Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study
<p>Nucleotide sequence of cDNA encoding precursor and corresponding amino acid residues of PSTO2. The signal peptide is labelled with double underlines, the amino acid composition of PSTO2 is marked with a bold line, and the termination codon is indicated by an asterisk.</p> "> Figure 2
<p>Alignment of the peptide encoding precursor of PSTO2 and two highly similar mature peptides (phylloseptin-B2 and phylloseptin-PT) sequences of the phylloseptin family. The signal peptide sequences are highlighted in the blue box, the acid spacer regions are highlighted in the green box, and the mature peptides are highlighted in the red box. The conserved motif ‘FLSLIP’ in phylloseptins is highlighted in yellow. The asterisks (*) represent identical amino acid sequences, the colons (:) indicate conservation between groups with very similar properties, and the full stops indicate conservation between groups with weakly similar properties.</p> "> Figure 3
<p>Predicted helical wheels of PSTO2 and its analogues (<b>a</b>–<b>i</b>). Each arrow indicates the hydrophobic face of the peptide. Different colours represent the various properties of the amino acids (yellow: hydrophobic residues; grey: non-polar residue; other colours: corresponding amino acids).</p> "> Figure 4
<p>CD spectra of PSTO2 and its analogues in (<b>a</b>) 50% TFE/NH<sub>4</sub>Ac solution and (<b>b</b>) 10 mM of NH<sub>4</sub>Ac. CD spectra data are displayed as measured ellipticity in mdeg units.</p> "> Figure 5
<p>The kinetic time–killing curves of PSTO2 and its analogues against MRSA and <span class="html-italic">E. coli</span> at a concentration of 1/2× MIC. Bacteria treated with only a culture medium were used as the negative control. The error bar indicates the SEM of the nine replicates from three repeated tests.</p> "> Figure 6
<p>The permeability of bacterial membranes affected by PSTO2 and its selected analogues against (<b>a</b>) <span class="html-italic">S. aureus</span> and (<b>b</b>) MRSA. For the positive control, 16 μM of melittin was used. The error bar indicates the SEM of the nine replicates from three individual tests.</p> "> Figure 7
<p>The outer membrane permeability ratio of PSTO2 and its analogues against <span class="html-italic">E. coli</span> (ATCC 8739). Bacteria incubated with 16 μM of melittin were used as the positive control. The error bar indicates the SEM of the nine replicates from three repeated tests.</p> "> Figure 8
<p>LPS-binding capacity of PSTO2 and its four analogues at different concentrations. Melittin was used as the positive control. The error bar indicates the SEM of the nine replicates from three individual tests.</p> "> Figure 9
<p>The survival rates of MRSA-infected <span class="html-italic">Galleria mellonella</span> larvae after treatment with PSTO2 (<b>a</b>), SRD7 (<b>b</b>), and SR2D10 (<b>c</b>). The infected larvae treated with corresponding vancomycin concentrations were set up as the positive control. The infected larvae treated with PBS were regarded as the negative control.</p> "> Figure 9 Cont.
