Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization
<p>SLS printed tablets of powder blend 1 (<b>a</b>) and powder blend 2 (<b>b</b>) under varying printing conditions (surface temperature (°C)/chamber temperature (°C)/laser speed (mm/s) from left to right: 80/70/60, 80/70/50, 90/80/60, 90/80/50).</p> "> Figure 2
<p>Tablets of powder blend 1 (<b>a</b>) and powder blend 2 (<b>b</b>) produced under the following printing conditions: surface temperature (°C)/chamber temperature (°C)/laser speed (mm/s) of 90 °C/80 °C/50 mm/s (right side in (<b>a</b>,<b>b</b>)) and 80 °C/70 °C/60 mm/s (left side in (<b>a</b>,<b>b</b>)).</p> "> Figure 3
<p>Diffractograms of carvedilol and powdered tablets obtained from powder blend 1 (<b>a</b>) and powder blend 2 (<b>b</b>) (printing parameters are given in the brackets in the following order: surface temperature (°C), chamber temperature (°C), and laser speed (mm/s)).</p> "> Figure 4
<p>Thermograms of carvedilol and powdered tablets obtained from powder blend 1 (<b>a</b>), and powder blend 2 (<b>b</b>) (printing parameters are given in the brackets in the following order: surface temperature (°C), chamber temperature (°C), and laser speed (mm/s)).</p> "> Figure 5
<p>FT-IR spectra of carvedilol and powdered tablets obtained from powder blend 1 (<b>a</b>) and powder blend 2 (<b>b</b>) (printing parameters are given in the brackets in the following order: surface temperature (°C), chamber temperature (°C), and laser speed (mm/s)).</p> "> Figure 6
<p>In vitro release profiles of carvedilol from printed tablets from powder blend 1 (<b>a</b>) and powder blend 2 (<b>b</b>) in comparison with pure active substance (printing parameters are given in the brackets in the following order: surface temperature (°C), chamber temperature (°C), and laser speed (mm/s)).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization of Powder Blends
2.2.2. Tablet Formulation
2.2.3. Preparation of Tablets Using SLS 3D Printing Process
2.2.4. Characterization of the Tablets
3. Results and Discussion
3.1. Powder Flow Properties
3.2. Visual Appearance of the Tablets
3.3. Tablet Mass and Dimensions
3.4. Drug Assay and Uniformity of the Content
3.5. Tablet Mechanical Resistance
3.6. Disintegration of Tablets
3.7. Powder X-Ray Diffraction (PXRD)
3.8. Differential Scanning Calorimetry (DSC)
3.9. Fourier Transform Infrared (FT-IR) Spectroscopy
3.10. Dissolution Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D Printing: Principles and Pharmaceutical Applications of Selective Laser Sintering. Int. J. Pharm. 2020, 586, 119594. [Google Scholar] [CrossRef] [PubMed]
- Medarević, D.; Krstić, M.; Ibrić, S. Fundamentals of 3D Printing of Pharmaceuticals. In From Current to Future Trends in Pharmaceutical Technology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–65. ISBN 978-0-323-91111-5. [Google Scholar]
- Chen, G.; Xu, Y.; Chi Lip Kwok, P.; Kang, L. Pharmaceutical Applications of 3D Printing. Addit. Manuf. 2020, 34, 101209. [Google Scholar] [CrossRef]
- Pandey, M.; Choudhury, H.; Fern, J.L.C.; Kee, A.T.K.; Kou, J.; Jing, J.L.J.; Her, H.C.; Yong, H.S.; Ming, H.C.; Bhattamisra, S.K.; et al. 3D Printing for Oral Drug Delivery: A New Tool to Customize Drug Delivery. Drug Deliv. Transl. Res. 2020, 10, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, X.; Han, X.; Hong, X.; Li, X.; Zhang, H.; Li, M.; Wang, Z.; Zheng, A. A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics 2023, 15, 416. [Google Scholar] [CrossRef] [PubMed]
- Gueche, Y.A.; Sanchez-Ballester, N.M.; Cailleaux, S.; Bataille, B.; Soulairol, I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics 2021, 13, 1212. [Google Scholar] [CrossRef]
- Infanger, S.; Haemmerli, A.; Iliev, S.; Baier, A.; Stoyanov, E.; Quodbach, J. Powder Bed 3D-Printing of Highly Loaded Drug Delivery Devices with Hydroxypropyl Cellulose as Solid Binder. Int. J. Pharm. 2019, 555, 198–206. [Google Scholar] [CrossRef]
