Enteric Coated Pellets with Lactoferrin for Oral Delivery: Improved Shelf Life of the Product
<p>Particle size distribution after each coating applied for MCC (<b>left</b>) and CaP (<b>right</b>) cores.</p> "> Figure 2
<p>Raw image (<b>left</b>) and overlaid image (<b>right</b>) of a pellet cross-section showing the distribution of Lf and EC.</p> "> Figure 3
<p>Dissolution profiles (European Pharmacopoeia, method A) of Lf pellets with EC.</p> "> Figure 4
<p>The percentage (±SD) of Lf remaining in the samples after 1 year of storage under different storage conditions and in different packaging.</p> "> Figure 5
<p>Experimental determination of shelf life using 95% confidence interval for EC MCC pellets containing Lf stored in refrigerator (4 °C).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Materials Used for the Preparation of Pellets with Lactoferrin
2.1.2. Materials Used for the Characterization of Pellets with Lactoferrin
2.2. Preparation of Lactoferrin Pellets
2.3. Particle Size Distribution
2.4. Raman Mapping of Pellet Cross-Section
2.5. Dissolution of Enteric Coated Pellets
2.6. Stability Study
2.7. Sample Analysis
2.8. Water Content
2.9. Data Analysis
3. Results
3.1. Coating Process
3.2. Raman Mapping of MCC Pellet
3.3. Dissolution of Enteric Coated Pellets
3.4. Storage Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elzoghby, A.O.; Abdelmoneem, M.A.; Hassanin, I.A.; Abd Elwakil, M.M.; Elnaggar, M.A.; Mokhtar, S.; Fang, J.-Y.; Elkhodairy, K.A. Lactoferrin, a Multi-Functional Glycoprotein: Active Therapeutic, Drug Nanocarrier & Targeting Ligand. Biomaterials 2020, 263, 120355. [Google Scholar] [CrossRef]
- Guzmán-Mejía, F.; Godínez-Victoria, M.; Molotla-Torres, D.E.; Drago-Serrano, M.E. Lactoferrin as a Component of Pharmaceutical Preparations: An Experimental Focus. Pharmaceuticals 2023, 16, 214. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Kaczyńska, K.; Kleczkowska, P.; Bukowska-Ośko, I.; Kramkowski, K.; Sulejczak, D. The Lactoferrin Phenomenon—A Miracle Molecule. Molecules 2022, 27, 2941. [Google Scholar] [CrossRef]
- Ono, K.; Sakai, H.; Tokunaga, S.; Sharmin, T.; Aida, T.M.; Mishima, K. Encapsulation of Lactoferrin for Sustained Release Using Particles from Gas-Saturated Solutions. Processes 2020, 9, 73. [Google Scholar] [CrossRef]
- Wei, Y.; Feng, K.; Li, S.; Hu, T.; Linhardt, R.J.; Zong, M.; Wu, H. Oral Fate and Stabilization Technologies of Lactoferrin: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6341–6358. [Google Scholar] [CrossRef]
- Dix, C.; Wright, O. Bioavailability of a Novel Form of Microencapsulated Bovine Lactoferrin and Its Effect on Inflammatory Markers and the Gut Microbiome: A Pilot Study. Nutrients 2018, 10, 1115. [Google Scholar] [CrossRef] [PubMed]
- Kilic, E.; Novoselova, M.V.; Lim, S.H.; Pyataev, N.A.; Pinyaev, S.I.; Kulikov, O.A.; Sindeeva, O.A.; Mayorova, O.A.; Murney, R.; Antipina, M.N.; et al. Formulation for Oral Delivery of Lactoferrin Based on Bovine Serum Albumin and Tannic Acid Multilayer Microcapsules. Sci. Rep. 2017, 7, 44159. [Google Scholar] [CrossRef]
- Jańczuk, A.; Brodziak, A.; Czernecki, T.; Król, J. Lactoferrin—The Health-Promoting Properties and Contemporary Application with Genetic Aspects. Foods 2022, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Abu Hashim, H.; Foda, O.; Ghayaty, E. Lactoferrin or Ferrous Salts for Iron Deficiency Anemia in Pregnancy: A Meta-Analysis of Randomized Trials. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 219, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Fine, D.H. Lactoferrin: A Roadmap to the Borderland between Caries and Periodontal Disease. J. Dent. Res. 2015, 94, 768–776. [Google Scholar] [CrossRef]