<p>The survival rates of MRSA-infected <span class="html-italic">Galleria mellonella</span> larvae after treatment with PSTO2 (<b>a</b>), SRD7 (<b>b</b>), and SR2D10 (<b>c</b>). The infected larvae treated with corresponding vancomycin concentrations were set up as the positive control. The infected larvae treated with PBS were regarded as the negative control.</p> "> Figure 10
<p>The cytotoxicity of different concentrations of PSTO2 and its analogues expressed by trypan blue targeting H838 human lung cancer cells. Each peptide was prepared separately for 5 μM, 10 μM, and 25 μM for 2, 6, and 24 h. The extent of cytotoxicity was indicated by the ratio of dead cells and total cells. The error bar indicates the SEM of the nine replicates from three individual tests.</p> "> Figure 11
<p>The haemolytic activities of PSTO2 and its analogues at concentrations from 1 to 128 μM. For the positive control, 1% triton X-100 was used, and the haemolytic percentage was calculated based on this. Treatment with PBS was used as the negative control. The error bar indicates the SEM of the nine replicates from three individual tests.</p> "> Figure 12
<p>The mode of action of PSTO2 and lysine-substituted peptide with bacteria cell membrane.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Skin Secretion in Phyllomedusa tomopterna
2.2. Identification of Precursor-Encoding cDNA of PSTO2
2.3. Peptide Design and Physicochemical Characteristics Prediction
2.4. Peptide Synthesis and Identification of PSTO2 and Its Analogues
2.5. Secondary Structure Detection by Circular Dichroism (CD) Spectroscopy
2.6. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Screening Assays
2.7. Minimum Biofilm Inhibitory Concentration (MBIC) and Minimum Biofilm Eradication Concentration (MBEC) Evaluation
2.8. Time-Killing Kinetic Assays
2.9. Salt and Serum Sensitivity Detection
2.10. Sytox Green Permeability Assays
2.11. Outer Membrane Permeability Assays
2.12. Membrane Potential Assays
2.13. In Vivo Antimicrobial Activity of Peptides
2.14. Anti-Proliferative Effect Evaluation
2.15. Trypan Blue Exclusion Assays
2.16. Haemolysis Activity Evaluation
2.17. Statistical Analysis
3. Results
3.1. Shotgun Cloning of PSTO2 Precursor Encoding cDNA from Phyllomedusa tomopterna Frog Skin Secretion
3.2. Rational Design and Property Analysis
3.3. Peptide Synthesis and Identification
3.4. Secondary Structure Analysis of PSTO2 and Its Analogues
3.5. Screening of MIC and MBC of PSTO2 and Its Analogues
3.6. Inhibition and Eradication Ability against Biofilm of PSTO2 and Its Analogues
3.7. Salt and Serum Sensitivity
3.8. Time-Killing Kinetics of PSTO2 and Effective Analogues against MRSA and E. coli
3.9. Sytox Green Inclusion against Gram-Positive Bacteria by PSTO2 and Selected Analogues
3.10. NPN Outer Membrane Permeability
3.11. LPS Neutralization
3.12. In Vivo Antimicrobial Activity in Galleria mellonella Model
3.13. Anti-Proliferation Activity against Cancer and Normal Cells
3.14. Trypan Blue Exclusion Activity
3.15. Haemolytic Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huemer, M.; Mairpady Shambat, S.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2018, 42, 68–80. [Google Scholar] [CrossRef]
