enhancers (<span class="html-italic">n</span> = 4, PEK: perilla ketone; TEWL: transepidermal water loss).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Animals
2.2. Preparation and Determination of Perilla Essential Oil
2.3. Skin Irritation Test
2.4. In Vitro Permeation Study
2.4.1. Preparation of Isolated Skin
2.4.2. Drug Solubility in Donor Solutions
2.4.3. In Vitro Skin Permeation Experiments
2.4.4. Data Evaluation
2.5. SC/Solution Partition of Drugs
2.6. Solubility Parameter Calculation
2.7. Correlation Analysis
2.8. Identification of the Effects of Perilla Ketone on Stratum Corneum
2.8.1. Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy
2.8.2. Differential Scanning Calorimetry Study
2.8.3. Confocal Laser Scanning Microscope Detection
2.8.4. Scanning Electron Microscope Observation
2.8.5. Molecular Docking
2.8.6. Molecular Dynamics Simulation
2.8.7. Transepidermal Water Loss Experiment
2.9. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Determination of Perilla Essential Oil
3.2. Skin Irritation Test
3.3. In Vitro Permeation Study
3.3.1. Data Evaluation
3.3.2. Correlation Analysis
Effects of PEK on the Distribution of Drugs with Different Physicochemical Properties in the SC
Effects of Perilla Ketone on the Diffusion of Drugs with Different Physicochemical Properties in the SC
3.4. Effects of Perilla Ketone on Stratum Corneum
3.4.1. Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy Analysis
3.4.2. Differential Scanning Calorimetry Study
3.4.3. Confocal Laser Scanning Microscope Detection
3.4.4. Scanning Electron Microscope Observation
3.4.5. Molecular Docking
3.4.6. Molecular Dynamics Simulation
3.4.7. Transepidermal Water Loss Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, R.; Zhang, R.; Wang, Y.; Li, Z.; Zhang, L.; Ma, S.; Li, X.; Ma, F.; Fu, H. Simulated skin model for in vitro evaluation of insertion performance of microneedles: Design, development, and application verification. Comput. Methods Biomech. Biomed. Eng. 2024, 30, 1–10. [Google Scholar] [CrossRef]
- Satapathy, B.S.; Biswal, B.; Pattnaik, S.; Parida, R.; Sahoo, R.N. A mucoadhesive nanolipo gel containing Aegle marmelos gum to enhance transdermal effectiveness of linezolid for vaginal infection: In vitro evaluation, in vitro-ex vivo correlation, pharmacokinetic studies. Int. J. Pharm. 2023, 648, 123542. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, A.; Kopečná, M.; Vávrová, K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv. 2020, 17, 145–155. [Google Scholar] [CrossRef]
- Sugumar, V.; Hayyan, M.; Madhavan, P.; Wong, W.F.; Looi, C.Y. Current development of chemical penetration enhancers for transdermal insulin delivery. Biomedicines 2023, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Dao, L.; Dong, Y.; Song, L.; Sa, C. The Fate of 1,8-cineole as a Chemical Penetrant: A Review. Curr. Drug Deliv. 2024, 21, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Jalalzadeh, H.; Groenen, H.; Buis, D.R.; Dreissen, Y.E.; Goosen, J.H.; Ijpma, F.F.; van der Laan, M.J.; Schaad, R.R.; Segers, P.; van der Zwet, W.C.; et al. Efficacy of different preoperative skin antiseptics on the incidence of surgical site infections: A systematic review, GRADE assessment, and network meta-analysis. Lancet Microbe 2022, 3, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Zhu, X.M.; Wei, X.C.; Liang, Y.; Gu, W.; Chen, J. Effect of hot or warm property on skin toxicity of essential oil as penetration enhancer and its mechanism. Zhongguo Zhong Yao Za Zhi 2021, 46, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Kornbausch, N.; Debong, M.W.; Buettner, A.; Heydel, J.M.; Loos, H.M. Odorant Metabolism in Humans. Angew. Chem. Int. Ed. Engl. 2022, 61, 202202866. [Google Scholar] [CrossRef] [PubMed]
