Enhancing the Solubility of Co-Formulated Hydrophobic Drugs by Incorporating Functionalized Nano-Structured Poly Lactic-co-glycolic Acid (nfPLGA) During Co-Precipitation
<p>SEM images of (<b>a</b>) Pure GF, (<b>b</b>) pure DXM, (<b>c</b>) DXM-GF-<span class="html-italic">nf</span>PLGA co-formulation (carbon coated), (<b>d</b>) DXM-GF, and (<b>e</b>) EDS elemental mapping for co-formulation of DXM-GF-<span class="html-italic">nf</span>PLGA.</p> "> Figure 1 Cont.
<p>SEM images of (<b>a</b>) Pure GF, (<b>b</b>) pure DXM, (<b>c</b>) DXM-GF-<span class="html-italic">nf</span>PLGA co-formulation (carbon coated), (<b>d</b>) DXM-GF, and (<b>e</b>) EDS elemental mapping for co-formulation of DXM-GF-<span class="html-italic">nf</span>PLGA.</p> "> Figure 2
<p>X-ray diffraction (XRD) analysis data for co-formulated drugs’ formulation.</p> "> Figure 3
<p>RAMAN analysis data for co-formulated drugs’ formulation.</p> "> Figure 4
<p>FTIR analysis of co-formulation of drug formulations.</p> "> Figure 5
<p>(<b>a</b>) TGA of the co-formulated drugs to determine the percentage of <span class="html-italic">nf</span>PLGA incorporation and (<b>b</b>) antisolvent crystal GF and DXM % from first-derivative curve analysis.</p> "> Figure 6
<p>DSC analysis of pure compounds and co-formulations.</p> "> Figure 7
<p>(<b>a</b>) Dissolution profile of co-formulated drugs and (<b>b</b>) % of individual drug dissolution profile into the co-formulated drugs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of nfPLGA
2.3. Preparation of Co-Formulated DXM-GF-nfPLGA
2.4. Characterization of Co-Formulated DXM-GF-nfPLGA
3. Results and Discussion
3.1. Characteristics of DXM-GF-nfPLGA
3.2. In Vitro Drug Dissolution Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, J. (Ed.) 4—Bulk drugs or active pharmaceutical ingredients. In An Introduction to Pharmaceutical Sciences; Woodhead Publishing: Sawston, UK, 2011; pp. 69–109. [Google Scholar]
- Mantri, R.; Sanghvi, R. Solubility of pharmaceutical solids. In Developing Solid Oral Dosage Forms; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–22. [Google Scholar]
- Ghadi, R.; Dand, N. BCS class IV drugs: Highly notorious candidates for formulation development. J. Control. Release 2017, 248, 71–95. [Google Scholar] [CrossRef] [PubMed]
- Naing, M.D.; Tsume, Y. Dissolution profiles of BCS class II drugs generated by the gastrointestinal simulator alpha has an edge over the compendial USP II method. Eur. J. Pharm. Biopharm. 2024, 203, 114436. [Google Scholar] [CrossRef] [PubMed]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Valsami, G.; Dokoumetzidis, A.; Macheras, P. Biopharmaceutics classification systems for new molecular entities (BCS-NMEs) and marketed drugs (BCS-MD): Theoretical basis and practical examples. Int. J. Pharm. 2008, 361, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, L.; Wu, B.; Chen, F. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review. Int. J. Pharm. 2023, 634, 122704. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, S.; Moreton, C.; Svanbäck, S.; Box, K.; Motte, G.; Paudel, A. Trends in oral small-molecule drug discovery and product development based on product launches before and after the Rule of Five. Drug Discov. Today 2023, 28, 103344. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef]
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef]
- Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013, 65, 315–499. [Google Scholar] [CrossRef]
- Jain, J.P.; Leong, F.J.; Chen, L.; Kalluri, S.; Koradia, V.; Stein, D.S.; Wolf, M.C.; Sunkara, G.; Kota, J. Bioavailability of Lumefantrine Is Significantly Enhanced with a Novel Formulation Approach, an Outcome from a Randomized, Open-Label Pharmacokinetic Study in Healthy Volunteers. Antimicrob. Agents Chemother. 2017, 61, e00868-17. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Miller, J.M. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012, 14, 244–251. [Google Scholar] [CrossRef]