- Yan, T.-T.; Lv, Z.-F.; Tian, P.; Lin, M.-M.; Lin, W.; Huang, S.-Y.; Chen, Y.-Z. Semi-Solid Extrusion 3D Printing ODFs: An Individual Drug Delivery System for Small Scale Pharmacy. Drug Dev. Ind. Pharm. 2020, 46, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xu, L.; Zhao, Y.; You, Z.; Guan, Q. 3D Printing Preview for Stereo-Lithography Based on Photopolymerization Kinetic Models. Bioact. Mater. 2020, 5, 798–807. [Google Scholar] [CrossRef]
- Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Selective Laser Sintering (SLS) 3D Printing of Medicines. Int. J. Pharm. 2017, 529, 285–293. [Google Scholar] [CrossRef]
- Adamov, I.; Stanojević, G.; Pavlović, S.M.; Medarević, D.; Ivković, B.; Kočović, D.; Ibrić, S. Powder Bed Fusion–Laser Beam (PBF-LB) Three-Dimensional (3D) Printing: Influence of Laser Hatching Distance on the Properties of Zolpidem Tartrate Tablets. Int. J. Pharm. 2024, 657, 124161. [Google Scholar] [CrossRef]
- Goyanes, A.; Fina, F.; Martorana, A.; Sedough, D.; Gaisford, S.; Basit, A.W. Development of Modified Release 3D Printed Tablets (Printlets) with Pharmaceutical Excipients Using Additive Manufacturing. Int. J. Pharm. 2017, 527, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Tabriz, A.G.; Gonot-Munck, Q.; Baudoux, A.; Garg, V.; Farnish, R.; Katsamenis, O.L.; Hui, H.-W.; Boersen, N.; Roberts, S.; Jones, J.; et al. 3D Printing of Personalised Carvedilol Tablets Using Selective Laser Sintering. Pharmaceutics 2023, 15, 2230. [Google Scholar] [CrossRef] [PubMed]
- Basit, A.W. 3D Printing of Pharmaceuticals; AAPS Advances in the Pharmaceutical Sciences Serise; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-90755-0. [Google Scholar]
- Leong, K.F.; Chua, C.K.; Gui, W.S. Verani Building Porous Biopolymeric Microstructures for Controlled Drug Delivery Devices Using Selective Laser Sintering. Int. J. Adv. Manuf. Technol. 2006, 31, 483–489. [Google Scholar] [CrossRef]
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Advances in Powder Bed Fusion 3D Printing in Drug Delivery and Healthcare. Adv. Drug Deliv. Rev. 2021, 174, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, Y.; Wei, S.; Shan, W. Oral Preparations with Tunable Dissolution Behavior Based on Selective Laser Sintering Technique. Int. J. Pharm. 2021, 593, 120127. [Google Scholar] [CrossRef]
- Vithani, K.; Goyanes, A.; Jannin, V.; Basit, A.W.; Gaisford, S.; Boyd, B.J. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-Based Drug Delivery Systems. Pharm. Res. 2019, 36, 4. [Google Scholar] [CrossRef]
- Fina, F.; Madla, C.M.; Goyanes, A.; Zhang, J.; Gaisford, S.; Basit, A.W. Fabricating 3D Printed Orally Disintegrating Printlets Using Selective Laser Sintering. Int. J. Pharm. 2018, 541, 101–107. [Google Scholar] [CrossRef]
- Mohamed, E.M.; Barakh Ali, S.F.; Rahman, Z.; Dharani, S.; Ozkan, T.; Kuttolamadom, M.A.; Khan, M.A. Formulation Optimization of Selective Laser Sintering 3D-Printed Tablets of Clindamycin Palmitate Hydrochloride by Response Surface Methodology. AAPS PharmSciTech 2020, 21, 232. [Google Scholar] [CrossRef]
- Aikawa, S.; Tanaka, H.; Ueda, H.; Maruyama, M.; Higaki, K. Formation of a Stable Co-Amorphous System for a Brick Dust Molecule by Utilizing Sodium Taurocholate with High Glass Transition Temperature. Pharmaceutics 2022, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Grohganz, H.; Löbmann, K.; Rades, T.; Hempel, N.-J. Co-Amorphous Drug Formulations in Numbers: Recent Advances in Co-Amorphous Drug Formulations with Focus on Co-Formability, Molar Ratio, Preparation Methods, Physical Stability, In Vitro and In Vivo Performance, and New Formulation Strategies. Pharmaceutics 2021, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Eesam, S.; Bhandaru, J.S.; Naliganti, C.; Bobbala, R.K.; Akkinepally, R.R. Solubility Enhancement of Carvedilol Using Drug–Drug Cocrystallization with Hydrochlorothiazide. Futur. J. Pharm. Sci. 2020, 6, 77. [Google Scholar] [CrossRef]
- Johnson, J.A.; Cavallari, L.H. Pharmacogenetics and Cardiovascular Disease—Implications for Personalized Medicine. Pharmacol. Rev. 2013, 65, 987–1009. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia, 11th ed.; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2022.