- Raghav, R.S.; Verma, S.; Monika, A. Comprehensive Review on Potential Chemical and Herbal Permeation Enhancers Used in Transdermal Drug Delivery Systems. Recent Adv. Drug Deliv. Formul. 2024, 18, 21–34. [Google Scholar] [CrossRef]
- 10 Das, S.; Das, S.; Bahadur, S.; Mukherjee, M.; Nandi, G.; Manna, S. Fabrication, evaluation, and enhanced penetration of vinyl and cellulose-engineered transdermal patch of nifedipine using essential oil as penetration enhancer. J. Biomater. Sci. Polym. Ed. 2024, 35, 1400–1420. [Google Scholar] [CrossRef]
- Longgos, L.D.; Pequiro, E.B.; Liston, L.S.B.; Flores, K.A.M.; Ecoy, G.A.U.; Sakdiset, P.; See, G.L.L.; Arce, F.V.J. Effect of Terpenes on the Enhancement of Skin Permeation of Lipophilic Drugs: A Systematic Review. Acta Med. Philipp. 2024, 58, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Duchnik, W.; Makuch, E.; Kucharski, Ł.; Ossowicz-Rupniewska, P.; Cybulska, K.; Sulikowski, T.; Moritz, M.; Klimowicz, A. Epilobium angustifolium L. essential oil-biological activity and enhancement of the skin penetration of drugs-in vitro study. Molecules 2021, 6, 7188. [Google Scholar] [CrossRef]
- Rostamkalaei, S.S.; Iman, M.; Ataee, R.; Bahari, Z. The effects of Lavandula angustifolia essential oil on analgesic effects and percutaneous absorption of naproxen sodium gel; an in vivo and in vitro study. Clin. Exp. Pharmacol. Physiol. 2023, 50, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Waterhouse, G.I.N.; Xiang, H.; Sun-Waterhouse, D.; Zhao, Y.; Chen, S.; Wu, Y.; Wang, Y. Mechanisms of slow-release antibacterial properties in chitosan titanium dioxide stabilized perilla essential oil Pickering emulsions: Focusing on oil-water interfacial behaviors. Carbohydr. Polym. 2024, 346, 122613. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Zhang, Y.; Quan, P.; Yang, D.; Fang, L. An investigation on the effect of drug physicochemical properties on the enhancement strength of enhancer: The role of drug-skin-enhancer interactions. Int. J. Pharm. 2021, 607, 120945. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Guo, S.; Wu, X.; Yang, P.; Han, L.U.; Dai, X.; Shi, X. Multiscale study on the enhancing effect and mechanism of borneolum on transdermal permeation of drugs with different log P values and molecular sizes. Int. J. Pharm. 2020, 580, 119225. [Google Scholar] [CrossRef]
- Wang, L.; Pang, Y.; Zheng, Q.; Ruan, J.; Fang, L.; Liu, C. Development of mabuterol transdermal patch: Molecular mechanism study of ion-pair improving patch stability. Int. J. Pharm. 2023, 644, 123302. [Google Scholar] [CrossRef] [PubMed]
- Brito, S.; Baek, M.; Bin, B. Skin structure, physiology, and pathology in topical and transdermal drug delivery. Pharmaceutics 2024, 16, 1403. [Google Scholar] [CrossRef] [PubMed]
- Godin, B.; Touitou, E. Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliv. Rev. 2007, 29, 1152–1161. [Google Scholar] [CrossRef]
- Danby, S.G.; Andrew, P.V.; Kay, L.J.; Pinnock, A.; Chittock, J.; Brown, K.; Williams, S.F.; Cork, M.J. Enhancement of stratum corneum lipid structure improves skin barrier function and protects against irritation in adults with dry, eczema-prone skin. Br. J. Dermatol. 2022, 186, 875–886. [Google Scholar] [CrossRef]
