Ethanolic Extract of Averrhoa carambola Leaf Has an Anticancer Activity on Triple-Negative Breast Cancer Cells: An In Vitro Study
"> Figure 1
<p>Chromatograms obtained at 290 nm from HPLC analysis. (<b>A</b>) Chromatogram of standards: gallic acid (GA, Rt 2.385 min), cinnamic acid (CA, Rt 30.795 min), anthrone (ANT, Rt 20.000 min), quercetin (Q, Rt 17.955 min), and 4-methylumbelliferone (4-ML, Rt 10.908 min). (<b>B</b>) Chromatogram of the ethanolic extract of <span class="html-italic">A. carambola</span> (500 ppm). (<b>C</b>) Chromatogram of the hydrolysate of the leaves of <span class="html-italic">A. carambola</span> (500 ppm). S: signal.</p> "> Figure 2
<p>Viability experiments employing ethanolic extract of <span class="html-italic">A. carambola</span> on MDA-MB-231 cells. (<b>A</b>) No changes in viability were observed in cervical cancer cell line TC-1 exposed to A. carambola extract in increasing concentrations. (<b>B</b>) A concentration-dependent effect was observed on MDA-MB-231 cell line exposed to the extract. (<b>C</b>) The ethanolic extract of <span class="html-italic">A. carambola</span> leaves had an experimental IC<sub>50</sub> of 20.83 μg/mL in triple-negative breast cancer cell line. (<b>D</b>) Morphological changes and detached cells were observed from the concentration of 25 μg/mL of ethanolic extract. Magnification 10×. The <span class="html-italic">p</span>-values correspond to significant differences compared to the control, DMEM-F12 medium with 0.1% DMSO, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 3
<p>Ethanolic extract of <span class="html-italic">A. carambola</span> leaves decreases replicative immortality of MDA-MB-231 cells. (<b>A</b>) Photographs depict the number of colonies formed after the exposition of each treatment. It is observed that a concentration-dependent effect completely inhibits cell survival. (<b>B</b>) The graph shows the percentage of survival treatment. The <span class="html-italic">p</span>-values correspond to significant differences compared to the control, only DMEM medium, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Ethanolic extract of <span class="html-italic">A. carambola</span> leaves interferes with MDA-MB-231 cell migration. (<b>A</b>) Images captured at 48 h of the wound area made in MDA-MB-231 cell monolayers. Magnification 4×. (<b>B</b>) The graph shows the changes in the open area; a concentration-dependent inhibitory effect can be observed at 48 h that was superior to the doxorubicin effect. Comparison to 48 h control, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>The ethanolic extract of <span class="html-italic">A. carambola</span> leaves affects the cell adhesion of MDA-MB-231 cells. (<b>A</b>) The micrographs show the adhesive capacity of cells recovered after exposure to <span class="html-italic">A. carambola</span> extract and reseeded for 24 h. The adhesive capacity decreases as the concentration of the extract increases. Magnification 10×. (<b>B</b>) The graphs show the percentage of cells adhered to the monolayer after being treated with the extract for 48, showing a concentration-dependent decrease in adhesion. (<b>C</b>) The graph shows the percentage of cell death after 48 h of treatment. (<b>D</b>) The graph shows the percentage of adhesion of detached cells after treatment that were recovered and reseeded. The <span class="html-italic">p</span>-values correspond to significant changes compared to the control, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>The combination of a low dose of doxorubicin and intermediate doses of <span class="html-italic">A. carambola</span> extract reduces the cell