Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach
Abstract
:1. Introduction
- Elucidate the mechanisms by which scaffold-based systems enhance drug delivery and effectiveness compared to conventional techniques
- Highlight the advantages of scaffold-based drug delivery systems over other targeted delivery methods, such as nanoparticles and nanolipids
- Discuss the current state of research and potential future directions for scaffold-based therapies in oral cancer treatment
2. The Role of Scaffold-Based Drug Delivery in Oral Cancer Treatment
3. How Do Scaffold-Based Drug Delivery Systems Compare to Other Targeted Drug Delivery Systems in Oral Cancer Treatment?
- Targeted or localized delivery: ensures high drug concentration at the tumor site while minimizing systemic exposure
- Controlled and sustained release: maintains therapeutic drug levels over extended periods, reducing the need for frequent dosing
- Responsive release mechanisms: delivers drugs in response to specific tumor-related triggers, enhancing precision
- Supportive microenvironment: promotes tissue regeneration and overall healing in the affected area
- Multifaceted therapeutic approach: incorporates bioactive molecules to enhance the overall therapeutic effect
4. Different Types of Scaffold-Based Drug Delivery in Oral Cancer Treatment
4.1. Three-Dimensional (3D) Scaffolds
- Natural Scaffolds
- Synthetic Scaffolds
- Scaffold-Free Strategies/Scaffold-Based Strategies
4.2. Anti-Cancer Drugs Coated Scaffolds
- Natural scaffolds: natural materials such as collagen, Matrigel, and silk have been investigated for their potential for targeted drug delivery systems [52].
- Nanocarriers: scaffolds can be formulated as nanocarriers containing nanoparticles and nanolipids to enable the regulated delivery and release of therapeutic agents [52].
4.3. Injectable Self-Assembling Peptide Scaffold Hydrogels
4.4. Dual Drug-Loaded Nanofibrous Scaffolds
4.5. Smart Scaffolds
- Release of medication: smart scaffolds are designed to release drugs gradually and evenly, ensuring direct delivery of therapeutic agents to the affected region. This reduces the risk of side effects and increases the effectiveness of the treatment [80].
- Cell-friendly surface: once the drug is released, the scaffolds become non-toxic and cell-friendly, allowing non-cancerous cells to adhere and proliferate [80]. This property is particularly important for the treatment of oral cavity cancer, as it helps to fill the volume left by the removed tumor and promote tissue regeneration.
- Sequential therapy: The smart scaffolds can be designed to release multiple drugs or therapeutic agents simultaneously. This enables the development of combination therapies that can improve the efficacy of oral cancer treatment [53].
- Controlled degradation: The scaffolds can be structured with time-dependent degradation profiles that allow the controlled distribution of drugs over an extended period of time [53]. This property is crucial to maintain the therapeutic effect while reducing the potential for side effects.
5. Future Outlook and Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kanaani, L.; Tabrizi, M.M.; Khiyavi, A.A.; Javadi, I. Improving the Efficacy of Cisplatin using Niosome Nanoparticles against Human Breast Cancer Cell Line BT-20: An In Vitro Study. Asian Pac. J. Cancer Biol. 2017, 2, 27–29. [Google Scholar] [CrossRef]
- Roudsari, M.H.; Saeidi, N.; Kabiri, N.; Ahmadi, A.; Tabrizi, M.M.; Shahmabadi, H.E.; Khiyavi, A.A.; Reghbati, B. Investigation of Characteristics and Behavior of Loaded Carboplatin on the, Liposomes Nanoparticles, on the Lung and Ovarian Cancer: An In-Vitro Evaluation. Asian Pac. J. Cancer Biol. 2016, 1, 9. [Google Scholar] [CrossRef]