- Chen, Y.; Quan, P.; Liu, X.C.; Guo, W.J.; Song, W.T.; Cun, D.M.; Wang, Z.Y.; Fang, L. Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanoate (ISO-C10) as an absorption enhancer: Pharmacokinetic and pharmacodynamic evaluation. J. Pharm. Pharmacol. 2015, 67, 1232–1239. [Google Scholar] [CrossRef]
- Nan, L.; Liu, C.; Li, Q.; Wan, X.; Guo, J.; Quan, P.; Fang, L. Investigation of the enhancement effect of the natural transdermal permeation enhancers from Ledum palustre L. var. angustum N. Busch: Mechanistic insight based on interaction among drug, enhancers and skin. Eur. J. Pharm. Sci. 2018, 124, 105–113. [Google Scholar] [CrossRef]
- Trimble, J.; Light, B. Effect of penetration enhancers on the percutaneous delivery of pain management actives. Int. J. Pharm. Compd. 2016, 20, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Quan, P.; Wan, X.C.; Liu, C.; Liu, X.C.; Fang, L. Mechanistic insights of the enhancement effect of sorbitan monooleate on olanzapine transdermal patch both in release and percutaneous absorption processes. Eur. J. Pharm. Sci. 2017, 107, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Fang, L.; Xu, Y.; Liu, S.; He, Z.; Zhao, Y. Transdermal delivery of penetrants with differing lipophilicities using O-acylmenthol derivatives as penetration enhancers. Eur. J. Pharm. Biopharm. 2008, 69, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Selzer, D.; Abdel-Mottaleb, M.M.A.; Hahn, T.; Schaefer, U.F.; Neumann, D. Finite and infinite dosing: Difficulties in measurements, evaluations and predictions. Adv. Drug Deliv. Rev. 2013, 65, 278–294. [Google Scholar] [CrossRef]
- Jiang, J.; Quan, P.; Chen, Y.; Fang, L. Mechanistic investigation and reversible effect of 2-isopropyl-5-methylcyclohexyl heptanoate on the in vitro percutaneous absorption of indomethacin. Drug Deliv. 2014, 21, 26–33. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters—A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 205–206. [Google Scholar]
- Yokose, U.; Ishikawa, J.; Morokuma, Y.; Naoe, A.; Inoue, Y.; Yasuda, Y.; Tsujimura, H.; Fujimura, T.; Murase, T.; Hatamochi, A. The ceramide [NP]/[NS] ratio in the stratum corneum is a potential marker for skin properties and epidermal differentiation. BMC Dermatol. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Kawana, M.; Miyamoto, M.; Ohno, Y.; Kihara, A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J. Lipid. Res. 2020, 61, 884–895. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Xu, W.; Quan, P.; Luo, Z.; Yang, D.; Fang, L. An investigation on percutaneous permeation of flurbiprofen enantiomers: The role of molecular interaction between drug and skin components. Int. J. Pharm. 2021, 601, 120503. [Google Scholar] [CrossRef]
- Song, W.T.; Quan, P.; Li, S.S.; Liu, C.; Lv, S.; Zhao, Y.S.; Fang, L. Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis. J. Control. Release 2016, 227, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, O.A.; Monama, N.O.; Tsai, P.C.; Sithole, H.M.; Michniak-Kohn, B.B. Combined atomistic molecular calculations and experimental investigations for the architecture, screening, optimization, and characterization of pyrazinamide containing oral film formulations for tuberculosis management. Mol. Pharm. 2016, 13, 456–471. [Google Scholar] [CrossRef]