viability of MDA-MB-231 cells. The graph shows the reduction in cell viability induced by the different combinations after 48 h of treatment. An additive effect was observed between the 1/5 IC<sub>50</sub> dose of doxorubicin (DOX) and the three tested concentrations of the extract. <sup>a</sup> 0.4 μM DOX + 15 μg/mL extract vs. 15 μg/mL of the extract, <sup>b</sup> 0.4 μM DOX + 25 μg/mL vs. 25 μg/mL, <sup>c</sup> 0.4 μM DOX + 50 μg/mL vs. 50 μg/mL, <sup>d</sup> 2 μM DOX + 15 μg/mL vs. 15 μg/mL, <sup>e</sup> 2 μM DOX + 25 μg/mL vs. 25 μg/mL, <sup>f</sup> 2 μM DOX + 50 μg/mL vs. 50 μg/Ml, <sup>a’</sup> 0.4 μM DOX + 15 μg/mL vs. 0.4 μM DOX, <sup>b’</sup> 0.4 μM DOX + 25 μg/mL vs. 0.4 μM DOX <sup>c’</sup> 0.4 μM DOX + 50 μg/mL vs. 0.4 μM DOX, <sup>d’</sup> 2 μM DOX + 15 μg/mL vs. 2 μM DOX, <sup>e’</sup> 2 μM DOX + 25 μg/mL vs. 2 μM DOX, <sup>f’</sup> 2 μM DOX + 50 μg/mL vs. 2 μM DOX, * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Averrhoa carambola Leaf Ethanolic Extract Preparation
2.2. Qualitative Phytochemical Analysis of A. carambola Leaf Extract
2.3. Spectroscopic Profile of the A. carambola Leaf Extract
2.4. Total Flavonoid Content in A. carambola Leaf Extract
2.5. Total Antioxidant and Reductive Capacity of A. carambola Leaf Extract
2.6. Polyphenol Content by Folin–Ciocalteu Method
2.7. DPPH Scavenging Activity from Extract of A. carambola
2.8. Chromatographic Analysis by HPLC
2.9. Preparation of A. carambola Leaf Extract Treatments
2.10. Cell Lines
2.11. Cell Viability Assay/Cytotoxicity
2.12. Clonogenic Assay
2.13. Wound Healing Assay
2.14. Adhesion Assay
2.15. Cell Viability Assay/Cytotoxicity of A. carambola Extract in Combination with Doxorubicin
2.16. In Silico Analysis
2.17. Statistical Analysis
3. Results
3.1. The Ethanol Extract of A. carambola Leaves Contains Flavonoids, Saponins, and Steroids, and Exhibits Reducing and Antioxidant Capacities
3.2. Chromatographic Analysis
3.3. Ethanolic Extract of A. carambola Leaves Affects Specifically the Viability of Breast Cancer Cell Line MDA-MB-231
3.4. The Ethanolic Extract of A. carambola Leaves Decreases the Clonogenic Survival of MDA-MB-231 Cells
3.5. A. carambola Extract Interferes with MDA-MB-231 Cells the Migration
3.6. A. carambola Ethanolic Extract Affects Cell Adhesion: MDA-MB-231 Adhesion Was Affected in a Concentration-Dependent Manner
3.7. The Combination of a Low Dose of Doxorubicin and Intermediate Doses of A. carambola Extract Reduces MDA-MB-231 Cell Viability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Derakhshan, F.; Reis-Filho, J.S. Pathogenesis of Triple-Negative Breast Cancer. Annu. Rev. Pathol. Mech. Dis. 2022, 17, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Dass, S.A.; Tan, K.L.; Selva Rajan, R.; Mokhtar, N.F.; Mohd Adzmi, E.R.; Wan Abdul Rahman, W.F.; Tengku Din, T.A.D.A.-A.; Balakrishnan, V. Triple Negative Breast Cancer: A Review of Present and Future Diagnostic Modalities. Medicina 2021, 57, 62. [Google Scholar] [CrossRef] [PubMed]
- Almansour, N.M. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence. Front. Mol. Biosci. 2022, 9, 836417. [Google Scholar] [CrossRef]
- Wu, Q.; Siddharth, S.; Sharma, D. Triple Negative Breast Cancer: A Mountain Yet to Be Scaled Despite the Triumphs. Cancers 2021, 13, 3697. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive Analysis of Estrogen Receptor (ER)-negative, Progesterone Receptor (PR)-negative, and HER2-negative Invasive Breast Cancer, the So-called Triple-negative Phenotype. Cancer 2007, 109, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of Human Triple-Negative Breast Cancer Subtypes and Preclinical Models for Selection of Targeted Therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent Advances in Therapeutic Strategies for Triple-Negative Breast Cancer. J. Hematol. Oncol. 2022, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, C.; Xu, X.; Li, A.; Cai, Q.; Long, X. Androgen Receptor, EGFR, and BRCA1 as Biomarkers in Triple-Negative Breast Cancer: A Meta-Analysis. Biomed Res. Int. 2015, 2015, 357485. [Google Scholar] [CrossRef]
