Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions
Abstract
:1. Introduction
1.1. Search Strategy
1.2. Leading Infectious Diseases Covered and the Selection Rationale
2. Key Considerations for Paediatric Drug Delivery
3. The Oral Cavity as a Channel for Drug Administration
4. Selected Paediatric Infectious Diseases
4.1. Group A Streptococcus Pharyngitis
4.2. Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS)
4.3. Pneumococcal Diseases
4.4. Helicobacter pylori Infections
4.5. Clostridioides (Formerly Clostridium) difficile Infection
4.6. Pertussis (Whooping Cough)
4.7. Influenza (Type A and B)
4.8. Giardiasis
4.9. Tuberculosis
5. Currents Trends and Gaps
6. Future Possibilities
6.1. Three-Dimensional-Printing Technology
6.2. Nipple-Shield and Milk-Based Delivery Systems
6.3. Lipid-Based Nanoformulations
6.4. Polymeric Nanoformulations
6.5. Metallic Nanoparticles
7. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Abat, C.; Chaudet, H.; Rolain, J.M.; Colson, P.; Raoult, D. Traditional and syndromic surveillance of infectious diseases and pathogens. Int. J. Infect. Dis. 2016, 48, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Kruger, H.G.; Maguire, G.E.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017, 4, 105–131. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S. The psychology of pandemics. Annu. Rev. Clin. Psychol. 2022, 18, 581–609. [Google Scholar] [CrossRef] [PubMed]
- Kendra, R.K.; Dooley, K.E.; Dodd, P.J.; Garcia-Prats, A.J.; McKenna, L.; Hesseling, A.C.; Savic, R.M. Alternative dosing guidelines to improve outcomes in childhood tuberculosis: A mathematical modelling study. Lancet Child Adolesc. Health 2019, 3, 636–645. [Google Scholar]
- Sosnik, A.; Seremeta, K.P.; Imperiale, J.C.; Chiappetta, D.A. Novel formulation and drug delivery strategies for the treatment of paediatric poverty-related diseases. Expert Opin. Drug Deliv. 2012, 9, 303–323. [Google Scholar] [CrossRef] [PubMed]
- Maphalle, L.N.; Michniak-Kohn, B.B.; Ogunrombi, M.O.; Adeleke, O.A. Paediatric Tuberculosis Management: A Global Challenge or Breakthrough? Children 2022, 9, 1120. [Google Scholar] [CrossRef] [PubMed]
- Schlipköter, U.; Flahault, A. Communicable diseases: Achievements and challenges for public health. Public Health Rev. 2010, 32, 90–119. [Google Scholar] [CrossRef] [PubMed]
- Bagherian, H.; Farahbakhsh, M.; Rabiei, R.; Moghaddasi, H.; Asadi, F. National communicable disease surveillance system: A review on information and organizational structures in developed countries. Acta Inform. Medica 2017, 25, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Sun, W.; Simeonov, A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br. J. Pharmacol. 2018, 175, 181–191. [Google Scholar] [CrossRef]
- Tulchinsky, T.H.; Varavikova, E.A. Communicable diseases. In The New Public Health; Academic Press: Cambridge, MA, USA, 2014; pp. 149–236. [Google Scholar]
- Liu, L.; Villavicencio, F.; Yeung, D.; Perin, J.; Lopez, G.; Strong, K.L.; Black, R.E. National, regional, and global causes of mortality in 5–19-year-olds from 2000 to 2019: A systematic analysis. Lancet Glob. Health 2022, 10, 337–347. [Google Scholar] [CrossRef]
- Chan, G.C.; Tang, S.F. Parental knowledge, attitudes and antibiotic use for acute upper respiratory tract infection in children attending a primary healthcare clinic in Malaysia. Singap. Med. J. 2006, 47, 266. [Google Scholar]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Kean, E.A.; Adeleke, O.A. Orally disintegrating drug carriers for paediatric pharmacotherapy. Eur. J. Pharm. Sci. 2023, 182, 106377. [Google Scholar] [CrossRef]
- Khan, D.; Kirby, D.; Bryson, S.; Shah, M.; Mohammed, A.R. Paediatric specific dosage forms: Patient and formulation considerations. Int. J. Pharm. 2022, 616, 121501. [Google Scholar] [CrossRef] [PubMed]
- Göthesson, J.; Håkansson, L.; Olinder, A.L.; Hanberger, L.; Mörelius, E.; Nilsson, S.; Forsner, M. Children’s and adolescent’s narratives about pain and negative experiences in diabetes treatment. J. Spec. Paediatr. Nurs. 2023, 28, 12396. [Google Scholar] [CrossRef] [PubMed]
- Kachru, N. Clinical pharmacology of anesthetic drugs in neonates anesthetic drugs in neonates. In Clinical Anesthesia for the Newborn and the Neonate; Springer Nature: Singapore, 2023; pp. 327–348. [Google Scholar]
- Saalbach, K.P. Nasal and pulmonary routes of drug delivery. In Novel Platforms for Drug Delivery Applications; Woodhead Publishing: Sawston, UK, 2023; pp. 569–606. [Google Scholar]
- Ola, M.; Bhaskar, R.; Patil, P. Dry syrup: An overview. Indian J. Pharm. Biol. Res. 2018, 6, 30–38. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Chen, K.; Jin, M.; Vu, S.H.; Jung, S.; He, N.; Zheng, Z.; Lee, M.S. Application of chitosan/alginate nanoparticle in oral drug delivery systems: Prospects and challenges. Drug Delivery 2022, 29, 1142–1149. [Google Scholar] [CrossRef]
- Gioumouxouzis, C.I.; Karavasili, C.; Fatouros, D.G. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov. Today 2019, 24, 636–643. [Google Scholar] [CrossRef]
- Ryan, E.T.; Hill, D.R.; Solomon, T.; Aronson, N.; Endy, T.P. Hunter’s Tropical Medicine and Emerging Infectious Diseases E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Long, S.S.; Prober, C.G.; Fischer, M. Principles and Practice of Paediatric Infectious Diseases E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Smith, K.M.; Machalaba, C.C.; Seifman, R.; Feferholtz, Y.; Karesh, W.B. Infectious disease and economics: The case for considering multi-sectoral impacts. One Health 2019, 7, 100080. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef]
- UNICEF. Childhood Diseases. 2022. Available online: https://www.unicef.org/health/childhood-diseases (accessed on 3 February 2024).
- World Econonic Forum. 5 of the World’s Deadliest Infectious Diseases. 2020. Available online: https://www.weforum.org/agenda/2020/04/covid-19-infectious-diseases-tuberculosis-measles-malaria/ (accessed on 2 January 2024).