- Milani, A.T.; Rashidi, S.; Mahmoudi, R.; Douna, B.K. Cytotoxic Activity of Epigallocatechin and Trans-Cinnamaldehyde in Gastric Cancer Cell Line. Asian Pac. J. Cancer Biol. 2019, 4, 71–74. [Google Scholar] [CrossRef]
- Aliakba, S. Anticancer, antimicrobial, anti-inflammatory, and neuroprotective effects of bisdemethoxycurcumin: Micro and nano facets. Micro Nano Bio. Asp. 2023, 2, 17–24. [Google Scholar]
- Ebrahimifar, M.; Hasanzadegan Roudsari, M.; Kazemi, S.M.; Ebrahimi Shahmabadi, H.; Kanaani, L.; Alavi, S.A.; Izadi Vasfi, M. Enhancing Effects of Curcumin on Cytotoxicity of Paclitaxel, Methotrexate and Vincristine in Gastric Cancer Cells. Asian Pac. J. Cancer Prev. 2017, 18, 65–68. [Google Scholar] [PubMed]
- Poy, D.; Akbarzadeh, A.; Shahmabadi, H.E.; Ebrahimifar, M.; Farhangi, A.; Zarabi, M.F.; Akbari, A.; Saffari, Z.; Siami, F. Preparation, characterization, and cytotoxic effects of liposomal nanoparticles containing cisplatin: An in vitro study. Chem. Biol. Drug Des. 2016, 88, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi, N.; Kazemi, S.M.; Mohammadian, M.; Milani, A.T.; Moradi, Y.; Yasemi, M.; Far, M.E.; Tabrizi, M.M.; Shahmabadi, H.E.; Khiyavi, A.A. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: Anionic polymerization results. Asian Pac. J. Cancer Prev. 2017, 18, 629–632. [Google Scholar] [PubMed]
- Vogel, D.W.T.; Zbaeren, P.; Thoeny, H.C. Cancer of the oral cavity and oropharynx. Cancer Imaging 2010, 10, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Saberian, E.; Jenča, A.; Petrášová, A.; Jenčová, J.; Jahromi, R.A.; Seiffadini, R. Oral Cancer at a Glance. Asian Pac. J. Cancer Biol. 2023, 8, 379–386. [Google Scholar] [CrossRef]
- Jlili Sdrabad, M.; Ghahremanfard, F.; Sohanian, S.; Mobarhan, M.; Nabavi, A.; Saberian, E. Knowledge and Attitude of Cancer Patient’s Companions towards Chemotherapy and Radiotherapy-induced Oral Complications and Dental Considerations. Iran. Red. Crescent Med. J. 2023, 25, e2133. [Google Scholar] [CrossRef]
- Sadrabad, M.J.; Pedram, A.; Saberian, E.; Emami, R. Clinical efficacy of LLLT in treatment of trigeminal neuralgia–Case report. J. Oral Maxillofac. Surg. Med. Pathol. 2023, 35, 568–571. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral. Oncol. 2009, 45, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Heck, J.E.; Berthiller, J.; Vaccarella, S.; Winn, D.M.; Smith, E.M.; Shan’Gina, O.; Schwartz, S.M.; Purdue, M.P.; Pilarska, A.; Eluf-Neto, J.; et al. Sexual behaviours and the risk of head and neck cancers: A pooled analysis in the International Head and Neck Cancer Epidemiology (INHANCE) consortium. Int. J. Epidemiol. 2009, 39, 166–181. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, E.; Szybiak, B.; Wegner, A.; Pienkowski, P.; Pazdrowski, J.; Luczewski, L.; Sowka, M.; Golusinski, P.; Malicki, J.; Golusinski, W. Oral cavity and oropharyngeal squamous cell carcinoma in young adults: A review of the literature. Radiol. Oncol. 2014, 48, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nirvani, M.; Khuu, C.; Utheim, T.P.; Sand, L.P.; Sehic, A. Circadian clock and oral cancer. Mol. Clin. Oncol. 2018, 8, 219–226. [Google Scholar] [CrossRef]
- Adeola, H.A.; Papagerakis, P.; Papagerakis, S. System biology approaches and precision oral health: A circadian clock perspective. Front. Physiol. 2019, 10, 399. [Google Scholar] [CrossRef]