- Zhuo, Y.; Zhao, Y.G.; Zhang, Y. Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles. Molecules 2024, 29, 4854. [Google Scholar] [CrossRef]
- Xie, B.; Liu, Y.; Li, X.; Yang, P.; He, W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm. Sin. B 2024, 14, 4683–4716. [Google Scholar] [CrossRef]
- Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014, 9, 304–316. [Google Scholar] [CrossRef]
- Subramaniam, B.; Saim, S.; Rajewski, R.A.; Stella, V. Methods for Particle Micronization and Nanonization by Recrystallization from Organic Solutions Sprayed into a Compressed Antisolvent. U.S. Patent 5874029A, 23 February 1999. [Google Scholar]
- Shabatina, T.I.; Gromova, Y.A.; Vernaya, O.I.; Soloviev, A.V.; Shabatin, A.V.; Morosov, Y.N.; Astashova, I.V.; Melnikov, M.Y. Pharmaceutical Nanoparticles Formation and Their Physico-Chemical and Biomedical Properties. Pharmaceuticals 2024, 17, 587. [Google Scholar] [CrossRef]
- Esfandiari, N. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide. J. Supercrit. Fluids 2015, 100, 129–141. [Google Scholar] [CrossRef]
- Vo, C.L.; Park, C.; Lee, B.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2013, 85 Pt B, 799–813. [Google Scholar] [CrossRef]
- Nayak, A.K.; Panigrahi, P.P. Solubility enhancement of etoricoxib by cosolvency approach. Int. Sch. Res. Not. 2012, 2012, 820653. [Google Scholar] [CrossRef]
- Loftsson, T. Drug solubilization by complexation. Int. J. Pharm. 2017, 531, 276–280. [Google Scholar] [CrossRef]
- Serajuddin, A.T. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007, 59, 603–616. [Google Scholar] [CrossRef]
- Almotairy, A.; Almutairi, M.; Althobaiti, A.; Alyahya, M.; Sarabu, S.; Alzahrani, A.; Zhang, F.; Bandari, S.; Repka, M.A. Effect of pH Modifiers on the Solubility, Dissolution Rate, and Stability of Telmisartan Solid Dispersions Produced by Hot-melt Extrusion Technology. J. Drug Deliv. Sci. Technol. 2021, 65, 102674. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Ngo, H.V.; Cui, J.H.; Wang, J.; Park, C.; Lee, B.J. Role of Surfactant Micellization for Enhanced Dissolution of Poorly Water-Soluble Cilostazol Using Poloxamer 407-Based Solid Dispersion via the Anti-Solvent Method. Pharmaceutics 2021, 13, 662. [Google Scholar] [CrossRef]
- Sharma, U.; Saroha, K. A Review of Hydrotropic Solubilization Techniques for Enhancing the Bioavailability of Poorly Soluble Drugs. Int. J. Toxicol. 2024, 43, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Cerpnjak, K.; Zvonar, A.; Gašperlin, M.; Vrečer, F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm. 2013, 63, 427–445. [Google Scholar] [CrossRef]
- Preeti; Sambhakar, S.; Malik, R.; Bhatia, S.; Al Harrasi, A.; Rani, C.; Saharan, R.; Kumar, S.; Geeta; Sehrawat, R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Scientifica 2023, 2023, 6640103. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.S.; Mandake, G.R.; Nitalikar, M.M. Spray Drying: A Promising Technique to Enhance Solubility. Asian J. Pharm. Technol. 2018, 8, 255–260. [Google Scholar] [CrossRef]
- Ainurofiq, A.; Putro, D.S.; Ramadhani, D.A.; Putra, G.M.; Santo, L.D.C.D.E. A review on solubility enhancement methods for poorly water-soluble drugs. J. Rep. Pharm. Sci. 2021, 10, 137–147. [Google Scholar] [CrossRef]
- Mah, P.T.; Peltonen, L.; Novakovic, D.; Rades, T.; Strachan, C.J.; Laaksonen, T. The effect of surfactants on the dissolution behavior of amorphous formulations. Eur. J. Pharm. Biopharm. 2016, 103, 13–22. [Google Scholar] [CrossRef]
- Kumar, V.; Minocha, N.; Garg, V.; Dureja, H. Nanostructured materials used in drug delivery. Mater. Today Proc. 2022, 69, 174–180. [Google Scholar] [CrossRef]
- Mahor, A.; Singh, P.P.; Bharadwaj, P.; Sharma, N.; Yadav, S.; Rosenholm, J.M.; Bansal, K.K. Carbon-based nanomaterials for delivery of biologicals and therapeutics: A cutting-edge technology. C 2021, 7, 19. [Google Scholar] [CrossRef]
- Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int. 2014, 2014, 180549. [Google Scholar] [CrossRef]