- Ma, J.; Chan, J.J.; Toh, C.H.; Yap, Y.-S. Emerging Systemic Therapy Options beyond CDK4/6 Inhibitors for Hormone Receptor-Positive HER2-Negative Advanced Breast Cancer. NPJ Breast Cancer 2023, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.F.M.; Al-Amodi, H.S.A.B. Exploitation of Gene Expression and Cancer Biomarkers in Paving the Path to Era of Personalized Medicine. Genom. Proteom. Bioinform. 2017, 15, 220–235. [Google Scholar] [CrossRef]
- You, C.-P.; Leung, M.-H.; Tsang, W.-C.; Khoo, U.-S.; Tsoi, H. Androgen Receptor as an Emerging Feasible Biomarker for Breast Cancer. Biomolecules 2022, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dey, M.K.; Devireddy, R.; Gartia, M.R. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors 2023, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.U.; Claus, E.; Sohl, J.; Razzak, A.R.; Arnaout, A.; Winer, E.P. Sites of Distant Recurrence and Clinical Outcomes in Patients with Metastatic Triple-negative Breast Cancer. Cancer 2008, 113, 2638–2645. [Google Scholar] [CrossRef] [PubMed]
- Baranova, A.; Krasnoselskyi, M.; Starikov, V.; Kartashov, S.; Zhulkevych, I.; Vlasenko, V.; Oleshko, K.; Bilodid, O.; Sadchikova, M.; Vinnyk, Y. Triple-Negative Breast Cancer: Current Treatment Strategies and Factors of Negative Prognosis. J. Med. Life 2022, 15, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Yost, S.E.; Yuan, Y. Neoadjuvant Treatment for Triple Negative Breast Cancer: Recent Progresses and Challenges. Cancers 2020, 12, 1404. [Google Scholar] [CrossRef]
- Venkatesh, P.; Kasi, A. Anthracyclines, 1st ed.; StatPearls Publishing: Kansas, KS, USA, 2024; Volume 1. [Google Scholar]
- Guarneri, V.; de Azambuja, E. Anthracyclines in the Treatment of Patients with Early Breast Cancer. ESMO Open 2022, 7, 100461. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Luo, Y.; Gan, D.; Zhang, Y.; Deng, H.; Liu, G. Advances in Doxorubicin-Based Nano-Drug Delivery System in Triple Negative Breast Cancer. Front. Bioeng. Biotechnol. 2023, 11, 1271420. [Google Scholar] [CrossRef]
- Kamińska, K.; Cudnoch-Jędrzejewska, A. A Review on the Neurotoxic Effects of Doxorubicin. Neurotox. Res. 2023, 41, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Ilari, A.; Colotti, B.; Mosca, L.; Fazi, F.; Colotti, G. Doxorubicin and Other Anthracyclines in Cancers: Activity, Chemoresistance and Its Overcoming. Mol. Aspects Med. 2023, 93, 101205. [Google Scholar] [CrossRef] [PubMed]
- Belger, C.; Abrahams, C.; Imamdin, A.; Lecour, S. Doxorubicin-Induced Cardiotoxicity and Risk Factors. IJC Heart Vasc. 2024, 50, 101332. [Google Scholar] [CrossRef] [PubMed]
- Karami, P.; Othman, G.; Housein, Z.; Salihi, A.; Hosseinpour Feizi, M.A.; Azeez, H.J.; Babaei, E. Nanoformulation of Polyphenol Curcumin Enhances Cisplatin-Induced Apoptosis in Drug-Resistant MDA-MB-231 Breast Cancer Cells. Molecules 2022, 27, 2917. [Google Scholar] [CrossRef] [PubMed]
- Che, C.-T.; George, V.; Ijinu, T.P.; Pushpangadan, P.; Andrae-Marobela, K. Traditional Medicine. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 15–30. [Google Scholar]
- Integrated Health Services (IHS); Traditional, Complementary and Integrative Medicine (TCI). WHO Traditional Medicine Strategy: 2014–2023, 1st ed.; World Health Organization, Ed.; World Health Organization: Geneva, Switzerland, 2013; Volume 1. [Google Scholar]