- Omura, K. Current status of oral cancer treatment strategies: Surgical treatments for oral squamous cell carcinoma. Int. J. Clin. Oncol. 2014, 19, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, N.; Ghazi, A.; Shafiee, S.; Fayyazi, M. Importance of depth of invasion in patients with oral squamous cell carcinoma: A review article. J. Orofac. Sci. 2018, 10, 3. [Google Scholar] [CrossRef]
- Altun, İ.; Sonkaya, A. The Most Common Side Effects Experienced by Patients Were Receiving First Cycle of Chemotherapy. Iran. J. Public Health 2018, 47, 1218–1219. [Google Scholar] [PubMed]
- Lu, Y.; Zheng, Z.; Yuan, Y.; Pathak, J.L.; Yang, X.; Wang, L.; Ye, Z.; Cho, W.C.; Zeng, M.; Wu, L. The emerging role of exosomes in oral squamous cell carcinoma. Front. Cell Dev. Biol. 2021, 9, 628103. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, I.P.; Barroso, L.; Marques, F.; Melo, J.B.; Carreira, I.M. Early detection and personalized treatment in oral cancer: The impact of omics approaches. Mol. Cytogenet. 2016, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Bugshan, A.; Farooq, I. Oral squamous cell carcinoma: Metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. Version 1. F1000Research 2020, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.; Jamal, A.; Teh, M.-T.; Waseem, A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. Front. Oral. Health 2020, 1, 603160. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, P.; Cole, B.F.; Price, K.N.; Gelber, R.D.; Coates, A.S.; Goldhirsch, A. Timing of radiotherapy and chemotherapy after breast-conserving surgery for node-positive breast cancer: Long term results from IBCSG Trials VI and VIIInt. J. Radiat. Oncol. Biol. Phys. 2016, 96, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Carey, M.; Hennessy, B.; Mills, G.B. PI3Kpathway- directed therapeutic strategies in cancer. Curr. Opin. Investig. Drugs 2010, 11, 615–628. [Google Scholar] [PubMed]
- Wu, H.-C.; Chang, D.-K.; Huang, C.-T. Targeted therapy for cancer. J. Cancer Mol. 2006, 2, 57–66. [Google Scholar]
- Khamaikawina, W.; Locharoenrat, K. Evaluation of a docetaxel-cisplatin-fluorouracil-Au complex in human oralcarcinoma cell line. Artif. Cells Nanomed. Biotechnol. 2023, 51, 148–157. [Google Scholar] [CrossRef]
- Kruijtzer, C.M.; Beijnen, J.H.; Schellens, J.H. Improvement of oral drug treatment by temporary inhibition of drug transporters and/or cytochrome P450 in the gastrointestinal tract and liver: An overview. Oncologist 2002, 7, 516–530. [Google Scholar] [CrossRef] [PubMed]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Mesure, B.; Menu, P.; Venkatesan, J.K.; Cucchiarini, M.; Velot, E. Biomaterials and gene therapy: A smart combination for MSC musculoskeletal engineering. Curr. Stem Cell Res. Ther. 2019, 14, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Hokmabad, V.R.; Davaran, S.; Ramazani, A.; Salehi, R. Design and fabrication of porous biodegradable scaffolds: A strategy for tissue engineering., J. Biomater. Sci. Polym. Ed. 2017, 28, 1797–1825. [Google Scholar] [CrossRef]
- Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 1246–1262. [Google Scholar] [CrossRef]
- Xu, K.; Ganapathy, K.; Andl, T.; Wang, Z.; Copland, J.A.; Chakrabarti, R.; Florczyk, S.J. 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines. Biomaterials 2019, 217, 119311. [Google Scholar] [CrossRef] [PubMed]
- Vanderburgh, J.; Sterling, J.A.; Guelcher, S.A. 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening. Ann. Biomed. Eng. 2017, 45, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef]