- Vijaya Shanti, B.; Mrudula, T.; PavanKumar, V. An Imperative note on Novel Drug delivery Systems. J. Nanomed. Nanotechnol. 2011, 2, 1000125. [Google Scholar]
- Adeleke, O.A. In vitro characterization of a synthetic polyamide-based erodible compact disc for extended drug release. SN Appl. Sci. 2020, 2, 2152. [Google Scholar] [CrossRef]
- Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 2019, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- Mbah, C.C.; Builders, P.F.; Attama, A.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus. Expert Opin. Drug Deliv. 2014, 11, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Irchhaiya, R. Niosomes: A potential tool for novel drug delivery. J. Pharm. Investig. 2016, 46, 195–204. [Google Scholar] [CrossRef]
- Jain, S.; Jain, V.; Mahajan, S.C. Lipid based vesicular drug delivery systems. Adv. Pharm. 2014, 2014, 574673. [Google Scholar] [CrossRef]
- Namdeo, G.S.; Nagesh, H.A.; Ajit, S.K. Recent advances in Vesicular Drug delivery System. Respir. J. Pharm. Dos. Forms Technol. 2014, 6, 110–120. [Google Scholar]
- Adeleke, O.A.; Rose, K.H.; Hajierah, D. Development and Evaluation of a Reconstitutable Dry Suspension Containing Isoniazid for Flexible Paediatric Dosing. J. Pharm. 2020, 12, 286. [Google Scholar]
- European Medicines Agency. Guideline on Pharmaceutical Development of Medicines for Paediatric Use; EMA/CHMP/QWP/805880/2012 Rev. 2; European Medicines Agency: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Abedin, S.; Adeleke, O.A. State of the art in paediatric nanomedicines. Drug Deliv. Transl. Res. 2024, 14, 1–26. [Google Scholar]
- Vinarov, Z.; Abrahamsson, B.; Artursson, P.; Batchelor, H.; Berben, P.; Bernkop-Schnürch, A.; Butler, J.; Ceulemans, J.; Davies, N.; Dupont, D.; et al. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv. Drug Deliv. Rev. 2021, 171, 289–331. [Google Scholar] [CrossRef]
- Choi, H.J.; Kim, M.C.; Kang, S.M.; Montemagno, C.D. The osmotic stress response of split influenza vaccine particles in an acidic environment. Arch. Pharmacal Res. 2014, 37, 1607–1616. [Google Scholar] [CrossRef]
- Banerjee, A.; Qi, J.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 2016, 238, 176–185. [Google Scholar] [CrossRef]
- Araújo, F.; Pedro, J.; Granja, P.L.; Santos, H.A.; Sarmento, B. Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Prog. Mater. Sci. 2017, 89, 306–344. [Google Scholar] [CrossRef]
- Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570. [Google Scholar] [CrossRef]
- Leal, J.; Smyth, H.D.C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 2017, 532, 555–572. [Google Scholar] [CrossRef]
- Maharjan, S.; Singh, B.; Jiang, T.; Yoon, S.; Li, H.; Kim, G.; Jeong MJ, S.; Park, O.; Hyun, S. Systemic administration of RANKL overcomes the bottleneck of oral vaccine delivery through microfold cells in ileum. Biomaterials 2016, 84, 286–300. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.; Huang, X.; Wang, X.; Chen, S.; Shi, W.; Qiao, X.; Jiang, Y. Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus. Microb. Cell Factories 2018, 17, 20. [Google Scholar] [CrossRef]
- Vinarov, Z.; Abdallah, M.; Agundez, J.A.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci. 2021, 162, 105812. [Google Scholar] [CrossRef]
- Moroz, E.; Matoori, S.; Leroux, J. Oral delivery of macromolecular drugs: Where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 2016, 101, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Hernández, J.E.; Carleton, B.C. Paediatric oral formulations: Why don’t our kids have the medicines they need? Br. J. Clin. Pharmacol. 2022, 88, 4337–4348. [Google Scholar] [CrossRef] [PubMed]
- Van Riet-Nales, D.A.; Schobben, A.F.; Vromans, H.; Egberts, T.C.; Rademaker, C. Safe and effective pharmacotherapy in infants and preschool children: Importance of formulation aspects. Arch. Dis. Child. 2016, 101, 662–669. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- Ivanovska, V.; Rademaker, C.M.; van Dijk, L.; Mantel-Teeuwisse, A.K. Paediatric drug formulations: A review of challenges and progress. Paediatrics 2014, 134, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pombo, L.; Awad, A.; Basit, A.W.; Alvarez-Lorenzo, C.; Goyanes, A. Innovations in chewable formulations: The novelty and applications of 3D printing in drug product design. Pharmaceutics 2022, 14, 1732. [Google Scholar] [CrossRef]
- Mustafa, M.A.; ur Rehman, N.S.; Khan, A.M.; Munir, M.; Azhar, K.; Ahmed, F.; Imran, A.; Arif, M.; Latif, M.U.; Ijaz, A.; et al. Formulation and in vitro Evaluation of Natural Polymer Based Albendazole Gummies: A Novel Paediatrics Dosage Form. J. Young Pharm. 2023, 15, 478–484. [Google Scholar] [CrossRef]
- Arora, K.; Vats, V.; Verma, P.K. A Review on Pharmaceutical Suspension and Its Advancement. Ann. Clin. Case Rep. 2022, 7, 2321. [Google Scholar]
- Rampedi, P.N.; Ogunrombi, M.O.; Wesley-Smith, J.; Adeleke, O.A. A Micro-Configured Multiparticulate Reconstitutable Suspension Powder of Fixed Dose Rifampicin and Pyrazinamide: Optimal Fabrication and In Vitro Quality Evaluation. Pharmaceutics 2023, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.F.; Liu, F.; Brown, M.B. Advances in oral transmucosal drug delivery. J. Control. Release 2011, 153, 106–116. [Google Scholar] [CrossRef]
- Lopez, F.L.; Ernest, T.B.; Tuleu, C.; Gul, M.O. Formulation approaches to paediatric oral drug delivery: Benefits and limitations of current platforms. Expert Opin. Drug Deliv. 2015, 12, 1727–1740. [Google Scholar] [CrossRef]
- Adeleke, O.A.; Tsai, P.-C.; Karry, K.; Monama, N.; Michniak-Kohn, B. Isoniazid-Loaded Orodispersible Strips: Methodical Design, Optimization and In vitro-In silico Characterization. Int. J. Pharm. 2018, 547, 347–359. [Google Scholar] [CrossRef]
- Nyaradzo, M.; Adeleke, O.A.; Wesley-Smith, J. Optimal Design, Characterization and Preliminary Safety Evaluation of an Edible Orodispersible Formulation for Paediatric Tuberculosis Pharmacotherapy. Int. J. Mol. Sci. 2020, 21, 5714. [Google Scholar]
- World Health Organization. WHO Expert Committee on Specifications for Pharmaceutical Preparations; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2012; Volume 970, p. 1. [Google Scholar]
- Walsh, J.; Bickmann, D.; Breitkreutz, J.; Chariot-Goulet, M.; European Paediatric Formulation Initiative. Delivery devices for the administration of paediatric formulations: Overview of current practice, challenges and recent developments. Int. J. Pharm. 2011, 415, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Venables, R.; Batchelor, H.; Hodson, J.; Stirling, H.; Marriott, J. Determination of formulation factors that affect oral medicines acceptability in a domiciliary paediatric population. Int. J. Pharm. 2015, 480, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Czumbel, I.; Quinten, C.; Lopalco, P.; Semenza, J.C. Management and control of communicable diseases in schools and other childcare settings: Systematic review on the incubation period and period of infectiousness. BMC Infect. Dis. 2018, 18, 199. [Google Scholar] [CrossRef]
- AIDS and Hepatitis C Professional Group; Society of Infectious Diseases, Chinese Medical Association; Chinese Center for Disease Control and Prevention. Chinese Guidelines for the Diagnosis and Treatment of HIV/AIDS (2021 Edition). Infect. Dis. Immun. 2022, 2, 145–167. [Google Scholar] [CrossRef]
- Nasser, W.; Beres, S.B.; Olsen, R.J.; Dean, M.A.; Rice, K.A.; Long, S.W.; Kristinsson, K.G.; Gottfredsson, M.; Vuopio, J.; Raisanen, K.; et al. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proc. Natl. Acad. Sci. USA 2014, 111, E1768–E1776. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.M.; Hicks, L.A.; Qaseem, A. Appropriate antibiotic use for acute respiratory tract infection in adults: Advice for high-value care from the American college of physicians and the centers for disease control and prevention. Ann. Intern. Med. 2016, 164, 425–434. [Google Scholar] [CrossRef]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef]
- World Health Organisation. Increase in Invasive Group A Streptococcal Infections among Children in Europe, Including Fatalities. 2022. Available online: https://www.who.int/europe/news/item/12-12-2022-increase-in-invasive-group-a-streptococcal-infections-among-children-in-europe--including-fatalities (accessed on 28 January 2024).
- Jain, N.; Lansiaux, E.; Reinis, A. Group A streptococcal (GAS) infections amongst children in Europe: Taming the rising tide. New Microbes New Infect. 2023, 51, 101071. [Google Scholar] [CrossRef]
- Walker, M.J.; Barnett, T.C.; McArthur, J.D.; Cole, J.N.; Gillen, C.M.; Henningham, A.; Sriprakash, K.S.; Sanderson-Smith, M.L.; Nizet, V. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin. Microbiol. Rev. 2014, 27, 264–301. [Google Scholar] [CrossRef]
- Henningham, A.; Barnett, T.C.; Maamary, P.G.; Walker, M.J. Pathogenesis of group A streptococcal infections. Discov. Med. 2012, 13, 329–342. [Google Scholar] [PubMed]
- Choby, B.A. Diagnosis and treatment of streptococcal pharyngitis. Am. Fam. Physician 2009, 79, 383–390. [Google Scholar] [PubMed]
- World Health Organisation. Increased Incidence of Scarlet Fever and Invasive Group A Streptococcus Infection—Multi-Country. 2022. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON429 (accessed on 25 January 2024).