- Pancu, D.F.; Scurtu, A.; Macasoi, I.G.; Marti, D.; Mioc, M.; Soica, C.; Coricovac, D.; Horhat, D.; Poenaru, M.; Dehelean, C. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity—A Pharmaco-Toxicological Screening. Antibiotics 2021, 10, 401. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Kwiatkowska, A.; Potocki, L. Antibiotics and Bacterial Resistance—A Short Story of an Endless Arms Race. Int. J. Mol. Sci. 2023, 24, 5777. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ. Res. 2022, 212 Pt B, 113267. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.M.P.D.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Rödenbeck, M.; Ayobami, O.; Eckmanns, T.; Pletz, M.W.; Bleidorn, J.; Markwart, R. Clinical epidemiology and case fatality due to antimicrobial resistance in Germany: A systematic review and meta-analysis, 1 January 2010 to 31 December 2021. Euro Surveill. 2023, 28, 2200672. [Google Scholar] [CrossRef]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, D.; Wang, J.; Chen, X.; Zhou, M.; Xi, X.; Cheng, J.; Ma, C.; Chen, T.; Shaw, C.; et al. A Novel Amphibian Antimicrobial Peptide, Phylloseptin-PV1, Exhibits Effective Anti-staphylococcal Activity Without Inducing Either Hepatic or Renal Toxicity in Mice. Front. Microbiol. 2020, 11, 565158. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, H.; Chen, X.; Zhou, M.; Wei, M.; Xi, X.; Ma, C.; Du, Q.; Chen, T.; Shaw, C.; et al. A Novel Antimicrobial Peptide (Kassinatuerin-3) Isolated from the Skin Secretion of the African Frog, Kassina senegalensis. Biology 2020, 9, 148. [Google Scholar] [CrossRef]
- Zou, W.; Zhang, Y.; Zhou, M.; Chen, X.; Ma, C.; Wang, T.; Jiang, Y.; Chen, T.; Shaw, C.; Wang, L. Exploring the active core of a novel antimicrobial peptide, palustrin-2LTb, from the Kuatun frog, Hylarana latouchii, using a bioinformatics-directed approach. Comput. Struct. Biotechnol. J. 2022, 20, 6192–6205. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L.; Miele, R.; Renda, T.G.; Barra, D.; Simmaco, M. The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J. 2001, 15, 1431–1432. [Google Scholar] [CrossRef] [PubMed]
- Leite, J.R.; Silva, L.P.; Rodrigues, M.I.; Prates, M.V.; Brand, G.D.; Lacava, B.M.; Azevedo, R.B.; Bocca, A.L.; Albuquerque, S.; Bloch, C., Jr. Phylloseptins: A novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides 2005, 26, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Ma, C.; Zhou, M.; Xi, X.; Li, L.; Wu, D.; Wang, L.; Lin, C.; Lopez, J.C.; Chen, T.; et al. Phylloseptin-PBa—A Novel Broad-Spectrum Antimicrobial Peptide from the Skin Secretion of the Peruvian Purple-Sided Leaf Frog (Phyllomedusa Baltea) Which Exhibits Cancer Cell Cytotoxicity. Toxins 2015, 7, 5182–5193. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Du, Q.; Ma, C.; Xi, X.; Wang, L.; Zhou, M.; Burrows, J.F.; Chen, T.; Wang, H. Structure-activity relationship of an antimicrobial peptide, Phylloseptin-PHa: Balance of hydrophobicity and charge determines the selectivity of bioactivities. Drug Des. Dev. Ther. 2019, 13, 447–458. [Google Scholar] [CrossRef]