- Abedi Cham Heidari, Z.; Ghanbarikondori, P.; Mortazavi Mamaghani, E.; Haidari, A.; Saberian, E.; Mozaffari, E.; Alizadeh, M.; Allahyartorkaman, M. Characteristics and Cytotoxic Effects of Nano-Liposomal Paclitaxel on Gastric Cancer Cells. Asian Pac. J. Cancer Prev. 2023, 24, 3291–3296. [Google Scholar] [CrossRef]
- Gorgzadeh, A.; Hheidari, A.; Ghanbarikondori, P.; Arastonejad, M.; Goki, T.G.; Aria, M.; Allahyartorkaman, A.; Moazzam, F. Investigating the Properties and Cytotoxicity of Cisplatin-Loaded Nano-Polybutylcyanoacrylate on Breast Cancer Cells. Asian Pac. J. Cancer Biol. 2023, 4, 345–350. [Google Scholar] [CrossRef]
- Tangsiri, M.; Hheidari, A.; Liaghat, M.; Razlansari, M.; Ebrahimi, N.; Akbari, A.; Varnosfaderani, S.M.N.; Maleki-Sheikhabadi, F.; Norouzi, A.; Bakhtiyari, M.; et al. Promising applications of nanotechnology in inhibiting chemo-resistance in solid tumors by targeting epithelial-mesenchymal transition (EMT). Biomed. Pharmacother. J. 2024, 170, 115973. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Reihanisaransari, R.; Poustchi, F.; Hheidari, A.; Ghanbarikondori, P.; Salehi, H.; Salehi, V.; Izadkhah, M.; Moazzam, F.; Allahyartorkaman, M. Toxicity of Carboplatin-Niosomal Nanoparticles in a Brain Cancer Cell Line. Asian Pac. J. 2023, 24, 3985–3991. [Google Scholar] [CrossRef] [PubMed]
- Shineh, G.; Mobaraki, M.; Afzali, E.; Alakija, F.; Velisdeh, Z.J.; Mills, D.K. Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair. Biomed. Mater. Devices 2024. [Google Scholar] [CrossRef]
- Tavasolikejani, S.; Hosseini, S.M.; Ghiaci, M.; Vangijzegem, T.; Laurent, S. Copper nanoparticles embedded into nitrogen-doped carbon fiber felt as recyclable catalyst for benzene oxidation under mild conditions. Mol. Catal. 2024, 553, 113736. [Google Scholar] [CrossRef]
- Tavasolikejani, S.; Farazin, A. Fabrication and modeling of nanocomposites with bioceramic nanoparticles for rapid wound healing: An experimental and molecular dynamics investigation. Nanomed. Res. J. 2023, 8, 412–429. [Google Scholar] [CrossRef]
- Tavakolinejad; Zahra; Kamalabadi, Y.M.; Salehi, A. Comparison of the Shear Bond Strength of Orthodontic Composites Containing Silver and Amorphous Tricalcium Phosphate Nanoparticles: An ex vivo Study. J. Dent. 2023, 24, 285. [Google Scholar] [CrossRef]
- Badhe Ravindra, V.; Godse Anagha, K.; Shinkar Ankita, S.; Avinash, K.; Vikrant, P.; Archana, G.; Supriya, K. Development and characterization of conducting-polymer-based hydrogel dressing for wound healing. Turkish J. Pharm. Sci. 2021, 18, 483–491. [Google Scholar] [CrossRef]
- Badhe, R.V.; Bijukumar, D.; Chejara, D.R.; Mabrouk, M.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Kondiah, P.P.; Pillay, V. A composite chitosan-gelatin Bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering. Carbohydr. Polym. 2017, 3, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Zardad, A.; Mabrouk, M.; Marimuthu, M.; du Toit, L.C.; Kumar, P.; Choonara, Y.E.; Kondiah, P.P.D.; Badhe Ravindra, V.; Chejara, D.R.; Pillay, V. Synthesis, and biocompatibility of dual-responsive thermosonic injectable organogels based on crosslinked N-(isopropyl acrylamide) for tumour microenvironment targeting. Mater. Sci. Eng. C 2018, 90, 148–158. [Google Scholar] [CrossRef]
- Shkarina, S.; Shkarin, R.; Weinhardt, V.; Melnik, E.; Vacun, G.; Kluger, P.J.; Loza, K.; Epple, M.; Ivlev, S.I.; Baumbach, T.; et al. 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: High-resolution tomography and in vitro study. Sci. Rep. 2018, 8, 8907. [Google Scholar] [CrossRef]
- Shahriar, S.M.S.; Andrabi, S.M.; Islam, F.; An, J.M.; Schindler, S.J.; Matis, M.P.; Lee, D.Y.; Lee, Y.-K. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022, 14, 2712. [Google Scholar] [CrossRef]