- Aljabali, A.A.; Hassan, S.S.; Pabari, R.M.; Shahcheraghi, S.H.; Mishra, V.; Charbe, N.B.; Chellappan, D.K.; Dureja, H.; Gupta, G.; Almutary, A.G.; et al. The viral capsid as novel nanomaterials for drug delivery. Future Sci. OA 2021, 7, Fso744. [Google Scholar] [CrossRef]
- C Thomas, S.; Kumar Mishra, P.; Talegaonkar, S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr. Pharm. Des. 2015, 21, 6165–6188. [Google Scholar] [CrossRef]
- Arcos, D.; Vallet-Regi, M. Bioceramics for drug delivery. Acta Mater. 2013, 61, 890–911. [Google Scholar] [CrossRef]
- He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Huang, C.; Xu, H.; Sun, H.; Chen, W.; et al. Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B 2021, 11, 2362–2395. [Google Scholar] [CrossRef] [PubMed]
- Karki, S.; Kim, H.; Na, S.-J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 2016, 11, 559–574. [Google Scholar] [CrossRef]
- Sun, D.D.; Lee, P.I. Crosslinked hydrogels—A promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs. Acta Pharm. Sin. B 2014, 4, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J.; Kralova, K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. Materials 2021, 14, 1059. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Shi, J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Mol. Pharm. 2014, 11, 2495–2510. [Google Scholar] [CrossRef]
- Chauhan, V.M.; Zhang, H.; Dalby, P.A.; Aylott, J.W. Advancements in the co-formulation of biologic therapeutics. J. Control. Release 2020, 327, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Ataide, J.A.; Coco, J.C.; Dos Santos, É.M.; Beraldo-Araujo, V.; Silva, J.R.A.; de Castro, K.C.; Lopes, A.M.; Filipczak, N.; Yalamarty, S.S.K.; Torchilin, V.P.; et al. Co-Encapsulation of Drugs for Topical Application—A Review. Molecules 2023, 28, 1449. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Moinuddin, S.M.; Cai, T. Advances in coamorphous drug delivery systems. Acta Pharm. Sin. B 2019, 9, 19–35. [Google Scholar] [CrossRef]
- Meng, J.; Guo, F.; Xu, H.; Liang, W.; Wang, C.; Yang, X.D. Combination Therapy using Co-encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo. Sci. Rep. 2016, 6, 22390. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Xia, X.; Yang, Y.; Ye, J.; Dong, W.; Ma, P.; Jin, Y.; Liu, Y. Co-encapsulation of paclitaxel and baicalein in nanoemulsions to overcome multidrug resistance via oxidative stress augmentation and P-glycoprotein inhibition. Int. J. Pharm. 2016, 513, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.R.; Im, S.A.; Mattar, A.; Colomer, R.; Stroyakovskii, D.; Nowecki, Z.; De Laurentiis, M.; Pierga, J.Y.; Jung, K.H.; Schem, C.; et al. Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection plus chemotherapy in HER2-positive early breast cancer (FeDeriCa): A randomised, open-label, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2021, 22, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.C.; Li, P.C.; Fan, J.Q.; Lin, G.H.; Liu, Q. Durvalumab and tremelimumab combination therapy versus durvalumab or tremelimumab monotherapy for patients with solid tumors: A systematic review and meta-analysis. Medicine 2020, 99, e21273. [Google Scholar] [CrossRef]
- Fule, R.; Dhamecha, D.; Maniruzzaman, M.; Khale, A.; Amin, P. Development of hot melt co-formulated antimalarial solid dispersion system in fixed dose form (ARLUMELT): Evaluating amorphous state and in vivo performance. Int. J. Pharm. 2015, 496, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Guo, Y.; Wang, C.; Dun, J.; Sun, C.C. Spherical cocrystallization—An enabling technology for the development of high dose direct compression tablets of poorly soluble drugs. Cryst. Growth Des. 2019, 19, 2503–2510. [Google Scholar] [CrossRef]
- Ozenberger, K.; Alexander, G.C.; Shin, J.I.; Whitsel, E.A.; Qato, D.M. Use of prescription medications with cardiovascular adverse effects among older adults in the United States. Pharmacoepidemiol. Drug Saf. 2022, 31, 1027–1038. [Google Scholar] [CrossRef]