- Brand, G.D.; Santos, R.C.; Arake, L.M.; Silva, V.G.; Veras, L.M.; Costa, V.; Costa, C.H.; Kuckelhaus, S.S.; Alexandre, J.G.; Feio, M.J.; et al. The skin secretion of the amphibian Phyllomedusa nordestina: A source of antimicrobial and antiprotozoal peptides. Molecules 2013, 18, 7058–7070. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, L.; Zhou, M.; Chen, T.; Shaw, C. Phylloseptin-PBa1, -PBa2, -PBa3: Three novel antimicrobial peptides from the skin secretion of Burmeister’s leaf frog (Phyllomedusa burmeisteri). Biochem. Biophys. Res. Commun. 2019, 509, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Garvey, M. Antimicrobial Peptides Demonstrate Activity against Resistant Bacterial Pathogens. Infect. Dis. Rep. 2023, 15, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Zai, Y.; Xi, X.; Ye, Z.; Ma, C.; Zhou, M.; Chen, X.; Siu, S.W.I.; Chen, T.; Wang, L.; Kwok, H.F. Aggregation and Its Influence on the Bioactivities of a Novel Antimicrobial Peptide, Temporin-PF, and Its Analogues. Int. J. Mol. Sci. 2021, 22, 4509. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, Y.; Shu, A.; Jiang, Y.; Chen, X.; Ma, C.; Zhou, M.; Wang, T.; Chen, T.; Shaw, C.; et al. A Novel Antimicrobial Peptide, Dermaseptin-SS1, with Anti-Proliferative Activity, Isolated from the Skin Secretion of Phyllomedusa tarsius. Molecules 2023, 28, 6558. [Google Scholar] [CrossRef]
- Yao, A.; Liu, T.; Cai, Y.; Zhou, S.; Chen, X.; Zhou, M.; Ma, C.; Chen, T.; Shaw, C.; Wang, L. Progressive Design of a Ranatuerin-2 Peptide from Amolops wuyiensis: Enhancement of Bioactivity and In Vivo Efficacy. Antibiotics 2024, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ouyang, J.; Fu, L.; Xu, C.; Ge, Y.; Sun, S.; Li, X.; Lai, S.; Ke, H.; Yuan, B.; et al. Hydrophobicity Determines the Bacterial Killing Rate of α-Helical Antimicrobial Peptides and Influences the Bacterial Resistance Development. J. Med. Chem. 2022, 65, 14701–14720. [Google Scholar] [CrossRef]
- Wang, G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 2008, 283, 32637–32643. [Google Scholar] [CrossRef] [PubMed]
- Ludtke, S.J.; He, K.; Heller, W.T.; Harroun, T.A.; Yang, L.; Huang, H.W. Membrane pores induced by magainin. Biochemistry 1996, 35, 13723–13728. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Saravanan, R.; Kwak, S.K.; Leong, S.S.J. Biomolecular engineering of a human beta defensin model for increased salt resistance. Chem. Eng. Sci. 2013, 95, 128–137. [Google Scholar] [CrossRef]
- Dou, X.; Zhu, X.; Wang, J.; Dong, N.; Shan, A. Novel Design of Heptad Amphiphiles To Enhance Cell Selectivity, Salt Resistance, Antibiofilm Properties and Their Membrane-Disruptive Mechanism. J. Med. Chem. 2017, 60, 2257–2270. [Google Scholar] [CrossRef]
- López Cascales, J.J.; Zenak, S.; García de la Torre, J.; Lezama, O.G.; Garro, A.; Enriz, R.D. Small Cationic Peptides: Influence of Charge on Their Antimicrobial Activity. ACS Omega 2018, 3, 5390–5398. [Google Scholar] [CrossRef] [PubMed]
- Stone, T.A.; Cole, G.B.; Ravamehr-Lake, D.; Nguyen, H.Q.; Khan, F.; Sharpe, S.; Deber, C.M. Positive Charge Patterning and Hydrophobicity of Membrane-Active Antimicrobial Peptides as Determinants of Activity, Toxicity, and Pharmacokinetic Stability. J. Med. Chem. 2019, 62, 6276–6286. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Lazaridis, T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim. Biophys. Acta 2012, 1818, 1274–1283. [Google Scholar] [CrossRef]