- Franco, I.; Pérez, M.D.; Conesa, C.; Calvo, M.; Sánchez, L. Effect of Technological Treatments on Bovine Lactoferrin: An Overview. Food Res. Int. 2018, 106, 173–182. [Google Scholar] [CrossRef]
- Bengoechea, C.; Peinado, I.; McClements, D.J. Formation of Protein Nanoparticles by Controlled Heat Treatment of Lactoferrin: Factors Affecting Particle Characteristics. Food Hydrocoll. 2011, 25, 1354–1360. [Google Scholar] [CrossRef]
- Yao, X.; Bunt, C.; Cornish, J.; Quek, S.-Y.; Wen, J. Improved RP-HPLC Method for Determination of Bovine Lactoferrin and Its Proteolytic Degradation in Simulated Gastrointestinal Fluids: Improved RP-HPLC Method for bLf Determination. Biomed. Chromatogr. 2013, 27, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Superti, F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients 2020, 12, 2562. [Google Scholar] [CrossRef]
- Ong, R.; Cornish, J.; Wen, J. Nanoparticular and Other Carriers to Deliver Lactoferrin for Antimicrobial, Antibiofilm and Bone-Regenerating Effects: A Review. BioMetals 2023, 36, 709–727. [Google Scholar] [CrossRef]
- Yao, X.; Bunt, C.; Cornish, J.; Quek, S.-Y.; Wen, J. Oral Delivery of Lactoferrin: A Review. Int. J. Pept. Res. Ther. 2013, 19, 125–134. [Google Scholar] [CrossRef]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Lactoferrin: Structure, Function, Denaturation and Digestion. Crit. Rev. Food Sci. Nutr. 2019, 59, 580–596. [Google Scholar] [CrossRef]
- Yao, X.; Bunt, C.; Cornish, J.; Quek, S.-Y.; Wen, J. Oral Delivery of Bovine Lactoferrin Using Pectin- and Chitosan-Modified Liposomes and Solid Lipid Particles: Improvement of Stability of Lactoferrin. Chem. Biol. Drug Des. 2015, 86, 466–475. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Parakhonskiy, B.; Skirtach, A.G. Intestinal-Specific Oral Delivery of Lactoferrin with Alginate-Based Composite and Hybrid CaCO3-Hydrogel Beads. Food Chem. 2024, 451, 139205. [Google Scholar] [CrossRef]
- Vergara, D.; López, O.; Bustamante, M.; Shene, C. An in Vitro Digestion Study of Encapsulated Lactoferrin in Rapeseed Phospholipid–Based Liposomes. Food Chem. 2020, 321, 126717. [Google Scholar] [CrossRef]
- Liu, W.; Ye, A.; Liu, W.; Liu, C.; Singh, H. Stability during in Vitro Digestion of Lactoferrin-Loaded Liposomes Prepared from Milk Fat Globule Membrane-Derived Phospholipids. J. Dairy Sci. 2013, 96, 2061–2070. [Google Scholar] [CrossRef]
- Niu, Z.; Loveday, S.M.; Barbe, V.; Thielen, I.; He, Y.; Singh, H. Protection of Native Lactoferrin under Gastric Conditions through Complexation with Pectin and Chitosan. Food Hydrocoll. 2019, 93, 120–130. [Google Scholar] [CrossRef]
- Varela-Fernández, R.; García-Otero, X.; Díaz-Tomé, V.; Regueiro, U.; López-López, M.; González-Barcia, M.; Isabel Lema, M.; Javier Otero-Espinar, F. Lactoferrin-Loaded Nanostructured Lipid Carriers (NLCs) as a New Formulation for Optimized Ocular Drug Delivery. Eur. J. Pharm. Biopharm. 2022, 172, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Varela-Fernández, R.; García-Otero, X.; Díaz-Tomé, V.; Regueiro, U.; López-López, M.; González-Barcia, M.; Lema, M.I.; Otero-Espinar, F.J. Design, Optimization, and Characterization of Lactoferrin-Loaded Chitosan/TPP and Chitosan/Sulfobutylether-β-Cyclodextrin Nanoparticles as a Pharmacological Alternative for Keratoconus Treatment. ACS Appl. Mater. Interfaces 2021, 13, 3559–3575. [Google Scholar] [CrossRef]