- Barakh Ali, S.F.; Mohamed, E.M.; Ozkan, T.; Kuttolamadom, M.A.; Khan, M.A.; Asadi, A.; Rahman, Z. Understanding the Effects of Formulation and Process Variables on the Printlets Quality Manufactured by Selective Laser Sintering 3D Printing. Int. J. Pharm. 2019, 570, 118651. [Google Scholar] [CrossRef]
- The United States Pharmacopeia–National Formulary 2024 (USP–NF 2024); The United States Pharmacopeial Convention (USP): Rockville, MD, USA, 2024.
- Vodáčková, P.; Vraníková, B.; Svačinová, P.; Franc, A.; Elbl, J.; Muselík, J.; Kubalák, R.; Solný, T. Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression. BioMed Res. Int. 2018, 2018, 2739428. [Google Scholar] [CrossRef] [PubMed]
- Hiendrawan, S.; Widjojokusumo, E.; Veriansyah, B.; Tjandrawinata, R.R. Pharmaceutical Salts of Carvedilol: Polymorphism and Physicochemical Properties. AAPS PharmSciTech 2017, 18, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.M.V.; Prado, L.D.; Rocha, H.V.A. Evaluation and Correlation of the Physicochemical Properties of Carvedilol. Pharm. Dev. Technol. 2016, 21, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Medarević, D.; Djuriš, J.; Ibrić, S.; Mitrić, M.; Kachrimanis, K. Optimization of Formulation and Process Parameters for the Production of Carvedilol Nanosuspension by Wet Media Milling. Int. J. Pharm. 2018, 540, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, T.F.; Lanchote, A.D.; Da Costa, J.S.; Viçosa, A.L.; De Freitas, L.A.P. A Multivariate Approach Applied to Quality on Particle Engineering of Spray-Dried Mannitol. Adv. Powder Technol. 2015, 26, 1094–1101. [Google Scholar] [CrossRef]
- Altay Benetti, A.; Bianchera, A.; Buttini, F.; Bertocchi, L.; Bettini, R. Mannitol Polymorphs as Carrier in DPIs Formulations: Isolation Characterization and Performance. Pharmaceutics 2021, 13, 1113. [Google Scholar] [CrossRef] [PubMed]
- Madžarević, M.; Medarević, Đ.; Pavlović, S.; Ivković, B.; Đuriš, J.; Ibrić, S. Understanding the Effect of Energy Density and Formulation Factors on the Printability and Characteristics of SLS Irbesartan Tablets—Application of the Decision Tree Model. Pharmaceutics 2021, 13, 1969. [Google Scholar] [CrossRef]
- Prado, L.D.; Rocha, H.V.A.; Resende, J.A.L.C.; Ferreira, G.B.; De Figuereido Teixeira, A.M.R. An Insight into Carvedilol Solid Forms: Effect of Supramolecular Interactions on the Dissolution Profiles. CrystEngComm 2014, 16, 3168–3179. [Google Scholar] [CrossRef]
- Andrade, J.; González-Martínez, C.; Chiralt, A. The Incorporation of Carvacrol into Poly (Vinyl Alcohol) Films Encapsulated in Lecithin Liposomes. Polymers 2020, 12, 497. [Google Scholar] [CrossRef] [PubMed]
- Shamma, R.N.; Basha, M. Soluplus®: A Novel Polymeric Solubilizer for Optimization of Carvedilol Solid Dispersions: Formulation Design and Effect of Method of Preparation. Powder Technol. 2013, 237, 406–414. [Google Scholar] [CrossRef]