- Zhang, S.; Ou, H.; Liu, C.; Zhang, Y.; Mitragotri, S.; Wang, D.; Chen, M. Skin delivery of hydrophilic biomacromolecules using marine sponge spicules. Mol. Pharm. 2017, 14, 3188–3200. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Ito, M. Bioconversion of essential oil components of Perilla frutescens by Saccharomyces cerevisiae. J. Nat. Med. 2020, 74, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Bassoli, A.; Borgonovo, G.; Morini, G.; De Petrocellis, L.; Schiano Moriello, A.; Di Marzo, V. Analogues of perillaketone as highly potent agonists of TRPA1 channel. Food Chem. 2013, 141, 2044–2051. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Wang, Z.; Xiang, S.; Chen, H.; Shen, Q.; Liu, L.; Wu, W.; Cao, S.; Wang, Z.; Yang, Z.; et al. Mechanisms of white mustard seed (Sinapis alba L.) essential oils as transdermal penetration enhancers. Fitoterapia 2019, 138, 104195. [Google Scholar] [CrossRef]
- Liu, X.; Quan, P.; Li, S.; Liu, C.; Zhao, Y.; Zhao, Y.; Zhao, Y.; Fang, L. Time dependence of the enhancement effect of chemical enhancers: Molecular mechanisms of enhancing kinetics. J. Control. Release 2017, 248, 33–44. [Google Scholar] [CrossRef]
- Kaminska, E.; Tarnacka, M.; Kaminski, K.; Ngai, K.L.; Paluch, M. Changes in dynamics of the glass-forming pharmaceutical nifedipine in binary mixtures with octaacetylmaltose. Eur. J. Pharm. Biopharm. 2015, 97, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Vistoli, G.; Selmin, F.; Gennari, C.G.; Musazzi, U.M.; Franz´e, S.; Lo Monte, M.; Minghetti, P. An insight into the skin penetration enhancement mechanism of N-methylpyrrolidone. Mol. Pharm. 2014, 11, 1014–1021. [Google Scholar] [CrossRef]
- Yamada, M.; Uda, Y.; Tanigawara, Y. Mechanism of enhancement of percutaneous absorption of molsidomine by oleic acid. Chem. Pharm. Bull. 1987, 35, 3399–3406. [Google Scholar] [CrossRef]
- Todo, H. Transdermal permeation of drugs in various animal species. Pharmaceutics 2017, 9, 33. [Google Scholar] [CrossRef]
- Zhao, N.; Cun, D.; Li, W.; Ma, X.; Sun, L.; Xi, H.; Li, L.; Fang, L. In vitro percutaneous absorption enhancement of granisetron by chemical penetration enhancers. Drug Dev. Ind. Pharm. 2013, 39, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Dzyhovskyi, V.; Romani, A.; Pula, W.; Bondi, A.; Ferrara, F.; Melloni, E.; Gonelli, A.; Pozza, E.; Voltan, R.; Sguizzato, M.; et al. Characterization methods for nanoparticle-skin interactions: An overview. Life 2024, 14, 599. [Google Scholar] [CrossRef] [PubMed]
- Piao, H.; Xie, W.; Li, S.; Wang, J.; Liu, C.; Quan, P.; Fang, L. Ternary deep eutectic solvents system of colchicine, 4-hydroxyacetophenone, and protocatechuic acid and characterization of transdermal enhancement mechanism. AAPS PharmSciTech 2023, 24, 229. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Flach, C.R.; Moore, D.J. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta (BBA) Biomembr. 2006, 1758, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Rerek, M.E.; Van Wyck, D.; Mendelsohn, R.; Moore, D.J. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem. Phys. Lipids 2005, 134, 51–58. [Google Scholar] [CrossRef]
- Takahashi, K.; Sakano, H.; Yoshida, M.; Numata, N.; Mizuno, N. Characterization of the influence of polyol fatty acid esters on the permeation of diclofenac through rat skin. J. Control. Release 2001, 73, 351–358. [Google Scholar] [CrossRef]