- Sinaiko, A.D.; Joynt, K.E.; Rosenthal, M.B. Association between viewing health care price information and choice of health care facility. JAMA Intern. Med. 2016, 176, 1868–1870. [Google Scholar] [CrossRef]
- Luo, R.; Sickler, J.; Vahidnia, F.; Lee, Y.C.; Frogner, B.; Thompson, M. Diagnosis and management of group a streptococcal pharyngitis in the United States, 2011–2015. BMC Infect. Dis. 2019, 19, 193. [Google Scholar] [CrossRef] [PubMed]
- Pelucchi, C.; Grigoryan, L.; Galeone, C.; Esposito, S.; Huovinen, P.; Little, P.; Verheij, T. Guideline for the management of acute sore throat. Clin. Microbiol. Infect. 2012, 18, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Gupta, P. 50 Years Ago, in the Journal of Paediatrics: Treatment of Streptococcal Pharyngitis: Then and Now. J. Paediatr. 2022, 245, 80. [Google Scholar] [CrossRef] [PubMed]
- Shulman, S.T.; Bisno, A.L.; Clegg, H.W.; Gerber, M.A.; Kaplan, E.L.; Lee, G.; Martin, J.M.; Van Beneden, C. Clinical practice guideline for the diagnosis and management of group a streptococcal pharyngitis: 2012 update by the infectious diseases’ society of America. Clin. Infect. Dis. 2012, 55, 86–102. [Google Scholar] [CrossRef]
- Norton, L.; Myers, A. The treatment of streptococcal tonsillitis/pharyngitis in young children. World J. Otorhinolaryngol. Head Neck Surg. 2021, 7, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Sauve, L.; Forrester, A.M.; and Top, K.A. Group A streptococcal pharyngitis: A practical guide to diagnosis and treatment. Paediatr. Child Health 2021, 26, 319. [Google Scholar] [CrossRef]
- Baltimore, R.S. Re-evaluation of antibiotic treatment of streptococcal pharyngitis. Curr. Opin. Paediatr. 2010, 22, 77–82. [Google Scholar] [CrossRef]
- World Health Organisation. HIV. 2022. Available online: https://www.who.int/data/gho/data/themes/hiv-aids (accessed on 21 January 2024).
- UNAID. World Aids Day 2023 Fact Sheet. 2023. Available online: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (accessed on 23 November 2023).
- Salehi, B.; Kumar, N.V.A.; Şener, B.; Sharifi-Rad, M.; Kılıç, M.; Mahady, G.B.; Vlaisavljevic, S.; Iriti, M.; Kobarfard, F.; Setzer, W.N.; et al. Medicinal plants used in the treatment of human immunodeficiency virus. Int. J. Mol. Sci. 2018, 19, 1459. [Google Scholar] [CrossRef] [PubMed]
- Chintu, C.; Bhat, G.J.; Walker, A.S.; Mulenga, V.; Sinyinza, F.; Lishimpi, K.; Farrelly, L.; Kaganson, N.; Zumla, A.; Gillespie, S.H.; et al. Co-trimoxazole as prophylaxis against opportunistic infections in HIV-infected Zambian children (CHAP): A double-blind randomised placebo-controlled trial. Lancet 2004, 364, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Sapasap, J.; LaRochelle, J.; Smith, R.O.; Badowski, M.E. Antiretroviral Therapy in Children and Adolescents: A look into modern single tablet regimens. J. Paediatr. Pharmacol. Ther. 2021, 26, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Embree, J.; Bwayo, J.; Nagelkerke, N.; Njenga, S.; Nyange, P.; Ndinya-Achola, J.; Pamba, H.; Plummer, F. Lymphocyte subsets in human immunodeficiency virus type 1-infected and uninfected children in Nairobi. Paediatr. Infect. Dis. J. 2001, 20, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Fotooh Abadi, L.; Damiri, F.; Zehravi, M.; Joshi, R.; Pai, R.; Berrada, M.; Massoud, E.E.S.; Rahman, M.H.; Rojekar, S.; Cavalu, S. Novel nanotechnology-based approaches for targeting HIV reservoirs. Polymers 2022, 14, 3090. [Google Scholar] [CrossRef] [PubMed]
- Cihlar, T.; Fordyce, M. Current status and prospects of HIV treatment. Curr. Opin. Virol. 2016, 18, 50–56. [Google Scholar] [CrossRef]
- Eaton, E.F.; Tamhane, A.; Davy-Mendez, T.; Mathews, W.C.; Moore, R.D.; Saag, M.S.; Mugavero, M.J. Trends in antiretroviral therapy prescription, durability and modification: New drugs, more changes, but less failure. AIDS 2018, 32, 347. [Google Scholar] [CrossRef] [PubMed]
- Phanuphak, N.; Gulick, R.M. HIV treatment and prevention 2019: Current standards of care. Curr. Opin. HIV AIDS 2020, 15, 4–12. [Google Scholar] [CrossRef]
- World Health Organisation. Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service Delivery and Monitoring: Recommendations for a Public Health Approach; World Health Organization: Geneva, Switzerland, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK572729/ (accessed on 3 January 2024).
- Collins, I.J.; Turkova, A. A step closer to optimal ART for all children. Lancet HIV 2023, 10, e487–e489. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Bedimo, R.; Hoy, J.F.; Landovitz, R.J.; Smith, D.M.; Eaton, E.F.; Lehmann, C.; Springer, S.A.; Sax, P.E.; Thompson, M.A.; et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2022 Recommendations of the International Antiviral Society–USA Panel. JAMA 2023, 329, 63–84. [Google Scholar] [CrossRef]
- Waalewijn, H.; Turkova, A.; Rakhmanina, N.; Cressey, T.R.; Penazzato, M.; Colbers, A.; Burger, D.M. Optimizing paediatric dosing recommendations and treatment management of antiretroviral drugs using therapeutic drug monitoring data in children living with HIV. Ther. Drug Monit. 2019, 41, 431. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Paediatric Antiretroviral Medicines: Market & Supply Update. Paediatric Antiretroviral Medicine MARK Supply Update [Internet]. (April):0–13. 2020. Available online: https://www.unicef.org/supply/media/2581/file/ARV-market-and-supply-update.pdf (accessed on 10 January 2024).
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper–February 2019. Wkly. Epidemiol. Rec. 2019, 94, 85–103. [Google Scholar]
- Ngocho, J.S.; Magoma, B.; Olomi, G.A.; Mahande, M.J.; Msuya, S.E.; de Jonge, M.I.; Mmbaga, B.T. Effectiveness of pneumococcal conjugate vaccines against invasive pneumococcal disease among children under five years of age in Africa: A systematic review. PLoS ONE 2019, 14, 0212295. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Pneumonia in Children. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 6 January 2024).