- Sela, M.; Zisman, E. Different roles of D-amino acids in immune phenomena. FASEB J. 1997, 11, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Pratap Verma, D.; Ansari, M.M.; Verma, N.K.; Saroj, J.; Akhtar, S.; Pant, G.; Mitra, K.; Singh, B.N.; Ghosh, J.K. Tandem Repeat of a Short Human Chemerin-Derived Peptide and Its Nontoxic d-Lysine-Containing Enantiomer Display Broad-Spectrum Antimicrobial and Antitubercular Activities. J. Med. Chem. 2021, 64, 15349–15366. [Google Scholar] [CrossRef] [PubMed]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Gong, H.; Hu, X.; Liao, M.; Fa, K.; Ciumac, D.; Clifton, L.A.; Sani, M.-A.; King, S.M.; Maestro, A.; Separovic, F.; et al. Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides. ACS Appl. Mater. Interfaces 2021, 13, 16062–16074. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente-Núñez, C.; Reffuveille, F.; Fernández, L.; Hancock, R.E.W. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 2013, 16, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Maiden, M.M.; Waters, C.M. Triclosan depletes the membrane potential in Pseudomonas aeruginosa biofilms inhibiting aminoglycoside induced adaptive resistance. PLOS Pathog. 2020, 16, e1008529. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Cheng, X.; Wang, Y.; Luo, J. Effect of different D-amino acids on biofilm formation of mixed microorganisms. Water Sci. Technol. 2021, 85, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Hochbaum, A.I.; Kolodkin-Gal, I.; Foulston, L.; Kolter, R.; Aizenberg, J.; Losick, R. Inhibitory Effects of d-Amino Acids on Staphylococcus aureus Biofilm Development. J. Bacteriol. 2011, 193, 5616–5622. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.I.; Le Brun, A.P.; Whitwell, T.C.; Sani, M.-A.; James, M.; Separovic, F. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys. Chem. Chem. Phys. 2012, 14, 15739–15751. [Google Scholar] [CrossRef] [PubMed]
- Pálffy, R.; Gardlík, R.; Behuliak, M.; Kadasi, L.; Turna, J.; Celec, P. On the Physiology and Pathophysiology of Antimicrobial Peptides. Mol. Med. 2009, 15, 51–59. [Google Scholar] [CrossRef]
- Bos, M.P.; Robert, V.; Tommassen, J. Biogenesis of the gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 2007, 61, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020, 25, 2850. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.M.; Barji, D.S.; Aziz, S.; McChesney, D.A.; Bagde, S.; Muttil, P.; Kunda, N.K. Pulmonary delivery of spray-dried Nisin ZP antimicrobial peptide for non-small cell lung cancer (NSCLC) treatment. Int. J. Pharm. 2023, 634, 122641. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhou, Y.; Li, S.; Li, H.; Tian, L.; Wang, H.; Shang, D. Anticancer mechanisms of temporin-1CEa, an amphipathic α-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life Sci. 2013, 92, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Li, M.; Liu, C.; Wang, J.; Ou, X.; Han, Y. Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability. Int. J. Mol. Sci. 2022, 23, 12732. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, X. Cytochrome c Promotes Caspase-9 Activation by Inducing Nucleotide Binding to Apaf-1. J. Biol. Chem. 2000, 275, 31199–31203. [Google Scholar] [CrossRef]