- Kor, I.; Wizel, S. Crystalline Solids of Carvedilol and Processes for Their Preparation. U. S. Patent 6,710,184 B2, 23 March 2004. [Google Scholar]
- Pešić, N.; Dapčević, A.; Ivković, B.; Kachrimanis, K.; Mitrić, M.; Ibrić, S.; Medarević, D. Potential Application of Low Molecular Weight Excipients for Amorphization and Dissolution Enhancement of Carvedilol. Int. J. Pharm. 2021, 608, 121033. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, A.M.; Gupta, P.; Bansal, A.K. Amorphous Drug Delivery Systems: Molecular Aspects, Design, and Performance. Crit. Rev. Ther. Drug Carr. Syst. 2004, 21, 133–193. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Dattachowdhury, B.; Vangara, K.K.; Patel, N.; Alexander, K.; Boddu, S.H. Excipients That Facilitate Amorphous Drug Stabilization. In Excipient Applications in Formulation Design and Drug Delivery; Narang, A.S., Boddu, S.H.S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 463–495. ISBN 978-3-319-20205-1. [Google Scholar]
- Davis, D.A.; Thakkar, R.; Su, Y.; Williams, R.O.; Maniruzzaman, M. Selective Laser Sintering 3-Dimensional Printing as a Single Step Process to Prepare Amorphous Solid Dispersion Dosage Forms for Improved Solubility and Dissolution Rate. J. Pharm. Sci. 2021, 110, 1432–1443. [Google Scholar] [CrossRef] [PubMed]
- Trenfield, S.J.; Xu, X.; Goyanes, A.; Rowland, M.; Wilsdon, D.; Gaisford, S.; Basit, A.W. Releasing Fast and Slow: Non-Destructive Prediction of Density and Drug Release from SLS 3D Printed Tablets Using NIR Spectroscopy. Int. J. Pharm. X 2023, 5, 100148. [Google Scholar] [CrossRef]
Quantity (%) | ||
---|---|---|
PB 1 | Carvedilol | 10 |
Polyvinyl alcohol (PVA) | 85 | |
Talc | 2 | |
Candurin® Gold Sheen | 3 | |
PB 2 | Carvedilol | 10 |
Polyvinyl alcohol (PVA) | 55 | |
Mannitol | 30 | |
Talc | 2 | |
Candurin® Gold Sheen | 3 |
Tablet | Surface Temperature (°C) | Chamber Temperature (°C) | Laser Speed (mm/s) | Powder Blend Used in Formulation |
---|---|---|---|---|
T1 | 80 | 70 | 50 | PB 1 |
T2 | 80 | 70 | 60 | |
T3 | 90 | 80 | 50 | |
T4 | 90 | 80 | 60 | |
T5 | 80 | 70 | 50 | PB 2 |
T6 | 80 | 70 | 60 | |
T7 | 90 | 80 | 50 | |
T8 | 90 | 80 | 60 |
Powder Blend | Hausner Ratio | Compressibility Index (CI) | Flowability |
---|---|---|---|
PB1 | 1.32 ± 0.05 | 24.39 ± 0.05 | Passable |
PB2 | 1.33 ± 0.00 | 25.00 ± 0.00 | Passable |
Tablet | Formulation | Diameter (mm) | Thickness (mm) | Weight (mg) |
---|---|---|---|---|
T1 (80 70 50) | PB 1 | 9.02 ± 0.01 | 3.73 ± 0.01 | 121.55 ± 1.57 |
T2 (80 70 60) | 9.04 ± 0.01 | 3.74 ± 0.01 | 120.45 ± 2.14 | |
T3 (90 80 50) | 8.99 ± 0.03 | 3.70 ± 0.02 | 124.65 ± 1.18 | |
T4 (90 80 60) | 9.01 ± 0.01 | 3.71 ± 0.01 | 122.35 ± 1.27 | |