- Rees, C.A.; Kuppermann, N.; Florin, T.A. Community-Acquired Pneumonia in Children. Paediatr. Emerg. Care 2023, 39, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.W.; Wallihan, R.; Juergensen, A.; Mejias, A.; Ramilo, O. Community-acquired pneumonia in children: Myths and facts. Am. J. Perinatol. 2019, 36, S54–S57. [Google Scholar] [CrossRef] [PubMed]
- Kuitunen, I.; Jääskeläinen, J.; Korppi, M.; Renko, M. Antibiotic treatment duration for community-acquired pneumonia in outpatient children in high-income countries—A systematic review and meta-analysis. Clin. Infect. Dis. 2023, 76, e1123–e1128. [Google Scholar] [CrossRef] [PubMed]
- Singla, S.; Sih, K.; Goldman, R.D. Antibiotic treatment duration for community-acquired pneumonia in children. Can. Fam. Physician 2023, 69, 400–402. [Google Scholar] [CrossRef]
- Karimdzhanov, I.A.; Kh, I.G.; Yusupova, G.A.; Israilova, N.A. Diagnosis and treatment of pneumonia in children. Tex. J. Med. Sci. 2023, 19, 52–57. [Google Scholar] [CrossRef]
- Marra, F.; Monnet, D.L.; Patrick, D.M.; Chong, M.; Brandt, C.T.; Winters, M.; Kaltoft, M.S.; Tyrrell, G.J.; Lovgren, M.; Bowie, W.R. A comparison of antibiotic use in children between Canada and Denmark. Ann. Pharmacother. 2007, 41, 659–666. [Google Scholar] [CrossRef]
- Tsalik, E.L.; Rouphael, N.G.; Sadikot, R.T.; Rodriguez-Barradas, M.C.; McClain, M.T.; Wilkins, D.M.; Woods, C.W.; Swamy, G.K.; Walter, E.B.; El Sahly, H.M.; et al. Efficacy and safety of azithromycin versus placebo to treat lower respiratory tract infections associated with low procalcitonin: A randomised, placebo-controlled, double-blind, non-inferiority trial. Lancet Infect. Dis. 2023, 23, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Hersh, A.L.; Shapiro, D.J.; Pavia, A.T.; Shah, S.S. Antibiotic prescribing in ambulatory paediatrics in the United States. Paediatrics 2011, 128, 1053–1061. [Google Scholar] [CrossRef]
- Wroblewski, L.E.; Peek, R.M.; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef] [PubMed]
- Crowe, S.E. Helicobacter pylori infection. N. Engl. J. Med. 2019, 380, 1158–1165. [Google Scholar] [PubMed]
- Mezmale, L.; Coelho, L.G.; Bordin, D.; Leja, M. Epidemiology of Helicobacter pylori. Helicobacter 2020, 25, 12734. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Adeloye, D.; Luk, T.T. The global prevalence of and factors associated with Helicobacter pylori infection in children: A systematic review and meta-analysis. Lancet Child Adolesc. Health 2022, 6, 185–194. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Megraud, F.; O’morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection—The Maastricht V/Florence consensus report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef] [PubMed]
- Baryshnikova, N.V.; Ilina, A.S.; Ermolenko, E.I.; Uspenskiy, Y.P.; Suvorov, A.N. Probiotics and autoprobiotics for treatment of Helicobacter pylori infection. World J. Clin. Cases 2023, 11, 4740. [Google Scholar] [CrossRef]
- Manfredi, M.; Gargano, G.; Gismondi, P.; Ferrari, B.; Iuliano, S. Therapeutic eradication choices in Helicobacter pylori infection in children. Ther. Adv. Gastroenterol. 2023, 16, 17562848231170052. [Google Scholar] [CrossRef]
- Peng, C.; Hu, Y.; Ge, Z.M.; Zou, Q.M.; Lyu, N.H. Diagnosis and treatment of Helicobacter pylori infections in children and elderly populations. Chronic Dis. Transl. Med. 2019, 5, 243–251. [Google Scholar]
- Lee, J.Y.; Park, K.S. Optimal first-line treatment for Helicobacter pylori infection: Recent strategies. Gastroenterol. Res. Pract. 2016, 2016, 9086581. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Shetty, S.; Mutalik, S.; Nandakumar, K.; Mathew, E.M.; Jha, A.; Mishra, B.; Rajpurohit, S.; Ravi, G.; Saha, M.; et al. Treatment of H. pylori infection and gastric ulcer: Need for novel pharmaceutical formulation. Heliyon 2023, 9, e20406. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.; Federica, G.; Stefano, K.; Barbara, B.; Silvia, I.; Roberta, M.; Gioacchino, L.; Gian, L.D.A. How and when investigating and treating Helicobacter pylori infection in children. Acta Bio Medica: Atenei Parm. 2018, 89 (Suppl. S8), 65. [Google Scholar]
- Kalach, N.; Bontems, P.; Cadranel, S. Advances in the treatment of Helicobacter pylori infection in children. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 10. [Google Scholar]
- Hall Ivan, C.P.D.; O’toole, E. Intestinal flora in newborn infants. Am. J. Dis. Child. 2015, 789, 390–402. [Google Scholar]
- Dieterle, M.G.; Rao, K.; Young, V.B. Novel therapies and preventative strategies for primary and recurrent Clostridioides difficile infections. Ann. N. Y. Acad. Sci. 2018, 1435, 110–138. [Google Scholar] [CrossRef]
- Shirley, D.A.; Tornel, W.; Warren, C.A.; Moonah, S. Clostridioides difficile infection in children: Recent updates on epidemiology, diagnosis, therapy. Paediatrics 2023, 152, e2023062307. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Louie, T.J.; Gerding, D.N.; Cornely, O.A.; Chasan-Taber, S.; Fitts, D.; Gelone, S.P.; Broom, C.; Davidson, D.M. Vancomycin, metronidazole, or tolevamer for Clostridioides difficile infection: Results from two multinational, randomized, controlled trials. Clin. Infect. Dis. 2014, 59, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, T.; Murphy, T.V.; Moran, J. Recommended antimicrobial agents for the treatment and postexposure prophylaxis of pertussis: 2005 CDC Guidelines. MMWR. Recomm. Rep. Morb. Mortal. Wkly. Report. Recomm. Rep./Cent. Dis. Control. 2005, 54, 1–16. [Google Scholar]
- Karbuz, A.; Arısoy, E.S.; Kaplan, S.L. Pertussis in children. In Paediatric ENT Infections; Springer: Cham, Switzerland, 2022; pp. 735–750. [Google Scholar]
- Wirsing von Konig, C.H.; Halperin, S.; Riffelmann, M.; Guiso, N. Review Pertussis of adults and infants. Lancet 2002, 2, 744–750. [Google Scholar] [CrossRef]
- Locht, C. The path to new paediatric vaccines against pertussis. Vaccines 2021, 9, 228. [Google Scholar] [CrossRef]
- Halperin, S.A.; Bortolussi, R.; Langley, J.M.; Miller, B.; Eastwood, B.J. Seven Days of Erythromycin Estolate Is as Effective as Fourteen Days for the Treatment of Bordetella pertussis Infections. Pediatrics 1997, 100, 65–71. [Google Scholar] [CrossRef]
- Tozzi, A.E.; Pastore Celentano, L.; Ciofi Degli Atti, M.L.; Salmaso, S. Diagnosis and management of pertussis. CMAJ 2005, 172, 509–515. [Google Scholar] [CrossRef]
- Aoyama, T.; Sunakawa, K.; Iwata, S.; Takeuchi, Y.; Fujii, R. Efficacy of short-term treatment of pertussis with clarithromycin and azithromycin. J. Paediatr. 1996, 129, 761–764. [Google Scholar] [CrossRef]
- Immunisation Handbook. 15 Pertussis (Whooping Cough). 2020. Available online: https://www.tewhatuora.govt.nz/for-health-professionals/clinical-guidance/immunisation-handbook/15-pertussis-whooping-cough/ (accessed on 29 January 2024).