- Ketabat, F.; Pundir, M.; Mohabatpour, F.; Lobanova, L.; Koutsopoulos, S.; Hadjiiski, L.; Chen, X.; Papagerakis, P.; Papagerakis, S. Controlled Drug Delivery Systems for Oral Cancer Treatment—Current Status and Future Perspectives. Pharmaceutics 2019, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liang, J. Current Trends of Targeted Drug Delivery for Oral Cancer Therapy. Front. Bioeng. Biotechnol. 2020, 8, 618931. [Google Scholar] [CrossRef]
- Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Siraj, E.A. Targeted drug delivery—From magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc. 2021, 14, 1711. [Google Scholar] [CrossRef] [PubMed]
- Layek, B.; Sadhukha, T.; Panyam, J.; Prabha, S. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol. Cancer Ther. 2018, 17, 1196–1206. [Google Scholar] [CrossRef]
- Huang, Z.; Xiao, H.; Lu, X.; Yan, W.; Ji, Z. Enhanced photo/chemo combination efficiency against bladder tumor by encapsulation of DOX and ZnPC into in situ-formed thermosensitive polymer hydrogel. Int. J. Nanomed. 2018, 13, 7623. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.A.; Danti, S. Biomaterial-based implantable devices for cancer therapy. Adv. Healthc. Mater. 2017, 6, 1600766. [Google Scholar] [CrossRef] [PubMed]
- Alsuraifi, A.; Curtis, A.; Lamprou, D.A.; Hoskins, C. Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics 2018, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, R.; Abnous, K.; Alibolandi, M.; Mosafer, J.; Dehghani, S.; Taghdisi, S.M.; Ramezani, M. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci. Rep. 2021, 11, 13065. [Google Scholar] [CrossRef]
- Zhang, K.; Fang, Y.; He, Y.; Yin, H.; Guan, X.; Pu, Y.; Zhou, B.; Yue, W.; Ren, W.; Du, D. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat. Commun. 2019, 10, 5380. [Google Scholar] [CrossRef]
- Chen, K.; Chen, X. Integrin targeted delivery of chemotherapeutics. Theranostics 2011, 1, 189. [Google Scholar] [CrossRef] [PubMed]
- Taherian, A.; Esfandiari, N.; Rouhani, S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnol. 2021, 12, 15. [Google Scholar] [CrossRef]
- Lei, N.; Gong, C.; Qian, Z.; Luo, F.; Wang, C.; Wang, H.; Wei, Y. Therapeutic application of injectable thermosensitive hydrogel in preventing local breast cancer recurrence and improving incision wound healing in a mouse model. Nanoscale 2012, 4, 5686–5693. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, S.; Liu, L.; Li, S.; Zeng, Q.; Zhao, X.; Li, H.; Zhang, Z.; Bouchard, L.-S.; Liu, M. Increasing cancer therapy efficiency through targeting and localized light activation. ACS Appl. Mater. Interfaces 2017, 9, 23400–23408. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Sahoo, S.K. Polymeric nanoparticles for cancer therapy. J. Drug Target. 2008, 16, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sarkar, C.; Panja, S.; Khatua, C.; Gugulothu, K.; Sil, D. Biomimetic Nanocomposites for Biomedical Applications. In Biorenewable Nanocomposite Materials, Vol. 1: Electrocatalysts and Energy Storage; ACS Publications: Washington, DC, USA, 2022; pp. 163–196. [Google Scholar]
- Nunes, D.; Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Polymeric Nanoparticles-Loaded Hydrogels for Biomedical Applications: A Systematic Review on in Vivo Findings. Polymers 2022, 14, 1010. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.W.; Bae, Y.H. EPR: Evidence and fallacy. J. Control. Release 2014, 190, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Caro, C.; Avasthi, A.; Paez-Muñoz, J.M.; Leal, M.P.; García-Martín, M.L. Passive targeting of high-grade gliomas via the EPR effect: A closed path for metallic nanoparticles? Biomater. Sci. 2021, 9, 7984–7995. [Google Scholar] [CrossRef] [PubMed]