- Bokkhim, H.; Bansal, N.; Grøndahl, L.; Bhandari, B. In-Vitro Digestion of Different Forms of Bovine Lactoferrin Encapsulated in Alginate Micro-Gel Particles. Food Hydrocoll. 2016, 52, 231–242. [Google Scholar] [CrossRef]
- López-Machado, A.; Díaz-Garrido, N.; Cano, A.; Espina, M.; Badia, J.; Baldomà, L.; Calpena, A.C.; Souto, E.B.; García, M.L.; Sánchez-López, E. Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. Pharmaceutics 2021, 13, 1698. [Google Scholar] [CrossRef] [PubMed]
- Vergara, D.; Shene, C. Encapsulation of Lactoferrin into Rapeseed Phospholipids Based Liposomes: Optimization and Physicochemical Characterization. J. Food Eng. 2019, 262, 29–38. [Google Scholar] [CrossRef]
- Osel, N.; Planinšek Parfant, T.; Kristl, A.; Roškar, R. Stability-Indicating Analytical Approach for Stability Evaluation of Lactoferrin. Pharmaceutics 2021, 13, 1065. [Google Scholar] [CrossRef]
- Bolton, S.; Bon, C. 7.6.1 Confidence Interval for Y at a Given X. In Pharmaceutical Statistics: Practical and Clinical Applications, 5th ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-7423-9. [Google Scholar]
- Gervasi, V.; Dall Agnol, R.; Cullen, S.; McCoy, T.; Vucen, S.; Crean, A. Parenteral Protein Formulations: An Overview of Approved Products within the European Union. Eur. J. Pharm. Biopharm. 2018, 131, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A Technology Evaluation. Expert Opin. Drug Deliv. 2013, 10, 131–149. [Google Scholar] [CrossRef]
- Rosa, L.; Cutone, A.; Lepanto, M.; Paesano, R.; Valenti, P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, T.; Jiao, W.; Zhang, Y.; Liu, W.; Zhang, Y.; Huang, L.; Lv, S. Inhibited Digestion of Lactoferrin—Lactose Complexes: Preparation, Structural Characterization and Digestion Behaviors. LWT 2022, 172, 114141. [Google Scholar] [CrossRef]
Coating Type | Inlet Temperature [°C] | Product Temperature [°C] | Outlet Temperature [°C] | Air Flow [m3/h] | Nozzle Pressure [bar] | Dispersion Feed Rate [g/min] |
---|---|---|---|---|---|---|
Lf layer | 60 | 35 | 35 | 75 | 1.8 | 16 |
EC | 47 | 29 | 29 | 75 | 1.8 | 12 |
Samples | Storage Conditions | ||||
---|---|---|---|---|---|
40 °C 75% RH | 25 °C 60% RH | 4 °C | Dissolved up to 25 °C | ||
Spray-dried Lf | No packaging | × | × | × | × |
Cps + Alu | × | ||||
Alu | × | × | |||
MCC pellets without EC | No packaging | × | × | ||
Cps | × | ||||
Cps + Alu | × | ||||
CaP pellets without EC | No packaging | × | × | ||
Cps | × | ||||
Cps + Alu | × | ||||
EC MCC pellets | No packaging | × | × | × | |
Cps | × | × | |||
Cps + Alu | × | × | × | ||
Alu | × | ||||
EC CaP pellets | No packaging | × | × | × | |
Cps | × | × | |||
Cps + Alu | × | × | × | ||
Alu | × |
MCC Core [µm] | CaP Core [µm] | |
---|---|---|
Pellet core diameter | 287 | 425 |
Lf coating thickness | 50 | 95 |
EC thickness | 77 | 77 |
Final product diameter | 414 | 597 |
Scheme | Packaging | |||
---|---|---|---|---|
Refrigerator (4 °C) | No packaging | Cps | Cps + Alu | Alu |
Spray-dried Lf | 0.187 (0.157–0.217) | / | / | / |
EC MCC pellets | / | / | 0.130 (0.094–0.167) | / |
EC CaP pellets | / | / | 0.136 (0.099–0.172) | / |
Long-term (25 °C, 60% RH) | No packaging | Cps | Cps + Alu | Alu |