Peptide | Sequence | Net Charge | Hydrophobicity |
---|---|---|---|
PSTO2 | FLSLIPHAISAVSALAKHL-NH2 | 1 | 0.764 |
PSTO2-7K | FLSLIPKAISAVSALAKHL-NH2 | 2 | 0.705 |
PSTO2-18K | FLSLIPKAISAVSALAKKL-NH2 | 3 | 0.646 |
PSTO2-SR | FLSLIPKAIKAVSALAKKL-NH2 | 4 | 0.596 |
PSTO2-SR2 | FLSLIPKAIKAVKALAKKL-NH2 | 5 | 0.546 |
PSTO2-D1 | FLSLIPKdAIKdAVSALAKKdL-NH2 | 4 | 0.596 |
PSTO2-D2 | FLSLIPKdAIKdAVKdALAKdKdL-NH2 | 5 | 0.546 |
PSTO2-SRD7 | FLSLIPKdAIKAVSALAKKL-NH2 | 4 | 0.596 |
PSTO2-SR2D10 | FLSLIPKdAIKAVKALAKKdL-NH2 | 5 | 0.546 |
Peptide | 50% TFE/10 mM of NH4Ac | 10 mM of NH4Ac | ||||
---|---|---|---|---|---|---|
α Helix (%) | β Strand (%) | Others (%) | α Helix (%) | β Strand (%) | Others (%) | |
PSTO2 | 95.36 | 0.02 | 4.62 | 1.86 | 8.93 | 89.21 |
7K | 95.14 | 0.02 | 4.84 | 13.82 | 6.42 | 79.76 |
18K | 95.36 | 0.02 | 4.62 | 1.84 | 8.94 | 89.22 |
SR | 95.09 | 0.02 | 4.89 | 9.19 | 6.83 | 83.98 |
SR2 | 95.10 | 0.02 | 4.88 | 2.81 | 8.41 | 88.78 |
SRD7 | 94.34 | 0.01 | 5.65 | 1.82 | 9.24 | 88.94 |
SR2D10 | 83.88 | 0.04 | 16.08 | 1.80 | 9.21 | 88.99 |
D1 | 66.21 | 0.20 | 33.59 | 1.77 | 9.22 | 89.01 |
D2 | 54.71 | 0.90 | 44.39 | 1.26 | 10.21 | 88.53 |
PSTO2 | 7K | 18K | SR | SR2 | SRD7 | SR2D10 | D1 | D2 | Mellitin | ||
---|---|---|---|---|---|---|---|---|---|---|---|
MIC/MBC (μM) | |||||||||||
Gram-positive | S. aureus (ATCC 6538) | 2/4 | 4/4 | 2/4 | 2/2 | 2/2 | 1/1 | 1/1 | >128 | >128 | 2/2 |
MRSA (NCTC 12493) | 8/16 | 4/8 | 4/4 | 2/2 | 2/2 | 1/2 | 1/1 | >128 | >128 | 2/2 | |
Gram-negative | E. coli (ATCC 8739) | 16/32 | 8/8 | 4/4 | 2/2 | 2/2 | 2/2 | 2/2 | 32/32 | 16/32 | 4/4 |
A. baumannii (BAA 747) | >128 | >128 | 32/32 | 4/4 | 2/2 | 16/16 | 16/16 | 32/32 | 16/16 | NA | |
K. pneumonia (ATCC 43816) | 64/128 | 8/8 | 16/16 | 2/2 | 2/2 | 4/4 | 4/4 | 128/128 | 128/128 | 32/32 | |
P. aeruginosa (ATCC 9027) | >128 | 32/32 | 32/64 | 16/32 | 16/32 | 16/16 | 32/32 | 32/32 | 16/16 | 16/32 | |
Yeast | C. albicans | 32/128 | 32/64 | 32/128 | 32/128 | 32/64 | 32/64 | 64/128 | >128 | >128 | NA |
MIC/MBC (μg/mL) | |||||||||||
Gram-positive | S. aureus (ATCC 6538) | 4.0/8.0 | 7.9/7.9 | 3.9/7.9 | 4.0/4.0 | 4.1/4.1 | 2.0/2.0 | 2.1/2.1 | >257.3 | >262.5 | 5.7/5.7 |
MRSA (NCTC 12493) | 15.9/31.8 | 7.9/15.8 | 7.9/7.9 | 4.0/4.0 | 4.1/4.1 | 2.0/4.0 | 2.1/2.1 | >257.3 | >262.5 | 5.7/5.7 | |
Gram-negative | E. coli (ATCC 8739) | 31.8/63.6 | 15.8/15.8 | 7.9/7.9 | 4.0/4.0 | 4.1/4.1 | 4.0/4.0 | 4.1/4.1 | 64.3/64.3 | 32.8/65.6 | 11.4/11.4 |
A. baumannii (BAA 747) | >254.3 | >253.2 | 63/63 | 8.0/8.0 | 4.1/4.1 | 32.2/32.2 | 32.8/32.8 | 64.3/64.3 | 32.8/32.8 | NA | |
K. pneumonia (ATCC 43816) | 127.2/254.3 | 15.8/15.8 | 31.5/31.5 | 4.0/4.0 | 4.1/4.1 | 8.0/48.0 | 8.2/48.2 | 257.3/257.3 | 262.5/262.5 | 91.1/91.1 | |
P. aeruginosa (ATCC 9027) | >254.3 | 63.3/63.3 | 63/126 | 32.2/64.3 | 32.8/65.6 | 32.2/32.2 | 65.6/65.6 | 64.3/64.3 | 32.8/32.8 | 45.5/91.1 | |
Yeast | C. albicans | 63.9/254.3 | 63.3/126.6 | 63/252.1 | 64.3/257.3 | 65.6/131.3 | 64.3/128.7 | 131.3/262.5 | >257.3 | >262.5 | NA |
PSTO2 | 7K | 18K | SR | SR2 | SRD7 | SR2D10 | ||
---|---|---|---|---|---|---|---|---|
MBIC (μM)/MBEC (μM) | ||||||||
Gram-positive | S. aureus (ATCC 6538) | 8/32 | 16/32 | 8/32 | 2/16 | 2/16 | 2/32 | 4/32 |