- Luan, F.; Peng, L.; Lei, Z.; Jia, X.; Zou, J.; Yang, Y.; He, X.; Zeng, N. Traditional Uses, Phytochemical Constituents and Pharmacological Properties of Averrhoa carambola L.: A Review. Front. Pharmacol. 2021, 12, 699899. [Google Scholar] [CrossRef]
- Lakmal, K.; Yasawardene, P.; Jayarajah, U.; Seneviratne, S.L. Nutritional and Medicinal Properties of Star Fruit (Averrhoa carambola): A Review. Food Sci. Nutr. 2021, 9, 1810–1823. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, H.; Jiang, Y.; Wei, X. Flavan-3-Ols and 2-Diglycosyloxybenzoates from the Leaves of Averrhoa carambola. Fitoterapia 2020, 140, 104442. [Google Scholar] [CrossRef] [PubMed]
- Soncini, R.; Santiago, M.B.; Orlandi, L.; Moraes, G.O.I.; Peloso, A.L.M.; dos Santos, M.H.; Alves-da-Silva, G.; Paffaro, V.A.; Bento, A.C.; Giusti-Paiva, A. Hypotensive Effect of Aqueous Extract of Averrhoa carambola L. (Oxalidaceae) in Rats: An in Vivo and in Vitro Approach. J. Ethnopharmacol. 2011, 133, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huang, R.; Gong, Y.; Park, H.S.; Wen, Q.; Almosnid, N.M.; Chippada-Venkata, U.D.; Hosain, N.A.; Vick, E.; Farone, A.; et al. The Antidiabetic Compound 2-Dodecyl-6-Methoxycyclohexa-2,5-Diene-1,4-Dione, Isolated from Averrhoa carambola L., Demonstrates Significant Antitumor Potential against Human Breast Cancer Cells. Oncotarget 2015, 6, 24304–24319. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, H.; Wei, X.; Huang, X.; Chen, L.; Jiang, L.; Wu, X.; Zhou, X.; Qin, L.; Li, Y.; et al. 2-Dodecyl-6-Methoxycyclohexa-2,5-Diene-1,4-Dione Isolated from Averrhoa carambola L. Root Ameliorates Diabetic Nephropathy by Inhibiting the TLR4/MyD88/NF-ΚB Pathway. Diabetes Metab. Syndr. Obes. 2019, 12, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lu, S.; Chen, L.; Huang, X.; Jiang, L.; Li, Y.; Liao, P.; Wu, X.; Zhou, X.; Qin, L.; et al. 2-Dodecyl-6-Methoxycyclohexa-2,5-Diene-1,4-Dione, Isolated from the Root of Averrhoa carambola L., Protects against Diabetic Kidney Disease by Inhibiting TLR4/TGFβ Signaling Pathway. Int. Immunopharmacol. 2020, 80, 106120. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sharma, J.; Goyal, P.K. Prophylactic Role of Averrhoa Carambola (Star Fruit) Extract against Chemically Induced Hepatocellular Carcinoma in Swiss Albino Mice. Adv. Pharmacol. Sci. 2014, 2014, 158936. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Jyoti Sharma, J.; Goyal, P.K. Chemopreventive and Antioxidative Effects of Averrhoa carambola (Star Fruit) Extract against Diethylnitrosamine Induced Hepatocarcinogenesis. Cancer Biol. Treat. 2014, 1, 1–7. [Google Scholar] [CrossRef]
- Pham, H.T.T.; Huang, W.; Han, C.; Li, J.; Xie, Q.; Wei, J.; Xu, X.; Lai, Z.; Huang, X.; Huang, R.; et al. Effects of Averrhoa carambola L. (Oxalidaceae) Juice Mediated on Hyperglycemia, Hyperlipidemia, and Its Influence on Regulatory Protein Expression in the Injured Kidneys of Streptozotocin-Induced Diabetic Mice. Am. J. Transl. Res. 2017, 9, 36–49. [Google Scholar] [PubMed]
- Ali, M.; Wani, S.U.D.; Salahuddin, M.; Manjula, S.N.; Mruthunjaya, K.; Dey, T.; Zargar, M.I.; Singh, J. Recent Advance of Herbal Medicines in Cancer- a Molecular Approach. Heliyon 2023, 9, e13684. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jia, X.; Xie, H.; Wei, X. Dihydrochalcone C-Glycosides from Averrhoa carambola Leaves. Phytochemistry 2020, 174, 112364. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fuentes, G.A.; García-Argáez, A.N.; Peraza Campos, A.L.; Delgado-Enciso, I.; Muñiz-Valencia, R.; Martínez-Martínez, F.J.; Toninello, A.; Gómez-Sandoval, Z.; Mojica-Sánchez, J.P.; Dalla Via, L.; et al. Cytotoxic Acetogenins from the Roots of Annona purpurea. Int. J. Mol. Sci. 2019, 20, 1870. [Google Scholar] [CrossRef] [PubMed]