- Machado, M.B.; Passos, S.D. Severe pertussis in childhood: Update and controversy-systematic review. Rev. Paul. De Pediatr. 2019, 37, 351–362. [Google Scholar] [CrossRef]
- Villani, L.; D’Ambrosio, F.; Ricciardi, R.; De Waure, C.; Calabrò, G.E. Seasonal influenza in children: Costs for the health system and society in Europe. Influenza Other Respir. Viruses 2022, 16, 820–831. [Google Scholar] [CrossRef]
- Sellers, S.A.; Hagan, R.S.; Hayden, F.G.; Fischer, W.A. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir. Viruses 2017, 11, 372–393. [Google Scholar] [CrossRef]
- Englund, J.A. Antiviral therapy of influenza. Semin. Paediatr. Infect. Dis. 2002, 13, 120–128. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.Q. Pharmaceutical care recommendations for antiviral treatments in children with coronavirus disease 2019. World J. Paediatr. 2020, 16, 271–274. [Google Scholar] [CrossRef]
- Koopmans, M.; Wilbrink, B.; Conyn, M.; Natrop, G.; Van Der Nat, H.; Vennema, H.; Meijer, A.; Van Steenbergen, J.; Fouchier, R.; Osterhaus, A.; et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004, 363, 587–593. [Google Scholar] [CrossRef]
- Orders, M. Antiviral Drugs for Influenza for 2022–2023. Med. Lett. Drugs Ther. 2022, 64, 185–190. [Google Scholar]
- O’Leary, S.T.; Campbell, J.D.; Ardura, M.I.; Banerjee, R.; Bryant, K.A.; Caserta, M.T.; Frenck, R.W.; Gerber, J.S.; John, C.C.; Kourtis, A.P.; et al. Recommendations for prevention and control of influenza in children, 2023–2024. Paediatrics 2023, 152, e2023063773. [Google Scholar]
- Świerczyńska, M.; Mirowska-Guzel, D.M.; Pindelska, E. Antiviral drugs in influenza. Int. J. Environ. Res. Public Health 2022, 19, 3018. [Google Scholar] [CrossRef]
- Malosh, R.E.; Martin, E.T.; Heikkinen, T.; Brooks, W.A.; Whitley, R.J.; Monto, A.S. Efficacy and Safety of Oseltamivir in Children: Systematic Review and Individual Patient Data Meta-analysis of Randomized Controlled Trials. Clin. Infect. Dis. 2018, 66, 1492–1500. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Santesso, N.; Brozek, J. RE: Antivirals for treatment of influenza. Ann. Intern. Med. 2012, 157, 386–387. [Google Scholar] [CrossRef]
- Doll, M.K.; Winters, N.; Boikos, C.; Kraicer-Melamed, H.; Gore, G.; Quach, C. Safety and effectiveness of neuraminidase inhibitors for influenza treatment, prophylaxis, and outbreak control: A systematic review of systematic reviews and/or meta-analyses. J. Antimicrob. Chemother. 2017, 72, 2990–3007. [Google Scholar] [CrossRef]
- Committee On Infectious Diseases. Recommendations for prevention and control of influenza in children, 2022–2023. Paediatrics 2022, 150, e2022059275. [Google Scholar] [CrossRef]
- Pasupuleti, V.; Escobedo, A.A.; Deshpande, A.; Thota, P.; Roman, Y.; Hernandez, A.V. Efficacy of 5-Nitroimidazoles for the Treatment of Giardiasis: A Systematic Review of Randomized Controlled Trials. PLoS Neglected Trop. Dis. 2014, 8, e2733. [Google Scholar] [CrossRef]
- Dunn, N.; Juergens, A.L.; Dusdieker, L.B.; Murph, J.R.; Milavetz, G. Giardiasis: How much antibiotic suspension is enough? Paediatrics 2022, 106, e10. [Google Scholar]
- Collier, S.A.; Stockman, L.J.; Hicks, L.A.; Garrison, L.E.; Zhou, F.J.; Beach, M.J. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 2012, 140, 2003–2013. [Google Scholar] [CrossRef]
- Painter, J.E.; Gargano, J.W.; Collier, S.A.; Yoder, J.S. Giardiasis surveillance—United States, 2011–2012. Morb. Mortal. Wkly. Rep. (MMWR) 2015, 64, 15–25. [Google Scholar]
- Beer, K.D.; Collier, S.A.; Du, F.; Gargano, J.W. Giardiasis diagnosis and treatment practices among commercially insured persons in the United States. Clin. Infect. Dis. 2017, 64, 1244–1250. [Google Scholar] [CrossRef]
- Adam, E.A.; Yoder, J.S.; Gould, L.H.; Hlavsa, M.C.; Gargano, J.W. Giardiasis outbreaks in the United States, 1971–2011. Epidemiol. Infect. 2016, 144, 2790–2801. [Google Scholar] [CrossRef] [PubMed]
- Halliez, M.C.M.; Buret, A.G. Extra-intestinal and long-term consequences of Giardia duodenalis infections. World J. Gastroenterol. 2013, 19, 8974–8985. [Google Scholar] [CrossRef]
- Mørch, K.; Hanevik, K. Giardiasis treatment: An update with a focus on refractory disease. Curr. Opin. Infect. Dis. 2020, 33, 355–364. [Google Scholar] [CrossRef]
- Escobedo, A.A.; Cimerman, S. Giardiasis: A pharmacotherapy review. Expert Opin. Pharmacother. 2007, 8, 1885–1902. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.D. Giardiasis. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 707–711. [Google Scholar]
- Gardner, T.B.; Hill, D.R. Treatment of giardiasis. Clin. Microbiol. Rev. 2001, 14, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Zaat JO, M.; Mank, T.G.; Assendelft WJ, J. A systematic review on the treatment of giardiasis. Trop. Med. Int. Health 1997, 2, 63–82. [Google Scholar] [CrossRef]
- Riches, A.; Hart, C.J.; Trenholme, K.R.; Skinner-Adams, T.S. Anti-Giardia drug discovery: Current status and gut feelings. J. Med. Chem. 2020, 63, 13330–13354. [Google Scholar] [CrossRef]
- Pengsaa, K.; Limkittikul, K.; Pojjaroen-anant, C.; Lapphra, K.; Sirivichayakul, C.; Wisetsing, P.; Nantha-aree, P.; Chanthavanich, P. Single-dose therapy for giardiasis in school-age children. Southeast Asian J. Trop. Med. Public Health 2002, 33, 711–717. [Google Scholar]
- Prabakaran, M.; Weible, L.J.; Champlain, J.D.; Jiang, R.Y.; Biondi, K.; Weil, A.A.; Van Voorhis, W.C.; Ojo, K.K. The Gut-Wrenching Effects of Cryptosporidiosis and Giardiasis in Children. Microorganisms 2023, 11, 2323. [Google Scholar] [CrossRef] [PubMed]
- Almirall, P.; Escobedo, A.A.; Ayala, I.; Alfonso, M.; Salazar, Y.; Cañete, R.; Cimerman, S.; Galloso, M.; Olivero, I.; Robaina, M.; et al. Mebendazole compared with secnidazole in the treatment of adult giardiasis: A randomised, no-inferiority, open clinical trial. J. Parasitol. Res. 2011, 2011, 636857. [Google Scholar] [CrossRef] [PubMed]
- Dixon, B.R. Giardia duodenalis in humans and animals–transmission and disease. Res. Vet. Sci. 2021, 135, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Chakraborty, A. Infection of the gastrointestinal tract: Giardiasis and amoebiasis. In Viral 2023, Parasitic, Bacterial, and Fungal Infections; Academic Press: Cambridge, MA, USA, 2023; pp. 365–373. [Google Scholar]
- Peloquin, C.A.; Davies, G.R. The treatment of tuberculosis. Clin. Pharmacol. Ther. 2021, 110, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Kean, E.A.; Adeleke, O.A. A child-friendly anti-infective gummy formulation: Design, physicochemical, micromechanical, and taste sensory evaluation. Drug Deliv. Transl. Res. 2024, 14, 1319–1337. [Google Scholar] [CrossRef] [PubMed]
- Marais, B.J.; Amanullah, F.; Gupta, A.; Becerra, M.C.; Snow, K.; Ngadaya, E.; Sharma, M.; Hesseling, A.C.; Chakaya, M.; Zumla, A. Tuberculosis in children, adolescents, and women. Lancet Respir. Med. 2020, 8, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Khawbung, J.L.; Nath, D.; Chakraborty, S. Drug resistant tuberculosis: A review. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101574. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y. Diagnosis and treatment of extra pulmonary tuberculosis. Tuberc. Respir. Dis. 2015, 78, 47–55. [Google Scholar] [CrossRef]
- Gopalaswamy, R.; Dusthackeer, V.A.; Kannayan, S.; Subbian, S. Extrapulmonary tuberculosis—An update on the diagnosis, treatment and drug resistance. J. Respir. 2021, 1, 141–164. [Google Scholar] [CrossRef]
- Holmberg, P.J.; Temesgen, Z.; Banerjee, R. Tuberculosis in Children. Paediatr. Rev. 2019, 40, 168–178. [Google Scholar] [CrossRef]
- Bereda, G. Management of drug resistant tuberculosis: Isoniazid resistant, rifampicin resistant, multi drug resistant, and extensively drug resistant. J. Lung Pulm. Respir. Res. 2022, 9, 46–50. [Google Scholar] [CrossRef]
- Burman, W.J.; Cotton, M.F.; Gibb, D.M.; Walker, A.S.; Vernon, A.A.; Donald, P.R. Ensuring the involvement of children in the evaluation of new tuberculosis treatment regimens. PLoS Med. 2008, 5, 176. [Google Scholar] [CrossRef] [PubMed]
- McIlleron, H.; Chirehwa, M.T. Current research toward optimizing dosing of first-line antituberculosis treatment. Expert Rev. Anti-Infect. Ther. 2019, 17, 27–38. [Google Scholar] [CrossRef]
- Thee, S.; Detjen, A.; Wahn, U.; Magdorf, K. Pyrazinamide serum levels in childhood tuberculosis. Int. J. Tuberc. Lung Dis. 2008, 12, 1099–1101. [Google Scholar]
- Chabala, C.; Turkova, A.; Hesseling, A.C.; Zimba, K.M.; Van Der Zalm, M.; Kapasa, M.; Palmer, M.; Chirehwa, M.; Wiesner, L.; Wobudeya, E.; et al. Pharmacokinetics of first-line drugs in children with tuberculosis, using World Health Organization–recommended weight band doses and formulations. Clin. Infect. Dis. 2022, 74, 1767–1775. [Google Scholar] [CrossRef]
- McIlleron, H.; Hundt, H.; Smythe, W.; Bekker, A.; Winckler, J.; van der Laan, L.; Smith, P.; Zar, H.J.; Hesseling, A.C.; Maartens, G. Bioavailability of two licensed paediatric rifampicin suspensions: Implications for quality control programmes. Int. J. Tuberc. Lung Dis. 2016, 20, 915–919. [Google Scholar] [CrossRef]
- World Health Organisation. Global Tuberculosis Report 2022. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (accessed on 21 December 2023).