- Vaddi, H.K.; Ho, P.C.; Chan, Y.W.; Chan, S.Y. Oxide terpenes as human skin penetration enhancers of haloperidol from ethanol and propylene glycol and their modes of action on stratum corneum. Biol. Pharm. Bull. 2003, 26, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Narishetty, S.T.; Panchagnula, R. Transdermal delivery of zidovudine: Effect of terpenes and their mechanism of action. J. Control. Release 2004, 95, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.J.; Rerek, M.E. Insights into the molecular organization of lipids in the skin barrier from infrared spectroscopy studies of stratum corneum lipid models. Acta Derm. Venereol. 2000, 208, 16–22. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wang, J.Y.; Li, H.; He, X.; Zhang, R.Q.; Zhang, C.F.; Li, F.; Yang, Z.L.; Wang, C.Z.; Yuan, C.S. Novel application of natural anisole compounds as enhancers for transdermal delivery of ligustrazine. Am. J. Chin. Med. 2015, 43, 1231–1246. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Wang, C.; Wang, J.; Ren, B.; Li, X.; Li, M.; Geng, D.; Wu, C.; Zhao, L. The enhancing effect and promoting mechanisms of the stereoisomeric monoterpene alcohol esters as enhancers for drugs with different physicochemical properties. Asian J. Pharm. Sci. 2022, 17, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Huang, J.; Ma, S. Recent advances in delivery of transdermal nutrients: A review. Exp. Dermatol. 2024, 33, 14966. [Google Scholar] [CrossRef]
- Kaushik, D.; Michniak-Kohn, B. Percutaneous penetration modifiers and formulation effects: Thermal and spectral analyses. AAPS PharmSciTech 2010, 11, 1068–1083. [Google Scholar] [CrossRef]
- Tanojo, H.; Bouwstra, J.A.; Junginger, H.E.; Boddé, H.E. Thermal analysis studies on human skin and skin barrier modulation by fatty acids and propylene glycol. J. Therm. Anal. Calorim. 1999, 57, 313–322. [Google Scholar] [CrossRef]
- Oshizaka, T.; Hayakawa, M.; Uesaka, M.; Yoshizawa, K.; Kamei, T.; Takeuchi, I.; Mori, K.; Itakura, S.; Todo, H.; Sugibayashi, K. Design of an ante-enhancer with an azone-mimic structure using ionic liquid. Pharm. Res. 2023, 40, 1577–1586. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, C.; Quan, P.; Wan, X.; Shen, M.; Fang, L. Mechanism study on ion-pair complexes controlling skin permeability: Effect of ion-pair dissociation in the viable epidermis on transdermal permeation of bisoprolol. Int. J. Pharm. 2017, 532, 29–36. [Google Scholar] [CrossRef]
- Liu, C.; Quan, P.; Li, S.; Zhao, Y.; Fang, L. A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo: The roles of intermolecular interaction and adhesive mobility variation in drug controlled release. J. Control. Release 2017, 252, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, C.; Quan, P.; Zhang, Y.; Fang, L. Effect of chemical penetration enhancer-adhesive interaction on drug release from transdermal patch: Mechanism study based on FT-IR spectroscopy, 13C NMR spectroscopy, and molecular simulation. AAPS PharmSciTech 2021, 22, 198. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Xu, F.; Wei, X.; Gu, J.; Qiao, P.; Zhu, X.; Yin, S.; Ouyang, D.; Dong, J.; Yao, J.; et al. Investigation of β-caryophyllene as terpene penetration enhancer: Role of stratum corneum retention. Eur. J. Pharm. Sci. 2023, 183, 106401. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Misery, L.; Proksch, E.; Metz, M.; Ständer, S.; Schmelz, M. Skin barrier damage and itch: Review of mechanisms, topical management and future directions. Acta Derm. Venereol. 2019, 99, 1201–1209. [Google Scholar] [CrossRef]
- Yi, Q.F.; Yan, J.; Tang, S.Y.; Huang, H.; Kang, L.Y. Effect of borneol on the transdermal permeation of drugs with differing lipophilicity and molecular organization of stratum corneum lipids. Drug Dev. Ind. Pharm. 2016, 42, 1086–1093. [Google Scholar] [CrossRef]
Model Drug | M.W. (Daltons) | M.P. (°C) | Log P | PSA (Å2) | Hydrogen Bond Acceptors | Hydrogen Bond Donors |