- Oloya, B.; Namukobe, J.; Ssengooba, W.; Afayoa, M.; Byamukama, R. Phytochemical Screening, Antimycobacterial Activity and Acute Toxicity of Crude Extracts of Selected Medicinal Plant Species Used Locally in the Treatment of Tuberculosis in Uganda. Trop Med. Health 2022, 50, 16. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Gadhwal, M.; Joshi, U.; Srivastava, S.; Govil, G. Modifying Effect of Quercetin on Model Biomembranes: Studied by Molecular Dynamic Simulation, DSC and NMR. Int. J. Curr. Pharm. Res. 2012, 4, 70–79. [Google Scholar]
- Pang, D.; You, L.; Zhou, L.; Li, T.; Zheng, B.; Liu, R.H. Averrhoa carambola Free Phenolic Extract Ameliorates Nonalcoholic Hepatic Steatosis by Modulating MircoRNA-34a, MircoRNA-33 and AMPK Pathways in Leptin Receptor-Deficient Db/Db Mice. Food Funct. 2017, 8, 4496–4507. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Wakeel, A.; Jan, S.A.; Ullah, I.; Shinwari, Z.K.; Xu, M. Solvent Polarity Mediates Phytochemical Yield and Antioxidant Capacity of Isatis tinctoria. PeerJ 2019, 7, e7857. [Google Scholar] [CrossRef] [PubMed]
- Jafri, L.; Saleem, S.; Ihsan-ul-Haq; Ullah, N.; Mirza, B. In Vitro Assessment of Antioxidant Potential and Determination of Polyphenolic Compounds of Hedera nepalensis K. Koch. Arab. J. Chem. 2017, 10, S3699–S3706. [Google Scholar] [CrossRef]
- Mehwish, S.; Islam, A.; Ullah, I.; Wakeel, A.; Qasim, M.; Khan, M.A.; Ahmad, A.; Ullah, N. In Vitro Antileishmanial and Antioxidant Potential, Cytotoxicity Evaluation and Phytochemical Analysis of Extracts from Selected Medicinally Important Plants. Biocatal. Agric. Biotechnol. 2019, 19, 101117. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chong, K.L.; Tan, J.B.L.; Wong, S.K. Antioxidant Properties of Tropical and Temperate Herbal Teas. J. Food Compos. Anal. 2010, 23, 185–189. [Google Scholar] [CrossRef]
- Chu, J.; Ming, Y.; Cui, Q.; Zheng, N.; Yang, S.; Li, W.; Gao, H.; Zhang, R.; Cheng, X. Efficient Extraction and Antioxidant Activity of Polyphenols from Antrodia cinnamomea. BMC Biotechnol. 2022, 22, 9. [Google Scholar] [CrossRef]
- Moharram, F.A.; Marzouk, M.S.; El-Shenawy, S.M.; Gaara, A.H.; El Kady, W.M. Polyphenolic Profile and Biological Activity of Salvia splendens Leaves. J. Pharm. Pharmacol. 2012, 64, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evid.-Based Complement. Altern. Med. 2015, 2015, 165457. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous Determination of All Polyphenols in Vegetables, Fruits, and Teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef] [PubMed]
- George, V.C.; Kumar, D.R.N.; Suresh, P.K.; Kumar, R.A. Antioxidant, DNA Protective Efficacy and HPLC Analysis of Annona muricata (Soursop) Extracts. J. Food Sci. Technol. 2015, 52, 2328–2335. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fuentes, G.A.; Peraza Campos, A.L.; Ceballos-Magaña, S.G.; Muñiz-Valencia, R.; Parra-Delgado, H. HPLC-DAD Method for the Detection of Five Annopurpuricins in Root Samples of Annona purpurea. Phytochem. Anal. 2020, 31, 472–479. [Google Scholar] [CrossRef]
- Orhan, I.E. Pharmacognosy: Science of Natural Products in Drug Discovery. BioImpacts 2017, 4, 109–110. [Google Scholar] [CrossRef] [PubMed]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing Total Phenolics, Total Flavonoids Contents and Antioxidant Activity of Moringa oleifera Leaf Extract by the Appropriate Extraction Method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Ross, K.A.; Beta, T.; Arntfield, S.D. A Comparative Study on the Phenolic Acids Identified and Quantified in Dry Beans Using HPLC as Affected by Different Extraction and Hydrolysis Methods. Food Chem. 2009, 113, 336–344. [Google Scholar] [CrossRef]