- Golombek, S.K.; May, J.-N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. [Google Scholar] [CrossRef]
- Huynh, E.; Zheng, G. Cancer nanomedicine: Addressing the dark side of the enhanced permeability and retention effect. Nanomedicine 2015, 10, 1993–1995. [Google Scholar] [CrossRef]
- Ovais, M.; Mukherjee, S.; Pramanik, A.; Das, D.; Mukherjee, A.; Raza, A.; Chen, C. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment. Adv. Mater. 2020, 32, 2000055. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, D.-Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev. 2015, 81, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ruiz, A.G.; Ganem, A.; Olivares-Corichi, I.M.; García-Sánchez, J.R. Lecithin–chitosan–TPGS nanoparticles as nanocarriers of (−)-epicatechin enhanced its anticancer activity in breast cancer cells. RSC Adv. 2018, 8, 34773–34782. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.-l.; Wang, M.-f.; Li, B.-z.; Lu, Z.-f.; Nie, G.-j.; Li, S.-p. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells. Acta Pharmacol. Sin. 2020, 41, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Mendez, F.B.; Medrano, F.J.E.; Pariona, N.; de Leon Gomez, R.D.; Romero, J.L.O. Recent Progress in Antitumoral Nanotechnology. Int. J. Nanopart. Nanotech 2015, 1, 1. [Google Scholar]
- Basak, D.; Arrighi, S.; Darwiche, Y.; Deb, S. Comparison of Anticancer Drug Toxicities: Paradigm Shift in Adverse Effect Profile. Life 2021, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.-y.; Tian, Y.; Liu, Z.-j. Injectable hydrogels for localized cancer therapy. Front. Chem. 2019, 7, 675. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Agrawal, V.; Prasad, B.L. Development of a Smart Scaffold for Sequential Cancer Chemotherapy and Tissue Engineering. ACS Omega 2020, 5, 20724–20733. [Google Scholar] [CrossRef]
- Shin, G.R.; Kim, H.E.; Kim, J.H.; Choi, S.; Kim, M.S. Advances in injectable in situ-forming hydrogels for intratumoral treatment. Pharmaceutics 2021, 13, 1953. [Google Scholar] [CrossRef]
- Gupta, A.A.; Kheur, S.; Badhe, R.V.; Varadarajan, S.; Shekatkar, M.; Patil, V.R.; Godse, A.; Bhonde, R. Potential use of anti-cancer drugs coated scaffolds for local drug delivery in cancer cell lines. Oral. Oncol. Rep. 2023, 6, 100032. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Du, H.; Li, Z.; Bai, X.; Wu, Y.; Li, H.; Zhou, M.; Cao, Y.; Chen, X. Nano-Drug Delivery Systems in Oral Cancer Therapy: Recent Developments and Prospective. Pharmaceutics 2024, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, Y.; Li, B.; Xia, Y.; Wang, H.; Fu, C. Implantable and Injectable Biomaterial Scaffolds for Cancer Immunotherapy. Front. Bioeng. Biotechnol. 2020, 8, 612950. [Google Scholar] [CrossRef] [PubMed]
- Girard, Y.K.; Wang, C.; Ravi, S.; Howell, M.C.; Mallela, J.; Alibrahim, M.; Green, R.; Hellermann, G.; Mohapatra, S.S.; Mohapatra, S. A 3D Fibrous Scaffold Inducing Tumoroids: A Platform for Anticancer Drug Development. PLoS ONE 2013, 8, e75345. [Google Scholar] [CrossRef] [PubMed]
- Abdolahinia, E.D.; Han, X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers 2023, 15, 4266. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Wu, J. Three-dimensional (3D) scaffolds as powerful weapons for tumor immunotherapy. Bioact. Mater. 2022, 17, 300–319. [Google Scholar] [CrossRef] [PubMed]