- World Health Organization. Global Tuberculosis Report 2016; WHO/HTM/TB/2016.13. Geneva. 2016. Available online: https://www.who.int/publications/i/item/9789241565394 (accessed on 5 January 2024).
- Global Drug Facility. Medicines Catalog March 2023. Available online: https://www.stoptb.org/global-drug-facility-gdf/gdf-product-catalog (accessed on 3 January 2024).
- World Health Organization. Rapid Communication on Updated Guidance on the Management of Tuberculosis in Children and Adolescents. 2021. Available online: https://www.who.int/publications-detail-redirect/9789240033450 (accessed on 5 December 2023).
- Tiberi, S.; Utjesanovic, N.; Galvin, J.; Centis, R.; D’Ambrosio, L.; van den Boom, M.; Zumla, A.; Migliori, G.B. Drug resistant TB–latest developments in epidemiology, diagnostics and management. Int. J. Infect. Dis. 2022, 124, S20–S25. [Google Scholar] [CrossRef]
- Bossù, G.; Autore, G.; Bernardi, L.; Buonsenso, D.; Migliori, G.B.; Esposito, S. Treatment options for children with multi-drug resistant tuberculosis. Expert Rev. Clin. Pharmacol. 2022, 16, 5–15. [Google Scholar] [CrossRef]
- Penicillin G and V. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]; Updated 20 October 2020; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547993/ (accessed on 7 January 2024).
- Government of Western Australia child and Adolescent Health Services (GWACAHS). Head of Department Infectious Diseases. 2020. Available online: https://pch.health.wa.gov.au/~/media/Files/Hospitals/PCH/General-documents/Health-professionals/ChAMP-Monographs/Phenoxymethylpenicillin.pdf (accessed on 11 January 2024).
- World Health Organisation. Revised WHO Classification and Treatment of Childhood Pneumonia at Health Facilities. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/137319/9789241507813_eng.pdf (accessed on 1 February 2024).
- Bielicki, J.A.; Stöhr, W.; Barratt, S.; Dunn, D.; Naufal, N.; Roland, D.; Sturgeon, K.; Finn, A.; Rodriguez-Ruiz, J.P.; Malhotra-Kumar, S.; et al. Effect of amoxicillin dose and treatment duration on the need for antibiotic re-treatment in children with community-acquired pneumonia: The CAP-IT randomized clinical trial. JAMA 2021, 326, 1713–1724. [Google Scholar] [CrossRef]
- Abdurasulov, F.P.; Ruzikulov, N.E. Some aspects of community-achilled pneumonia in children. Am. J. Pedagog. Educ. Res. 2023, 13, 27–31. [Google Scholar]
- Prasanthi, C.H.; Prasanthi, N.L.; Manikiran, S.S.; Rao, N.R. Focus on current trends in the treatment of Helicobacter pylori infection: An update. Situations 2011, 9, 09. [Google Scholar]
- Jones, N.L.; Koletzko, S.; Goodman, K.; Bontems, P.; Cadranel, S.; Casswall, T.; Czinn, S.; Gold, B.D.; Guarner, J.; Elitsur, Y.; et al. Joint ESPGHAN/NASPGHAN guidelines for the management of Helicobacter pylori in children and adolescents (update 2016). J. Paediatr. Gastroenterol. Nutr. 2017, 64, 991–1003. [Google Scholar] [CrossRef]
- Borali, E.; De Giacomo, C. Clostridioides difficile infection in children: A review. J. Paediatr. Gastroenterol. Nutr. 2016, 63, 130–140. [Google Scholar] [CrossRef]
- D’Ostroph, A.R.; So, T.Y. Treatment of paediatric Clostridioides difficile infection: A review on treatment efficacy and economic value. Infect. Drug Resist. 2017, 10, 365–375. [Google Scholar] [CrossRef]
- Cherry, J.D. Treatment of pertussis—2017. J. Paediatr. Infect. Dis. Soc. 2018, 7, 123–125. [Google Scholar] [CrossRef]
- CDC. Children and Flu Antiviral Drugs. 2022. Available online: https://www.cdc.gov/flu/highrisk/children-antiviral.htm (accessed on 21 December 2023).
- Vivancos, V.; González-Alvarez, I.; Bermejo, M.; Gonzalez-Alvarez, M. Giardiasis: Characteristics, Pathogenesis and New Insights about Treatment. Curr. Top. Med. Chem. 2018, 18, 1287–1303. [Google Scholar] [CrossRef]
- Mercadé Frutos, D.I.; Madrid Hidalgo, J.M.; Suñé, N. Tuberculosis treatment in paediatrics: Liquid pharmaceutical forms. Rev. Enf. Emerg. 2019, 19, 169–176. [Google Scholar]
- Department of Health and Human Services. Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV. Guidelines for the Use of Antiretroviral Agents in Paediatric HIV Infection. 2023. Available online: https://clinicalinfo.hiv.gov/en/guidelines/pediatric-arv/whats-new (accessed on 2 February 2024).