T5 (80 70 50) | PB 2 | 8.96 ± 0.12 | 3.93 ± 0.14 | 158.67 ± 5.18 |
T6 (80 70 60) | 8.99 ± 0.10 | 3.97 ± 0.10 | 142.91 ± 6.87 | |
T7 (90 80 50) | 8.92 ± 0.11 | 3.92 ± 0.09 | 168.25 ± 4.34 | |
T8 (90 80 60) | 8.98 ± 0.14 | 3.96 ± 0.11 | 153.88 ± 5.41 |
Tablet | Amount of CVD (mg) | CVD Content (%) * | Uniformity of Content (AV(%)) ** |
---|---|---|---|
T1 (80 70 50) | 12.67 ± 0.12 | 104.28 ± 1.23 | 7.89 ± 0.77 |
T2 (80 70 60) | 12.61± 0.14 | 104.73 ± 1.64 | 8.88 ± 0.90 |
T3 (90 80 50) | 12.98 ± 0.21 | 104.17 ± 2,73 | 7.19 ± 1.03 |
T4 (90 80 60) | 12.89 ± 0.11 | 105.39 ± 1.5 | 5.72 ± 0.45 |
T5 (80 70 50) | 14.83 ± 0.13 | 93.44 ±0.90 | 7.58 ± 0.55 |
T6 (80 70 60) | 14.69 ± 0.04 | 102.80 ± 0.05 | 6.44 ± 0. 43 |
T7 (90 80 50) | 15.69 ± 0.16 | 93.28 ± 1.49 | 5.86 ± 0.68 |
T8 (90 80 60) | 14.58 ± 0.14 | 94.74 ± 1.23 | 7.03 ± 0.49 |
Tablet | Formulation | Hardness (N) | Tensile Strength (MPa) |
---|---|---|---|
T1 (80 70 50) | PB 1 | 58.0 ± 1.0 | 1.16 ± 0.021 |
T2 (80 70 60) | 54.33 ± 1.15 | 1.08 ± 0.024 | |
T3 (90 80 50) | 64.67 ± 0.58 | 1.31 ± 0.01 | |
T4 (90 80 60) | 60.33 ± 0.58 | 1.21 ± 0.013 | |
T5 (80 70 50) | PB 2 | 62.5 ± 14.6 | 1.13 ± 0.29 |
T6 (80 70 60) | 55.8 ± 16.2 | 0.97 ± 0.30 | |
T7 (90 80 50) | 70.8 ± 19.6 | 1.28 ± 0.37 | |
T8 (90 80 60) | 65.5 ± 18.1 | 1.19 ± 0.33 |
PB 1 | T1 (80 70 50) | T2 (80 70 60) | T3 (90 80 50) | T4 (90 80 60) |
6 min 05 s | 5 min 52 s | 6 min 48 s | 6 min 30 s | |
PB 2 | T5 (80 70 50) | T6 (80 70 60) | T7 (90 80 50) | T8 (90 80 60) |
2 min 15 s | 2 min 10 s | 2 min 35 s | 2 min 28 s |
Sample | Crystallinity (%) |
---|---|
T1 (80 70 50) | 24.5 |
T2 (80 70 60) | 25.4 |
T3 (90 80 50) | 25.6 |
T4 (90 80 60) | 27.3 |
T5 (80 70 50) | 46.4 |
T6 (80 70 60) | 47.9 |
T7 (90 80 50) | 42.8 |
T8 (90 80 60) | 44.1 |
Carvedilol | 90.0 |
Mannitol | 88.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pešić, N.; Ivković, B.; Barudžija, T.; Grujić, B.; Ibrić, S.; Medarević, D. Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization. Pharmaceutics 2025, 17, 6. https://doi.org/10.3390/pharmaceutics17010006
Pešić N, Ivković B, Barudžija T, Grujić B, Ibrić S, Medarević D. Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization. Pharmaceutics. 2025; 17(1):6. https://doi.org/10.3390/pharmaceutics17010006
Chicago/Turabian StylePešić, Nikola, Branka Ivković, Tanja Barudžija, Branka Grujić, Svetlana Ibrić, and Djordje Medarević. 2025. "Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization" Pharmaceutics 17, no. 1: 6. https://doi.org/10.3390/pharmaceutics17010006
APA StylePešić, N., Ivković, B., Barudžija, T., Grujić, B., Ibrić, S., & Medarević, D. (2025). Selective Laser Sintering 3D Printing of Carvedilol Tablets: Enhancing Dissolution Through Amorphization. Pharmaceutics, 17(1), 6. https://doi.org/10.3390/pharmaceutics17010006