- Mueller, C.; Altenburger, U.; Mohl, S. Challenges for the pharmaceutical technical development of protein coformulations. J. Pharm. Pharmacol. 2018, 70, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Karagianni, A.; Kachrimanis, K.; Nikolakakis, I. Co-Amorphous Solid Dispersions for Solubility and Absorption Improvement of Drugs: Composition, Preparation, Characterization and Formulations for Oral Delivery. Pharmaceutics 2018, 10, 98. [Google Scholar] [CrossRef]
- Malaie, K.; Ganjali, M.R. Spinel nano-ferrites for aqueous supercapacitors; linking abundant resources and low-cost processes for sustainable energy storage. J. Energy Storage 2021, 33, 102097. [Google Scholar] [CrossRef]
- Maghsoodi, M.; Kiafar, F. Co-precipitation with PVP and Agar to Improve Physicomechanical Properties of Ibuprofen. Iran. J. Basic Med. Sci. 2013, 16, 635–642. [Google Scholar] [PubMed]
- Zhang, J.; Liu, M.; Zeng, Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int. J. Pharm. 2022, 626, 122043. [Google Scholar] [CrossRef]
- Islam, M.S.; Renner, F.; Azizighannad, S.; Mitra, S. Direct incorporation of nano graphene oxide (nGO) into hydrophobic drug crystals for enhanced aqueous dissolution. Colloids Surf. B Biointerfaces 2020, 189, 110827. [Google Scholar] [CrossRef]
- Chen, K.; Mitra, S. Incorporation of functionalized carbon nanotubes into hydrophobic drug crystals for enhancing aqueous dissolution. Colloids Surf. B Biointerfaces 2019, 173, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Mitra, S. Microwave Synthesis of Nanostructured Functionalized Polylactic Acid (nfPLA) for Incorporation into a Drug Crystals to Enhance Their Dissolution. J. Pharm. Sci. 2023, 112, 2260–2266. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Mitra, S. Synthesis of Microwave Functionalized, Nanostructured Polylactic Co-Glycolic Acid (nfPLGA) for Incorporation into Hydrophobic Dexamethasone to Enhance Dissolution. Nanomaterials 2023, 13, 943. [Google Scholar] [CrossRef]
- Shahriari, S.; Sastry, M.; Panjikar, S.; Singh Raman, R.K. Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnol. Sci. Appl. 2021, 14, 197–220. [Google Scholar] [CrossRef]
- Ghulam, A.N.; Dos Santos, O.A.L.; Hazeem, L.; Pizzorno Backx, B.; Bououdina, M.; Bellucci, S. Graphene Oxide (GO) Materials-Applications and Toxicity on Living Organisms and Environment. J. Funct. Biomater. 2022, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.K.; Boateng, J. Surface functionalization of PLGA nanoparticles for potential oral vaccine delivery targeting intestinal immune cells. Colloids Surf. B Biointerfaces 2023, 222, 113121. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, Y.; Wen, K.; Han, Q.; Ogino, K.; Ma, G. Novel insights on the encapsulation mechanism of PLGA terminal groups on ropivacaine. Eur. J. Pharm. Biopharm. 2021, 160, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Félix Lanao, R.P.; Jonker, A.M.; Wolke, J.G.; Jansen, J.A.; van Hest, J.C.; Leeuwenburgh, S.C. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng. Part B Rev. 2013, 19, 380–390. [Google Scholar] [CrossRef]
- Ding, Y.; Cui, W.; Zhang, Z.; Ma, Y.; Ding, C.; Lin, Y.; Xu, Z. Solubility and Pharmacokinetic Profile Improvement of Griseofulvin through Supercritical Carbon Dioxide-Assisted Complexation with HP-γ-Cyclodextrin. Molecules 2023, 28, 7360. [Google Scholar] [CrossRef] [PubMed]
- Stefánsson, E.; Loftsson, T. CHAPTER 13—Microspheres and nanotechnology for drug delivery. In Retinal Pharmacotherapy; Nguyen, Q.D., Rodrigues, E.B., Farah, M.E., Mieler, W.F., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2010; pp. 86–90. [Google Scholar]
- Food and Drug Administration. Memorandum and Product Quality Review: NDA 211379 for Hemady (Dexamethasone) Immediate Release Tablets, 20 mg; Center for Drug Evaluation and Research, Department of Health and Human Services: Beltsville, MD, USA, 2019. [Google Scholar]