- Assefa, M. Multi-drug resistant gram-negative bacterial pneumonia: Etiology, risk factors, and drug resistance patterns. Pneumonia 2022, 14, 4. [Google Scholar] [CrossRef]
- Dureja, C.; Olaitan, A.O.; Hurdle, J.G. Mechanisms and impact of antimicrobial resistance in Clostridioides difficile. Curr. Opin. Microbiol. 2022, 66, 63–72. [Google Scholar] [CrossRef]
- Pech-Santiago, E.O.; Argüello-García, R.; Vázquez, C.; Saavedra, E.; González-Hernández, I.; Jung-Cook, H.; Rafferty, S.P.; Ortega-Pierres, M.G. Giardia duodenalis: Flavohemoglobin is involved in drug biotransformation and resistance to albendazole. PLoS Pathogens 2022, 18, e1010840. [Google Scholar] [CrossRef]
- Medakina, I.; Tsapkova, L.; Polyakova, V.; Nikolaev, S.; Yanova, T.; Dekhnich, N.; Khatkov, I.; Bordin, D.; Bodunova, N. Helicobacter pylori Antibiotic Resistance: Molecular Basis and Diagnostic Methods. Int. J. Mol. Sci. 2023, 24, 9433. [Google Scholar] [CrossRef]
- Huynh, J.; Thwaites, G.; Marais, B.J.; Schaaf, H.S. Tuberculosis treatment in children: The changing landscape. Paediatr. Respir. Rev. 2020, 36, 33–43. [Google Scholar] [CrossRef]
- Stanley, S.; Liu, Q.; Fortune, S.M. Mycobacterium tuberculosis functional genetic diversity, altered drug sensitivity, and precision medicine. Front. Cell. Infect. Microbiol. 2022, 12, 1007958. [Google Scholar] [CrossRef]
- Salunke, S.; O’Brien, F.; Tan, D.C.T.; Harris, D.; Math, M.C.; Ariën, T.; Klein, S.; Timpe, C. Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population. Adv. Drug Deliv. Rev. 2022, 190, 114507. [Google Scholar] [CrossRef]
- Azman, M.; Sabri, A.H.; Anjani, Q.K.; Mustaffa, M.F.; Hamid, K.A. Intestinal absorption study: Challenges and absorption enhancement strategies in improving oral drug delivery. Pharmaceuticals 2022, 15, 975. [Google Scholar] [CrossRef]
- Mahanur, V.; Rajge, R.; Tawar, M. A review on emerging oral dosage forms which helps to bypass the hepatic first pass metabolism. Asian J. Pharm. Technol. 2022, 12, 47–52. [Google Scholar] [CrossRef]
- Shinn, J.; Kwon, N.; Lee, S.A.; Lee, Y. Smart pH-responsive nanomedicines for disease therapy. J. Pharm. Investig. 2022, 52, 427–441. [Google Scholar] [CrossRef]
- Wilen, C.B.; Tilton, J.C.; Doms, R.W. Molecular mechanisms of HIV entry. In Viral Molecular Machines; Springer: Boston, MA, USA, 2011; pp. 223–242. [Google Scholar]
- Michel, A.M.; Borrero-de Acuña, J.M.; Molinari, G.; Ünal, C.M.; Will, S.; Derksen, E.; Barthels, S.; Bartram, W.; Schrader, M.; Rohde, M.; et al. Cellular adaptation of Clostridioides difficile to high salinity encompasses a compatible solute-responsive change in cell morphology. Environ. Microbiol. 2022, 24, 1499–1517. [Google Scholar] [CrossRef]
- Ma’ayeh, S.; Svärd, S. Giardia and giardiasis. In Molecular Medical Microbiology; Academic Press: Cambridge, MA, USA, 2024; pp. 3107–3119. [Google Scholar]
- Ceriotti, G.; Borisov, S.M.; Berg, J.S.; De Anna, P. Morphology and size of bacterial colonies control anoxic microenvironment formation in porous media. Environ. Sci. Technol. 2022, 56, 17471–17480. [Google Scholar] [CrossRef]
- Boateng, J. Drug delivery innovations to address global health challenges for paediatric and geriatric populations (through improvements in patient compliance). J. Pharm. Sci. 2017, 106, 3188–3198. [Google Scholar] [CrossRef]
- Irfan, M.; Rabel, S.; Bukhtar, Q.; Qadir, M.I.; Jabeen, F.; Khan, A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm. J. 2016, 24, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Masih, A.; Kumar, A.; Singh, S.; Tiwari, A.K. Fast dissolving tablets: A review. Int. J. Curr. Pharm. Res. 2017, 9, 8–18. [Google Scholar] [CrossRef]
- Gharaibeh, S.F.; Tahaineh, L. Effect of different splitting techniques on the characteristics of divided tablets of five commonly split drug products in Jordan. Pharm. Pract. 2020, 18, 1776. [Google Scholar] [CrossRef] [PubMed]
- Turkova, A.; Wills, G.H.; Wobudeya, E.; Chabala, C.; Palmer, M.; Kinikar, A.; Hissar, S.; Choo, L.; Musoke, P.; Mulenga, V.; et al. Shorter treatment for nonsevere tuberculosis in African and Indian children. N. Engl. J. Med. 2022, 386, 911–922. [Google Scholar] [CrossRef]
- Hobson, J.J.; Owen, A.; Rannard, S.P. The potential value of nanomedicine and novel oral dosage forms in the treatment of HIV. Nanomedicine 2018, 13, 1963–1965. [Google Scholar] [CrossRef] [PubMed]
- Nolt, D.; Starke, J.R. Tuberculosis infection in children and adolescents: Testing and treatment. Paediatrics 2021, 148, e2021054663. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.M.; Simms, V.; McHugh, G.; Mujuru, H.; Ngwira, L.G.; Semphere, R.; Moyo, B.; Bandason, T.; Odland, J.O.; Ferrand, R.A. Adherence to additional medication for management of HIV-associated comorbidities among older children and adolescents taking antiretroviral therapy. PLoS ONE 2022, 17, e0269229. [Google Scholar] [CrossRef] [PubMed]
- Strauss, M.; Wademan, D.T.; Mcinziba, A.; Hoddinott, G.; Rafique, M.; Jola, L.N.; Streicher, C.; du Preez, K.; Osman, M.; Boffa, J.; et al. TB preventive therapy preferences among children and adolescents. Int. J. Tuberc. Lung Dis. 2023, 27, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Bharawaj, S.; Jain, V.; Sharma, S.; Jat, R.C.; Jain, S. Orally Disintegrating Tablets: A Review. Drug Invent. Today 2010, 2, 81–88. [Google Scholar]
- Wiedey, R.; Kokott, M.; Breitkreutz, J. Orodispersible tablets for paediatric drug delivery: Current challenges and recent advances. Expert Opin. Drug Deliv. 2021, 18, 1873–1890. [Google Scholar] [CrossRef]
- Vishali, T.; Damodharan, N. Orodispersible tablets: A review. Res. J. Pharm. Technol. 2020, 13, 2522–2529. [Google Scholar] [CrossRef]
- Mfoafo, K.A.; Omidian, M.; Bertol, C.D.; Omidi, Y.; Omidian, H. Neonatal and paediatric oral drug delivery: Hopes and hurdles. Int. J. Pharm. 2021, 597, 120296. [Google Scholar] [CrossRef] [PubMed]
- Chachlioutaki, K.; Tzimtzimis, E.K.; Tzetzis, D.; Chang, M.-W.; Ahmad, Z.; Karavasili, C.; Fatouros, D.G. Electrospun Orodispersible Films of Isoniazid for Paediatric Tuberculosis Treatment. Pharmaceutic 2020, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.; Siddique, M.I.; Rasool, F.; Naeem, M.; Usman, M.; Zaman, M. Development and characterization of orodispersible film containing cefixime trihydrate. Drug Dev. Ind. Pharm. 2020, 46, 2070–2080. [Google Scholar] [CrossRef] [PubMed]
- Ferlak, J.; Guzenda, W.; Osmałek, T. Orodispersible Films—Current State of the Art, Limitations, Advances and Future Perspectives. Pharmaceutics 2023, 15, 361. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.; Hermans, E.; Klein, S.; Wagner-Hattler, L.; Walsh, J. Age-appropriate solid oral formulations for paediatric applications with a focus on multiparticulates and minitablets: Summary of September 2019 EuPFI workshop. Eur. J. Pharm. Biopharm. 2020, 153, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Khater, A.J.; Almurisi, S.H.; Mahmood, S.; Alheibshy, F.; Alobaida, A.; Abdul-Halim, N.; Chatterjee, B. A review on taste masked multiparticulate dosage forms for paediatric. Int. J. Pharm. 2022, 623, 122571. [Google Scholar]
- Palmeirim, M.S.; Bosch, F.; Ame, S.M.; Ali, S.M.; Hattendorf, J.; Keiser, J. Efficacy, safety and acceptability of a new chewable formulation versus the solid tablet of mebendazole against hookworm infections in children: An open-label, randomized controlled trial. eClinicalMedicine 2020, 27, 100556. [Google Scholar] [CrossRef] [PubMed]
- Van Hove, B.; Kanagale, P.; Quinten, T.; Gaiki, S.; Collignon, K.; Swar, Y.; Shah, J.; Verheyen, E.; Preda, F.M.; Samanta, A.; et al. Development of a new age-appropriate, chewable tablet of mebendazole 500 mg for preventive chemotherapy of soil-transmitted helminth infections in pre-school and school-age children. Eur. J. Pharm. Biopharm. 2023, 188, 217–226. [Google Scholar] [CrossRef]