- Almela, T.; Tayebi, L.; Moharamzadeh, K. 3D Bioprinting for In Vitro Models of Oral Cancer: Toward Development and Validation. Bioprinting 2021, 22, e00132. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Karczewski, J.; Eder, P.; Kolanowski, T.; Szalata, M.; Wielgus, K.; Szalata, M.; Kim, D.; Shin, S.R.; Słomski, R.; et al. Scaffolds for drug delivery and tissue engineering: The role of genetics. J. Control. Release 2023, 359, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, D.; Wu, Z.; Wang, Q.; Ma, Z.; Zhang, C. Research Progress and Prospect of Nanoplatforms for Treatment of Oral Cancer. Front. Pharmacol. 2020, 11, 616101. [Google Scholar] [CrossRef]
- Mei, Y.; He, C.; Gao, C.; Zhu, P.; Lu, G.; Li, H. 3D-Printed Degradable Anti-Tumor Scaffolds for Controllable Drug Delivery. Int. J. Bioprint 2021, 7, 418. [Google Scholar] [CrossRef]
- Hernandez, A.; Hartgerink, J.D.; Young, S. Self-assembling peptides as immunomodulatory biomaterials. Front. Bioeng. Biotechnol. 2023, 11, 1139782. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res. 2018, 22, 27. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-J.; Cheng, J.; Zhang, L.-Y.; Zhang, J.-G. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: Recent developments, challenges, and future perspectives. Drug Deliv. 2022, 29, 1184–1200. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, G.; Thangavelu, M.; Felciya, S.J.G.; Sivagnanam, U.T. Dual drug loaded polyhydroxy butyric acid/gelatin nanofibrous scaffold for possible post-surgery cancer treatment. Mater. Lett. 2022, 323, 132597. [Google Scholar] [CrossRef]
- Jalili Sadrabad, M.; Saberian, E.; Saberian, E.; Behrad, S. Gingival bullae—A rare visible case report. J. Res. Appl. Basic Med. Sci. 2024, 10, 31–34. [Google Scholar] [CrossRef]
- Sabarian, E.; JaliliSadrabad, M.; Petrasova, A.; Izadi, A. Dental Pulp Stem Cells in Pulp Regeneration. SunText Rev. Med. Clin. Res. 2021, 2, 140. [Google Scholar] [CrossRef]
- Sadrabad, M.J.; Saberian, E. Plasma Therapy for Medication-Related Osteonecrosis of the Jaws–a Case Report. Case Rep. Clin. Pract. 2023, 8, 1–4. [Google Scholar] [CrossRef]
- Sadrabad, M.J.; Saberian, E.; Izadi, A.; Emami, R.; Ghadyani, F. Success in Tooth Bud Regeneration: A Short Communication. J. Endod. 2024, 50, 351–354. [Google Scholar] [CrossRef]
- Sadrabad, M.; Taher, A.; Izadi, A.; Ghorbani, R.; Sohanian, S.; Saberian, E. The effect of dentin matrix proteins on differentiation of autologous guinea pig dental pulp stem cells. J. Sci. Soc. 2023, 50, 214–219. [Google Scholar] [CrossRef]
Treatment Method | Drug Delivery System | Key Outcomes | Advantages | Limitations |
---|---|---|---|---|
Conventional Chemotherapy | Intravenous | High systemic toxicity, non-specific | Established method, rapid distribution | Severe side effects, non-targeted |
Nanoparticle-Based Delivery | Nanoparticles | Improved targeting, reduced toxicity | Enhanced EPR effect, customizable | Complex fabrication, potential toxicity |
Scaffold-Based Delivery | 3D Scaffolds | Sustained release, targeted delivery | Reduced side effects, multifunctional | Manufacturing complexity, potential immune response |
Injectable Hydrogels | Self-assembling peptides | Prolonged drug release, localized delivery | Minimally invasive, biocompatible | Stability issues, potential for uneven drug distribution |
Drug-Coated Scaffolds | Coated with anti-cancer drugs | Inhibition of cancer cell proliferation | Localized delivery, reduced systemic exposure | Risk of scaffold degradation, need for precise engineering |
Scaffold Material | Type (Natural/ Synthetic) | Key Properties | Applications in Oral Cancer Treatment |
---|---|---|---|