- Hernández-Rangel, A.E.; Cabrera-Licona, A.; Hernandez-Fuentes, G.A.; Beas-Guzmán, O.F.; Martínez-Martínez, F.J.; Alcalá-Pérez, M.A.; Montes-Galindo, D.A.; Rodriguez-Sanchez, I.P.; Martinez-Fierro, M.L.; Casarez-Price, J.C.; et al. Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line. Biomedicines 2024, 12, 1804. [Google Scholar] [CrossRef]
- Cabrera-Licona, A.; Paz-García, J.; Guzmán, O.F.B.; Delgado-Enciso, I.; Paz-Michel, B.A. Neutral Electrolyzed Water Decreases Triple-Negative Breast Cancer Cell Viability, Clonogenic Survival, Adhesion, Migration, and 3-D Spheroid Growth. J. Cancer Sci. Clin. Ther. 2024, 8, 83–94. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Cappiello, F.; Casciaro, B.; Mangoni, M.L. A Novel In Vitro Wound Healing Assay to Evaluate Cell Migration. J. Vis. Exp. 2018, 133, 56825. [Google Scholar] [CrossRef]
- Gebäck, T.; Schulz, M.M.P.; Koumoutsakos, P.; Detmar, M. TScratch: A Novel and Simple Software Tool for Automated Analysis of Monolayer Wound Healing Assays. Biotechniques 2009, 46, 265–274. [Google Scholar] [CrossRef]
- Weitz-Schmidt, G.; Chreng, S. Cell Adhesion Assays. In Methods in Molecular Biology, Integrin and Cell Adhesion Molecules; Humana Press, Springer Science+Business Media: Basel, Switzerland, 2011; Volume 757, pp. 15–30. [Google Scholar]
- Kucik, D.F.; Wu, C. Cell-Adhesion Assays. In Cell Migration; Humana Press: Totowa, NJ, USA, 2005; pp. 043–054. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Bergazin, T.D.; Tielker, N.; Zhang, Y.; Mao, J.; Gunner, M.R.; Francisco, K.; Ballatore, C.; Kast, S.M.; Mobley, D.L. Evaluation of Log P, PKa, and Log D Predictions from the SAMPL7 Blind Challenge. J. Comput. Aided Mol. Des. 2021, 35, 771–802. [Google Scholar] [CrossRef] [PubMed]
- Galvan-Salazar, H.R.; Delgado-Machuca, M.; Hernandez-Fuentes, G.A.; Aurelien-Cabezas, N.S.; Rodriguez-Hernandez, A.; Garza-Veloz, I.; Mendoza-Hernandez, M.A.; Martinez-Fierro, M.L.; Zaizar-Fregoso, S.A.; Rodriguez-Sanchez, I.P.; et al. Effects of Common Anti-Inflammatories on Adenovirus Entry and Their Physicochemical Properties: An In-Depth Study Using Cellular and Animal Models. Microbiol. Res. 2024, 15, 1590–1604. [Google Scholar] [CrossRef]
- Rosner, B. Fundamentals of Biostatistics/Bernard Rosner, 7th ed.; Cengage Learning,: Boston, MA, USA, 2011; Volume 1. [Google Scholar]
- Sisa, M.; Bonnet, S.L.; Ferreira, D.; Van der Westhuizen, J.H. Photochemistry of Flavonoids. Molecules 2010, 15, 5196–5245. [Google Scholar] [CrossRef] [PubMed]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman Fingerprints of Flavonoids—A Review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.K.; Nguyen, H.V.H. Effects of Juice Processing on Oxalate Contents in Carambola Juice Products. Plant Foods Hum. Nutr. 2017, 72, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Avinash, P.; Swapneel, K.; Darshana, P.; Anita, P. A Comprehensive Review of An Important Medicinal Plant—Averrhoa carambola L. Pharmacogn. Commun. 2012, 2, 13–17. [Google Scholar] [CrossRef]
- Monache, F.D.; Mac-Quhae, M.M.; Monache, G.D.; Bettolo, G.B.M.; De Lima, R.A. Xanthones, Xanthonolignoids and Other Constituents of the Roots of Vismia guaramirangae. Phytochemistry 1983, 22, 227–232. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S. Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.Y.; Guarnieri, F.G.; Staveley-O’Carroll, K.F.; Levitsky, H.I.; August, J.T.; Pardoll, D.M.; Wu, T.C. Treatment of Established Tumors with a Novel Vaccine That Enhances Major Histocompatibility Class II Presentation of Tumor Antigen. Cancer Res. 1996, 56, 21–26. [Google Scholar]