- Glomme, A.; März, J.; Dressman, J.B. Comparison of a Miniaturized Shake-Flask Solubility Method with Automated Potentiometric Acid/Base Titrations and Calculated Solubilities. J. Pharm. Sci. 2005, 94, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Baka, E.; Comer, J.E.A.; Takács-Novák, K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J. Pharm. Biomed. Anal. 2008, 46, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Renner, F.; Foster, K.; Oderinde, M.S.; Stefanski, K.; Mitra, S. Hydrophilic and Functionalized Nanographene Oxide Incorporated Faster Dissolving Megestrol Acetate. Molecules 2021, 26, 1972. [Google Scholar] [CrossRef]
- Islam, M.S.; Mitra, S. Effect of nano graphene oxide (nGO) incorporation on the lipophilicity of hydrophobic drugs. Hybrid Adv. 2023, 3, 100074. [Google Scholar] [CrossRef]
- Brown, W.E.; Marques, M.R. USP and dissolution—20 Years of progress. Dissolut Technol. 2014, 2014, 24–27. [Google Scholar] [CrossRef]
- Gray, V.A. Dissolution Testing in the Pharmaceutical Laboratory. In Analytical Testing for the Pharmaceutical GMP Laboratory; Wiley Online Library: Hoboken, NJ, USA, 2022; pp. 206–250. [Google Scholar]
- Gray, V.A.; Rosanske, T.W. Dissolution. In Specification of Drug Substances and Products; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–503. [Google Scholar]
- Scimeca, M.; Bischetti, S.; Lamsira, H.K.; Bonfiglio, R.; Bonanno, E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur. J. Histochem. 2018, 62, 2841. [Google Scholar] [CrossRef] [PubMed]
- Azaroon, M.; Kiasat, A.R. Silver nanoparticles engineered β-cyclodextrin/γ-Fe2O3@ hydroxyapatite composite: Efficient, green and magnetically retrievable nanocatalyst for the aqueous reduction of nitroarenes. Catal. Lett. 2018, 148, 745–756. [Google Scholar] [CrossRef]
- Rask, M.B.; Knopp, M.M.; Olesen, N.E.; Holm, R.; Rades, T. Comparison of two DSC-based methods to predict drug-polymer solubility. Int. J. Pharm. 2018, 540, 98–105. [Google Scholar] [CrossRef]
- Saganowska, P.; Wesolowski, M. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers. J. Therm. Anal. Calorim. 2018, 133, 785–795. [Google Scholar] [CrossRef]
Formulations | Aqueous Solubility (µg/mL) | Zeta Potential (mV) | logP | Melting Point (°C) |
---|---|---|---|---|
Pure DXM | 89.00 | −17.2 | 1.96 | 261.74 |
Pure GF | 8.64 | −15.4 | 2.16 | 222.10 |
DXM-GF | 83.70 | −19.7 | 1.75 | 258.12 (DXM) 203.71 (GF) |
DXM-GF-nfPLGA | 128.70 | −30.2 | 1.15 | 242.41 (DXM) 212.54 (GF) |
Formulations | 50% Dissolution Time (T50) | 80% Dissolution Time (T80) | Initial Dissolution Rate [0 to 20 min] (µg/min) | Maximum Dissolution (%) |
---|---|---|---|---|
Pure GF | 82 | Undissolved | 110.27 | 66.2 |
Pure DXM | 52 | Undissolved | 180.90 | 76.8 |
DXM-GF | 34 | 100 | 540.60 | 81.0 |
GF in DXM-GF | 29 | Undissolved | 220.61 | 74.55 |
DXM in GF-DXM | 19 | 72 | 290.74 | 87.05 |
DXM-GF-nfPLGA | 23 | 50 | 650.92 | 105 |
GF in DXM-GF-nfPLGA | 27 | 61 | 266.81 | 90.9 |
DXM in DXM-GF-nfPLGA | 18 | 44 | 325.74 | 110.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Mitra, S. Enhancing the Solubility of Co-Formulated Hydrophobic Drugs by Incorporating Functionalized Nano-Structured Poly Lactic-co-glycolic Acid (nfPLGA) During Co-Precipitation. Pharmaceutics 2025, 17, 77. https://doi.org/10.3390/pharmaceutics17010077
Islam MS, Mitra S. Enhancing the Solubility of Co-Formulated Hydrophobic Drugs by Incorporating Functionalized Nano-Structured Poly Lactic-co-glycolic Acid (nfPLGA) During Co-Precipitation. Pharmaceutics. 2025; 17(1):77. https://doi.org/10.3390/pharmaceutics17010077
Chicago/Turabian StyleIslam, Mohammad Saiful, and Somenath Mitra. 2025. "Enhancing the Solubility of Co-Formulated Hydrophobic Drugs by Incorporating Functionalized Nano-Structured Poly Lactic-co-glycolic Acid (nfPLGA) During Co-Precipitation" Pharmaceutics 17, no. 1: 77. https://doi.org/10.3390/pharmaceutics17010077
APA StyleIslam, M. S., & Mitra, S. (2025). Enhancing the Solubility of Co-Formulated Hydrophobic Drugs by Incorporating Functionalized Nano-Structured Poly Lactic-co-glycolic Acid (nfPLGA) During Co-Precipitation. Pharmaceutics, 17(1), 77. https://doi.org/10.3390/pharmaceutics17010077