Collagen | Natural | Biocompatible, promotes cell adhesion | Used for creating 3D scaffolds to support tissue regeneration and drug delivery |
Matrigel | Natural | Rich in ECM proteins, supports cell growth | Applied in tumor models for drug testing and delivery |
Silk | Natural | High tensile strength, biocompatible | Used in scaffolds for controlled drug release and tissue engineering |
Polyethylene Glycol (PEG) | Synthetic | Hydrophilic, biocompatible, tunable degradation rate | Used in hydrogels for sustained drug release and provides robust support for cell growth |
Poly(lactic-co-glycolic acid) (PLGA) | Synthetic | Biodegradable, controllable degradation rate | Utilized in nanoparticles for targeted drug delivery, mimics physiological environment |
Chitosan | Natural | Biodegradable, antimicrobial properties | Used for creating injectable hydrogels for local drug delivery |
Mechanism of Drug Release | Description | Advantages |
---|---|---|
Diffusion-Controlled Release | Drug diffuses out of the scaffold matrix over time | Provides sustained release, reduces dosing frequency |
pH-Triggered Release | Drug release is triggered by changes in pH (e.g., acidic tumor microenvironment) | Enhances specificity, minimizes systemic toxicity |
Temperature-Triggered Release | Drug release occurs in response to temperature changes | Allows for controlled release in response to body temperature |
Enzyme-Triggered Release | Drug release is initiated by specific enzymes present in the tumor microenvironment | Targeted delivery, reduces off-target effects |
Self-Assembling Peptide Hydrogels | Peptides self-assemble into hydrogels that release drugs over time | Prolonged release, biocompatible, injectable form |
Scaffold Type | Key Properties | Applications in Oral Cancer Treatment |
---|---|---|
Natural Scaffolds | Biocompatible, supports cell growth | Targeted drug delivery, tumor modeling, tissue regeneration |
Synthetic Scaffolds | Tunable properties, robust support for cells | Controlled drug release, mimicking physiological environment, sequential therapy |
Anti-Cancer Drug-Coated Scaffolds | Localized drug delivery, inhibition of cancer cell growth | Localized chemotherapy, reduced systemic side effects |
Injectable Self-Assembling Peptide Hydrogels | Prolonged drug release, customizable | Localized and sustained drug delivery, improved drug availability |
Dual Drug-Loaded Nanofibrous Scaffolds | Sustained release of multiple drugs, synergistic effects | Postoperative cancer treatment, targeted therapy |
Smart Scaffolds | Sequential drug release, cell-friendly surfaces | Combination therapies, tissue regeneration, controlled degradation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saberian, E.; Jenča, A.; Petrášová, A.; Zare-Zardini, H.; Ebrahimifar, M. Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach. Pharmaceutics 2024, 16, 802. https://doi.org/10.3390/pharmaceutics16060802
Saberian E, Jenča A, Petrášová A, Zare-Zardini H, Ebrahimifar M. Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach. Pharmaceutics. 2024; 16(6):802. https://doi.org/10.3390/pharmaceutics16060802
Chicago/Turabian StyleSaberian, Elham, Andrej Jenča, Adriána Petrášová, Hadi Zare-Zardini, and Meysam Ebrahimifar. 2024. "Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach" Pharmaceutics 16, no. 6: 802. https://doi.org/10.3390/pharmaceutics16060802
APA StyleSaberian, E., Jenča, A., Petrášová, A., Zare-Zardini, H., & Ebrahimifar, M. (2024). Application of Scaffold-Based Drug Delivery in Oral Cancer Treatment: A Novel Approach. Pharmaceutics, 16(6), 802. https://doi.org/10.3390/pharmaceutics16060802