- Harrigan, P.R.; Wong, K.F.; Redelmeier, T.E.; Wheeler, J.J.; Cullis, P.R. Accumulation of Doxorubicin and Other Lipophilic Amines into Large Unilamellar Vesicles in Response to Transmembrane PH Gradients. Biochim. Et Biophys. Acta (BBA)—Biomembr. 1993, 1149, 329–338. [Google Scholar] [CrossRef]
- Matyszewska, D.; Zaborowska, M.; Fontaine, P. Is Lipophilicity the Main Factor Determining the Effective Drug Penetration through Lipid Membranes? Combined GIXD and PM-IRRAS Studies on the Example of Anthracyclines. J. Mol. Liq. 2023, 385, 122324. [Google Scholar] [CrossRef]
- Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Influence of Membrane Lipid Composition on Flavonoid–Membrane Interactions: Implications on Their Biological Activity. Prog. Lipid. Res. 2015, 58, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Siddika, A.; Zahan, T.; Khatun, M.L.; Habib, M.; Aziz, M.; Tareq, A.R.; Rahman, M.; Karim, M. In Vivo the Antioxidative Extract of Averrhoa carambola Linn. Leaves Induced Apoptosis in Ehrilch Ascites Carcinoma by Modulating P53 Expression. Food Sci. Biotechnol. 2020, 29, 1251–1260. [Google Scholar] [CrossRef]
- Yayan, J.; Franke, K.-J.; Berger, M.; Windisch, W.; Rasche, K. Adhesion, Metastasis, and Inhibition of Cancer Cells: A Comprehensive Review. Mol. Biol. Rep. 2024, 51, 165. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Iwahashi, H.; Xie, H.-H.; Wang, Y.; Zhou, Y.-Y.; Kiso, A.; Kawashima, Y.; Wei, X.-Y. Star Fruit Extract and C-Glycosylated Flavonoid Components Have Potential to Prevent Air Pollutant-Induced Skin Inflammation and Premature Aging. Nat. Prod. Bioprospect. 2022, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Sun, Y.; Tang, Y.; Yu, Y.; Wang, J.; Zheng, F.; Li, Y.; Sun, Y. Catechins: Protective Mechanism of Antioxidant Stress in Atherosclerosis. Front. Pharmacol. 2023, 14, 1144878. [Google Scholar] [CrossRef]
- Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising Natural Compounds against Viral Infections. Arch. Virol. 2017, 162, 2539–2551. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M.; Singh, S.K.; Gulati, M.; Chellappan, D.K.; Zacconi, F.; De Rubis, G.; Gupta, G.; Sharifi-Rad, J.; Cho, W.C.; et al. Luteolin: A Flavonoid with a Multifaceted Anticancer Potential. Cancer Cell Int. 2022, 22, 386. [Google Scholar] [CrossRef]
- Bolaños, V.; Díaz-Martínez, A.; Soto, J.; Rodríguez, M.A.; López-Camarillo, C.; Marchat, L.A.; Ramírez-Moreno, E. The Flavonoid (−)-Epicatechin Affects Cytoskeleton Proteins and Functions in Entamoeba histolytica. J. Proteom. 2014, 111, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Kotik, M.; Kulik, N.; Valentová, K. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. J. Agric. Food Chem. 2023, 71, 14890–14910. [Google Scholar] [CrossRef] [PubMed]
- AL-Ishaq, R.K.; Liskova, A.; Kubatka, P.; Büsselberg, D. Enzymatic Metabolism of Flavonoids by Gut Microbiota and Its Impact on Gastrointestinal Cancer. Cancers 2021, 13, 3934. [Google Scholar] [CrossRef] [PubMed]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Saghir, S.A.M.; Abdulghani, M.A.M.; Alruhaimi, R.S.; Ahmeda, A.F.; Al-Gabri, N.A.; Alomaisi, S.A.M.A.; Sadikun, A.; Murugaiyah, V.; Mahmoud, A.M. Acute and Sub-Chronic Toxicological Evaluation of Averrhoa carambola Leaves in Sprague Dawley Rats. Environ. Sci. Pollut. Res. 2022, 29, 90058–90069. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Xu, H.; Hu, D.; Xie, C.; Liu, S.-M.; Hu, L.; Xu, D.-L.; Zhao, C.; Yuan, F.-W. Traditional Medicine in Cancer: What Is New in 2022. Tradit. Med. Res. 2023, 8, 47. [Google Scholar] [CrossRef]