---|---|---|---|---|---|---|
Ferulic acid | 194.18 | 168–172 | 1.64 | 66.76 | 4 | 2 |
Rutin | 610.52 | 195 | −0.87 | 269.43 | 16 | 10 |
Paeoniflorin | 480.46 | 124 | −0.39 | 164.37 | 11 | 5 |
Puerarin | 416.38 | 187–189 | 0.48 | 160.82 | 9 | 6 |
Luteolin | 286.23 | 330 | 2.4 | 111.13 | 6 | 4 |
Model Drug | Penetration Enhancer | Tlag (h) | C (μg·mL−1) | Jss (μg·cm−2·h−1) | Q8h (μg·cm−2) | QER |
---|---|---|---|---|---|---|
Ferulic acid | Control | 2.40 ± 0.15 | 307.06 ± 10.12 | 14.79 ± 0.77 | 83.50 ± 5.48 | 1 |
3% PEK | 1.81 ± 0.23 | 467.53 ± 20.31 | 28.15 ± 5.29 ** | 139.45 ± 7.93 * | 1.67 ± 0.10 | |
5% PEK | 2.01 ± 0.21 | 546.45 ± 29.57 | 31.06 ± 5.64 ** | 154.48 ± 10.56 ** | 1.85 ± 0.13 | |
Rutin | Control | 1.47 ± 0.69 | 29.82 ± 3.05 | 0.60 ± 0.04 | 3.69 ± 0.51 | 1.00 |
3% PEK | 2.43 ± 0.3 | 37.55 ± 5.63 | 1.67 ± 0.20 * | 10.70 ± 1.23 * | 2.90 ± 0.33 | |
5% PEK | 2.19 ± 0.17 | 35.61 ± 4.42 | 1.82 ± 0.12 ** | 11.51 ± 0.62 ** | 3.12 ± 0.17 | |
Paeoniflorin | Control | 1.32 ± 0.46 | 62.42 ± 5.70 | 2.07 ± 0.05 | 14.05 ± 1.10 | 1 |
3% PEK | 1.60 ± 0.29 | 72.93 ± 6.89 | 3.99 ± 0.87 * | 31.05 ± 4.25 * | 2.21 ± 0.30 | |
5% PEK | 1.49 ± 0.33 | 99.09 ± 8.15 | 5.98 ± 0.43 ** | 34.56 ± 3.11 ** | 2.46 ± 0.22 | |
Puerarin | Control | 2.29 ± 0.32 | 875.52 ± 7.56 | 4.17 ± 0.45 | 23.58 ± 1.43 | 1 |
3% PEK | 1.22 ± 0.2 | 948.70 ± 5.68 | 13.50 ± 0.05 ** | 69.80 ± 1.68 ** | 2.96 ± 0.07 | |
5% PEK | 1.84 ± 0.29 | 1138.95 ± 10.87 | 16.64 ± 0.64 ** | 79.94 ± 4.90 ** | 3.39 ± 0.21 | |
Luteolin | Control | 0.94 ± 0.19 | 38.84 ± 1.05 | 0.87 ± 0.01 | 1.72 ± 0.03 | 1 |
3% PEK | 1.77 ± 0.43 | 36.03 ± 2.13 | 1.26 ± 0.08 ** | 4.35 ± 0.32 ** | 2.53 ± 0.19 | |
5% PEK | 1.71 ± 0.44 | 40.11 ± 3.95 | 2.39 ± 0.07 ** | 4.40 ± 0.26 ** | 2.56 ± 0.15 |
Model Drug | δ (J·cm−3)1/2 | Δδ (J·cm−3)1/2 |
---|---|---|
NP | 18.68 | — |
PEK | 18.1 | −0.58 |
Ferulic acid | 23.54 | 4.86 |
Rutin | 43.74 | 25.06 |
Paeoniflorin | 25.02 | 6.34 |
Puerarin | 45.34 | 26.66 |
Luteolin | 43.82 | 25.14 |
Sample | νasCH2 | νsCH2 | ||
---|---|---|---|---|
Peak Area | Decrease in Peak Area a (%) | Peak Area | Decrease in Peak Area a (%) | |
Blank | 106.28 | — | 70.54 | — |
3% PEK | 104.69 | 1.50 | 69.22 | 1.87 |
5% PEK | 103.76 | 2.37 | 69.10 | 2.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Hao, J.; Zhao, Y.; Zhao, B.; Lin, J.; Song, J.; Wang, M.; Luo, Z. A Novel Natural Penetration Enhancer for Transdermal Drug Delivery: In Vitro/In Vivo Evaluation and Penetration Enhancement Mechanism. Pharmaceutics 2025, 17, 254. https://doi.org/10.3390/pharmaceutics17020254
Zhao N, Hao J, Zhao Y, Zhao B, Lin J, Song J, Wang M, Luo Z. A Novel Natural Penetration Enhancer for Transdermal Drug Delivery: In Vitro/In Vivo Evaluation and Penetration Enhancement Mechanism. Pharmaceutics. 2025; 17(2):254. https://doi.org/10.3390/pharmaceutics17020254
Chicago/Turabian StyleZhao, Nanxi, Jiale Hao, Yucong Zhao, Bingqian Zhao, Jiayu Lin, Jian Song, Manli Wang, and Zheng Luo. 2025. "A Novel Natural Penetration Enhancer for Transdermal Drug Delivery: In Vitro/In Vivo Evaluation and Penetration Enhancement Mechanism" Pharmaceutics 17, no. 2: 254. https://doi.org/10.3390/pharmaceutics17020254
APA StyleZhao, N., Hao, J., Zhao, Y., Zhao, B., Lin, J., Song, J., Wang, M., & Luo, Z. (2025). A Novel Natural Penetration Enhancer for Transdermal Drug Delivery: In Vitro/In Vivo Evaluation and Penetration Enhancement Mechanism. Pharmaceutics, 17(2), 254. https://doi.org/10.3390/pharmaceutics17020254