Spray-dried Lf | 0.685 (0.557–0.812) | / | / | 0.162 (0.112–0.212) |
EC MCC pellets | 0.353 (0.280–0.425) | 0.325 (0.240–0.410) | 0.206 (0.093–0.318) | 0.329 a (0.247–0.411) |
EC CaP pellets | 0.327 (0.263–0.391) | 0.311 (0.256–0.366) | 0.205 (0.145–0.265) | 0.193 (0.123–0.263) |
Accelerated (40 °C, 75% RH) | No packaging | Cps | Cps + Alu | Alu |
Spray-dried Lf | 12.252 (11.717–12.787) | / | 0.445 (0.401–0.489) | 0.440 (0.405–0.475) |
MCC pellets without EC | 9.959 (9.703–10.215) | 1.207 (1.073–1.340) | 0.507 (0.465–0.550) | / |
CaP pellets without EC | 10.447 (10.228–10.665) | 1.228 (1.122–1.339) | 0.531 (0.499–0.563) | / |
EC MCC pellets | 5.393 (5.054–5.733) | 2.026 (1.904–2.147) | 0.596 (0.554–0.638) | / |
EC CaP pellets | 4.663 (4.220–5.106) | 1.535 (1.410–1.660) | 0.611 (0.583–0.640) | / |
Controlled room T (up to 25 °C) | Dissolved b | |||
Spray-dried Lf | 0.600 (0.445–0.754) | |||
MCC pellets without EC | 0.594 (0.420–0.769) | |||
CaP pellets without EC | 0.735 (0.648–0.822) | |||
EC MCC pellets | 1.590 (1.387–1.794) | |||
EC CaP pellets | 1.684 (1.398–1.971) |
Conditions | Samples | Packaging | % H2O ± SD | |
---|---|---|---|---|
0 Weeks | 26 Weeks | |||
40 °C 75% RH | Spray-dried Lf | No packaging | 6.6 ± 0.1 | 13.7 ± 0.1 |
Cps + Alu | 8.0 ± 0.2 | |||
Alu | 8.4 ± 0.0 | |||
EC MCC pellets | No packaging | 4.6 ± 0.1 | 8.8 ± 0.1 | |
Cps | 9.0 ± 0.1 | |||
Cps + Alu | 4.1 ± 0.0 | |||
EC CaP pellets | No packaging | 3.8 ± 0.1 | 6.6 ± 0.1 | |
Cps | 7.7 ± 0.0 | |||
Cps + Alu | 5.7 ± 0.1 | |||
MCC pellets without EC | No packaging | 4.9 ± 0.1 | 11.2 ± 0.0 | |
Cps | 11.5 ± 0.3 | |||
Cps + Alu | 7.7 ± 0.0 | |||
CaP pellets without EC | No packaging | 3.2 ± 0.1 | 8.4 ± 0.2 | |
Cps | 9.3 ± 0.1 | |||
Cps + Alu | 5.6 ± / * | |||
25 °C 60% RH | Spray-dried Lf | No packaging | 6.6 ± 0.1 | 13.4 ± 0.1 |
Alu | 6.6 ± 0.4 | |||
EC MCC pellets | No packaging | 4.6 ± 0.1 | 9.5 ± 0.0 | |
Cps | 8.6 ± 0.2 | |||
Cps + Alu | 4.8 ± 0.0 | |||
Alu | 7.6 ± 0.1 a | |||
EC CaP pellets | No packaging | 3.8 ± 0.1 | 7.1 ± 0.5 | |
Cps | 7.3 ± 0.1 | |||
Cps + Alu | 4.0 ± 0.2 | |||
Alu | 4.3 ± 0.1 | |||
4 °C | Spray-dried Lf | No packaging | 6.6 ± 0.1 | 10.2 ± 0.8 |
EC MCC pellets | Cps + Alu | 4.6 ± 0.1 | 4.3 ± 0.1 | |
EC CaP pellets | Cps + Alu | 3.8 ± 0.1 | 3.8 ± 0.4 |
Storage Conditions | Pellet Core | Shelf Life [Years] | |
---|---|---|---|
Without Confidence Interval | Using 95% Confidence Interval | ||
25 °C, 60% RH | MCC | 1.9 | 1.3 |
CaP | 1.9 | 1.6 | |
Refrigerator (4 °C) | MCC | 3.0 | 2.4 |
CaP | 2.8 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kržišnik, N.; Grilc, B.; Roškar, R. Enteric Coated Pellets with Lactoferrin for Oral Delivery: Improved Shelf Life of the Product. Pharmaceutics 2025, 17, 23. https://doi.org/10.3390/pharmaceutics17010023
Kržišnik N, Grilc B, Roškar R. Enteric Coated Pellets with Lactoferrin for Oral Delivery: Improved Shelf Life of the Product. Pharmaceutics. 2025; 17(1):23. https://doi.org/10.3390/pharmaceutics17010023
Chicago/Turabian StyleKržišnik, Nika, Blaž Grilc, and Robert Roškar. 2025. "Enteric Coated Pellets with Lactoferrin for Oral Delivery: Improved Shelf Life of the Product" Pharmaceutics 17, no. 1: 23. https://doi.org/10.3390/pharmaceutics17010023
APA StyleKržišnik, N., Grilc, B., & Roškar, R. (2025). Enteric Coated Pellets with Lactoferrin for Oral Delivery: Improved Shelf Life of the Product. Pharmaceutics, 17(1), 23. https://doi.org/10.3390/pharmaceutics17010023