- Geer Wallace, M.A.; McCord, J.P. High-Resolution Mass Spectrometry. In Breathborne Biomarkers and the Human Volatilome; Elsevier: Amsterdam, The Netherlands, 2020; pp. 253–270. [Google Scholar]
- Kaufmann, A. High Mass Resolution Versus MS/MS. In TOF-MS within Food and Environmental Analysis; Elsevier: Amsterdam, The Netherlands, 2012; pp. 169–215. [Google Scholar]
- Biswal, R.P.; Patnana, D.P.; Vutukuri, V.N.R.K. Metabolic Profiling of Averrhoa carambola Fruit Extract Using UHPLC-ESI-QTOF-MS and Determination of the Concentration of Essential Elements Using MP-AES. Anal. Chem. Lett. 2022, 12, 505–527. [Google Scholar] [CrossRef]
- Ramadan, N.S.; Fayek, N.M.; El-Sayed, M.M.; Mohamed, R.S.; Wessjohann, L.A.; Farag, M.A. Averrhoa carambola L. Fruit and Stem Metabolites Profiling and Immunostimulatory Action Mechanisms against Cyclosporine Induced Toxic Effects in Rat Model as Analyzed Using UHPLC/MS-MS-Based Chemometrics and Bioassays. Food Chem. Toxicol. 2023, 179, 114001. [Google Scholar] [CrossRef] [PubMed]
- Akula, R.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
Metabolites | A. carambola Ethanolic Extract |
---|---|
Tannins (FeCl3) | − |
Tannins (gelatin hydrolysis) | − |
Flavonoids (Shinoda test) | +++ |
Flavonoids (Salkowski test) | +++ |
Marini Bettolo Test | purple precipitate |
Steroids | ++ |
Alkaloids (Dragendorff test) | − |
Alkaloids (Wagner test) | − |
Alkaloids (Mayer test) | − |
Saponins (hemolysis in agar) | +++ |
Saponins (foam formation) | ++ |
Coumarins (NaOH test) | − |
TFC a | QE = 103.17 ± 7.84 µg/mg extract |
FRPA b | % age reduction = 3.69 ± 0.37 |
TAC c | % age TAC = 45.18 ± 1.27 |
TPC d | GAE = 667.00 ± 11.00 µg/mg extract |
DPPH e | Scavenging effect = 50.59 ± 5.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beas-Guzmán, O.F.; Cabrera-Licona, A.; Hernández-Fuentes, G.A.; Ceballos-Magaña, S.G.; Guzmán-Esquivel, J.; De-León-Zaragoza, L.; Ramírez-Flores, M.; Diaz-Martinez, J.; Garza-Veloz, I.; Martínez-Fierro, M.L.; et al. Ethanolic Extract of Averrhoa carambola Leaf Has an Anticancer Activity on Triple-Negative Breast Cancer Cells: An In Vitro Study. Pharmaceutics 2025, 17, 2. https://doi.org/10.3390/pharmaceutics17010002
Beas-Guzmán OF, Cabrera-Licona A, Hernández-Fuentes GA, Ceballos-Magaña SG, Guzmán-Esquivel J, De-León-Zaragoza L, Ramírez-Flores M, Diaz-Martinez J, Garza-Veloz I, Martínez-Fierro ML, et al. Ethanolic Extract of Averrhoa carambola Leaf Has an Anticancer Activity on Triple-Negative Breast Cancer Cells: An In Vitro Study. Pharmaceutics. 2025; 17(1):2. https://doi.org/10.3390/pharmaceutics17010002
Chicago/Turabian StyleBeas-Guzmán, Oscar F., Ariana Cabrera-Licona, Gustavo A. Hernández-Fuentes, Silvia G. Ceballos-Magaña, José Guzmán-Esquivel, Luis De-León-Zaragoza, Mario Ramírez-Flores, Janet Diaz-Martinez, Idalia Garza-Veloz, Margarita L. Martínez-Fierro, and et al. 2025. "Ethanolic Extract of Averrhoa carambola Leaf Has an Anticancer Activity on Triple-Negative Breast Cancer Cells: An In Vitro Study" Pharmaceutics 17, no. 1: 2. https://doi.org/10.3390/pharmaceutics17010002
APA StyleBeas-Guzmán, O. F., Cabrera-Licona, A., Hernández-Fuentes, G. A., Ceballos-Magaña, S. G., Guzmán-Esquivel, J., De-León-Zaragoza, L., Ramírez-Flores, M., Diaz-Martinez, J., Garza-Veloz, I., Martínez-Fierro, M. L., Rodríguez-Sanchez, I. P., Ceja-Espíritu, G., Meza-Robles, C., Cervantes-Kardasch, V. H., & Delgado-Enciso, I. (2025). Ethanolic Extract of Averrhoa carambola Leaf Has an Anticancer Activity on Triple-Negative Breast Cancer Cells: An In Vitro Study. Pharmaceutics, 17(1), 2. https://doi.org/10.3390/pharmaceutics17010002