MRSA (ATCC 12493) | 4/32 | 4/32 | 4/32 | 2/16 | 2/16 | 4/16 | 16/32 | |
Gram-negative | E. coli (ATCC 8739) | 32/>128 | 16/64 | 32/64 | 16/16 | 8/16 | 32/64 | 32/64 |
S. aureus (ATCC 6538) | ||||||||
MIC (μM)/MBC (μM) | ||||||||
Peptide | Medium | NaCl | KCl | NH4Cl | CaCl2 | MgCl2 | FeCl3 | 10% FBS |
PSTO2 | 2/4 | 8/8 | 16/16 | 64/64 | 16/32 | 16/64 | 16/16 | 8/16 |
SR | 2/2 | 1/1 | 1/1 | 2/2 | 2/4 | 2/2 | 1/2 | 2/2 |
SR2 | 2/2 | 2/2 | 2/2 | 2/2 | 2/2 | 2/2 | 2/2 | 2/2 |
SRD7 | 1/1 | 4/4 | 2/2 | 2/2 | 2/2 | 2/2 | 2/2 | 2/2 |
SR2D10 | 1/1 | 4/4 | 2/2 | 2/2 | 2/2 | 2/2 | 2/2 | 2/2 |
E. coli (ATCC 8739) | ||||||||
MIC (μM)/MBC (μM) | ||||||||
Peptide | Medium | NaCl | KCl | NH4Cl | CaCl2 | MgCl2 | FeCl3 | 10% FBS |
PSTO2 | 16/32 | 64/128 | 32/64 | 32/128 | >128>128 | 32/64 | 16/16 | >128 |
SR | 2/2 | 16/32 | 4/4 | 2/4 | 16/32 | 2/4 | 2/2 | 8/16 |
SR2 | 2/2 | 4/4 | 4/4 | 4/4 | 8/16 | 4/4 | 2/2 | 8/16 |
SRD7 | 2/2 | 8/8 | 4/4 | 2/4 | 64/64 | 8/8 | 2/2 | 8/8 |
SR2D10 | 2/2 | 4/4 | 4/4 | 2/4 | 32/32 | 4/4 | 2/2 | 8/8 |
IC50 (μM) | ||||||
---|---|---|---|---|---|---|
NCI-H838 | NCI-H460 | U251MG | MCF-7 | MRC-5 | HaCat | |
PSTO2 | 85.79 | 78.28 | 84.03 | 23.10 | 73.22 | 70.58 |
SR | 2.88 | 3.07 | 9.65 | 6.05 | 6.98 | 4.13 |
SR2 | 3.13 | 5.92 | 6.72 | 7.83 | 6.56 | 3.48 |
SRD7 | 3.32 | 2.31 | 13.86 | 15.18 | 77.28 | 77.89 |
SR2D10 | 9.49 | 7.70 | 16.05 | 26.38 | 74.39 | 84.03 |
PSTO2 | SR | SR2 | SRD7 | SR2D10 | |
---|---|---|---|---|---|
SI(MRC-5)/SI(HaCat) * | |||||
H838 | 0.85/0.82 | 2.39/1.43 | 2.09/1.11 | 23.28/23.46 | 7.84/8.85 |
H460 | 0.94/0.90 | 2.27/1.35 | 1.11/0.59 | 33.45/33.72 | 9.66/10.91 |
U251MG | 0.87/0.84 | 0.72/0.43 | 0.98/0.52 | 5.58/5.62 | 4.63/5.24 |
MCF-7 | 3.17/3.06 | 1.15/0.68 | 0.84/0.44 | 5.09/5.13 | 2.82/3.19 |
Peptide | HC10 | GM MIC (G+/G−/Yeast) | TI Value under HC10 |
---|---|---|---|
PSTO2 | 21.78 | 4/128/32 | 5.45/0.17/0.68 |
7K | 21.97 | 4/32/32 | 5.49/0.69/0.69 |
18K | 20.59 | 2.8/16/32 | 7.35/1.29/0.64 |
SR | 12.60 | 2/4/32 | 6.3/3.15/0.39 |
SR2 | 6.53 | 2/3.4/32 | 3.27/1.92/0.2 |
SRD7 | 74.78 | 1/6.7/32 | 74.78/11.16/2.34 |
SR2D10 | 75.24 | 1/8/64 | 75.24/9.41/1.18 |
D1 | Not significant | 512/45.3/512 | N/A |
D2 | Not significant | 512/27/512 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, W.; Yao, J.; Leng, X.; Ma, C.; Chen, X.; Jiang, Y.; Wang, T.; Chen, T.; Shaw, C.; Zhou, M.; et al. Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics 2024, 16, 1098. https://doi.org/10.3390/pharmaceutics16081098
Yin W, Yao J, Leng X, Ma C, Chen X, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, et al. Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics. 2024; 16(8):1098. https://doi.org/10.3390/pharmaceutics16081098
Chicago/Turabian StyleYin, Weining, Junting Yao, Xuwei Leng, Chengbang Ma, Xiaoling Chen, Yangyang Jiang, Tao Wang, Tianbao Chen, Chris Shaw, Mei Zhou, and et al. 2024. "Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study" Pharmaceutics 16, no. 8: 1098. https://doi.org/10.3390/pharmaceutics16081098
APA StyleYin, W., Yao, J., Leng, X., Ma, C., Chen, X., Jiang, Y., Wang, T., Chen, T., Shaw, C., Zhou, M., & Wang, L. (2024). Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics, 16(8), 1098. https://doi.org/10.3390/pharmaceutics16081098