- Halwani, A.A. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022, 14, 106. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Makhlouf, A.S.H. Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Woodhead Publishing: Sawston, UK, 2018; Volume 1, pp. 3–41. [Google Scholar]
- Rai, V.K.; Halder, J.; Rajwar, T.K.; Chawla, G.R.V.; Chawla, P.A. Cyclodextrin-Derived Drug Delivery Systems in Respiratory Diseases. In Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases; Springer Nature: Singapore, 2023; pp. 129–145. [Google Scholar]
- Mandal, U.K.; Chatterjee, B.; Senjoti, F.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian J. Pharm. Sci. 2016, 11, 575–584. [Google Scholar] [CrossRef]
- Pal, R.; Pandey, P.; Nogai, L.; Anand, A.; Suthar, P.; SahdevKeskar, M.; Kumar, V. The Future Perspectives and Novel Approach on Gastro Retentive Drug Delivery System (GRDDS) With Current State. J. Popul. Ther. Clin. Pharmacol. 2023, 30, 594–613. [Google Scholar]
- Niharika, M.G.; Krishnamoorthy, K.; Akkala, M. Overview on floating drug delivery system. Int. J. Appl. Pharm. 2018, 10, 65–71. [Google Scholar] [CrossRef]
- Thombre, N.A.; Gide, P.S. Floating-bioadhesive gastroretentive Caesalpinia pulcherrima-based beads of amoxicillin trihydrate for Helicobacter pylori eradication. Drug Deliv. 2016, 23, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Conti, C.; Colombo, G.; Castrati, L.; Scarpignato, C.; Barata, P.; Sandri, G.; Caramella, C.; Bettini, R.; Buttini, F.; et al. Floating modular drug delivery systems with buoyancy independent of release mechanisms to sustain amoxicillin and clarithromycin intra-gastric concentrations. Drug Dev. Ind. Pharm. 2016, 42, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.; Singh, T.R.R.; Garland, M.J.; Woolfson, A.D.; Donnelly, R.F. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci. 2011, 3, 89. [Google Scholar]
- Asati, S.; Jain, S.; Choubey, A. Bioadhesive or mucoadhesive drug delivery system: A potential alternative to conventional therapy. J. Drug Deliv. Ther. 2019, 9, 858–867. [Google Scholar]
- Alawdi, S.; Solanki, A.B. Mucoadhesive drug delivery systems: A review of recent developments. J. Sci. Res. Med. Biol. Sci. 2021, 2, 50–64. [Google Scholar] [CrossRef]
- Saifullah, S.; Kanwal, T.; Ullah, S.; Kawish, M.; Habib, S.M.; Ali, I.; Munir, A.; Imran, M.; Shah, M.R. Design and development of lipid modified chitosan containing muco-adhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem. Phys. Lipids 2021, 235, 105052. [Google Scholar] [CrossRef]
- Villegas, I.; Rosillo, M.Á.; Alarcón-de-la-Lastra, C.; Vázquez-Román, V.; Llorente, M.; Sánchez, S.; Gil, A.G.; Alcalde, P.; González, E.; Rosell, E.; et al. Amoxicillin and clarithromycin mucoadhesive delivery system for Helicobacter pylori infection in a mouse model: Characterization, pharmacokinetics, and efficacy. Pharmaceutics 2021, 13, 153. [Google Scholar] [CrossRef]
- Vinchurkar, K.; Sainy, J.; Khan, M.A.; Sheetal, M.A.N.E.; Mishra, D.K.; Dixit, P. Features and Facts of a Gastroretentive Drug Delivery System-A Review. Turk. J. Pharm. Sci. 2022, 19, 476. [Google Scholar] [CrossRef]
- Abdelaziz, M.M.; Hefnawy, A.; Anter, A.; Abdellatif, M.M.; Khalil, M.A.; Khalil, I.A. Silica-Coated Magnetic Nanoparticles for Vancomycin Conjugation. ACS Omega 2022, 7, 30161–30170. [Google Scholar] [CrossRef]
- Silva-Freitas, E.L.; Pontes, T.R.; Araújo-Neto, R.P.; Damasceno, Í.H.; Silva, K.L.; Carvalho, J.F.; Medeiros, A.C.; Silva, R.B.; Silva, A.K.; Morales, M.A.; et al. Design of magnetic polymeric particles as a stimulus-responsive system for gastric antimicrobial therapy. AAPS PharmSciTech 2017, 18, 2026–2036. [Google Scholar] [CrossRef]
- Wagh, P.K.; Ahirrao, S.P.; Kshirsagar, S.J. Gastroretentive drug delivery systems: A review on expandable system. Indian J. Drugs 2018, 6, 142–151. [Google Scholar]
- Zanke, A.A.; Gangurde, H.H.; Ghonge, A.B.; Chavan, P.S. Recent Advance in Gastroretantive Drug Delivery System (GRDDS). Asian J. Pharm. Res. 2022, 12, 143–149. [Google Scholar] [CrossRef]
- Yang, L.; Eshraghi, J.; Fassihi, R. A new intragastric delivery system for the treatment of Helicobacter pylori associated gastric ulcer: In vitro evaluation. J. Control. Release 1999, 57, 215–222. [Google Scholar] [CrossRef]
- Siddalingam, R.; Chidambaram, K. Helicobacter pylori—Current therapy and future therapeutic strategies. In Trends in Helicobacter Pylori Infection; InTech: Rijeka, Croatia, 2014; pp. 279–302. [Google Scholar]
- Di Stefano, A. Nanotechnology in Targeted Drug Delivery. Int. J. Mol. Sci. 2023, 24, 8194. [Google Scholar] [CrossRef]
- Parhi, R.; Jena, G.K. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms. Drug Deliv. Transl. Res. 2021, 12, 2428–2462. [Google Scholar] [CrossRef]
- Sadia, M.; Arafat, B.; Ahmed, W.; Forbes, R.T.; Alhnan, M.A. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. J. Control. Release 2018, 269, 355–363. [Google Scholar] [CrossRef]
- Sandler, N.; Preis, M. Printed drug-delivery systems for improved patient treatment. Trends Pharmacol. Sci. 2016, 37, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Genina, N.; Boetker, J.P.; Colombo, S.; Harmankaya, N.; Rantanen, J.; Bohr, A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J. Control. Release 2017, 268, 40–48. [Google Scholar] [CrossRef]
- Pandey, M.; Choudhury, H.; Fern, J.L.C.; Kee, A.T.K.; Kou, J.; Jing, J.L.J.; Her, H.C.; Yong, H.S.; Ming, H.C.; Bhattamisra, S.K.; et al. 3D printing for oral drug delivery: A new tool to customize drug delivery. Drug Deliv. Transl. Res. 2020, 10, 986–1001. [Google Scholar] [CrossRef]
- Salim, M.; Eason, T.; Boyd, B.J. Opportunities for milk and milk-related systems as ‘new’ low-cost excipient drug delivery materials. Adv. Drug Deliv. Rev. 2022, 183, 114139. [Google Scholar] [CrossRef]
- Salim, M.; Ramirez, G.; Clulow, A.J.; Hawley, A.; Boyd, B.J. Implications of the Digestion of Milk-Based Formulations for the Solubilization of Lopinavir/Ritonavir in a Combination Therapy. Mol. Pharm. 2023, 20, 2256–2265. [Google Scholar] [CrossRef]
- Hart, C.W.; Israel-Ballard, K.A.; Joanis, C.L.; Baniecki, M.L.; Thungu, F.; Gerrard, S.E.; Kneen, E.; Sokal, D.C. Acceptability of a nipple shield delivery system administering antiviral agents to prevent mother-to-child transmission of HIV through breastfeeding. J. Hum. Lact. 2015, 31, 68–75. [Google Scholar] [CrossRef]
- Sanika, K.O.L.E.; Kuchekar, A.; Limaye, D. Advancements in Formulation Approaches to Paediatric Oral Drug Delivery systems. Hacet. Univ. J. Fac. Pharm. 2021, 41, 254–265. [Google Scholar]
- Simšič, T.; Nolimal, B.; Minova, J.; Baumgartner, A.; Planinšek, O. A straw for paediatrics: How to administer highly dosed, bitter tasting paracetamol granules. Int. J. Pharm. 2021, 602, 120615. [Google Scholar] [CrossRef]
- Lu, W.; Yao, J.; Zhu, X.; Qi, Y. Nanomedicines: Redefining traditional medicine. Biomed. Pharmacother. 2021, 134, 111103. [Google Scholar] [CrossRef]
- Thapa, R.K.; Kim, J.O. Nanomedicine-based commercial formulations: Current developments and future prospects. J. Pharm. Investig. 2023, 53, 19–33. [Google Scholar] [CrossRef]
- Kirtane, A.R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 2021, 16, 369–384. [Google Scholar] [CrossRef]
- Gao, Y.; Kraft, J.C.; Yu, D.; Ho, R.J. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur. J. Pharm. Biopharm. 2019, 138, 75–91. [Google Scholar] [CrossRef]
- Tatham, L.M.; Rannard, S.P.; Owen, A. Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics. Ther. Deliv. 2015, 6, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Liew, K.B.; Janakiraman, A.K.; Sundarapandian, R.; Khalid, S.H.; Razzaq, F.A.; Ming, L.C.; Khan, A.; Kalusalingam, A.; Ng, P.W. A review and revisit of nanoparticles for antimicrobial drug delivery. J. Med. Life 2022, 15, 328. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.S.; Anusha, G.; Leela, K.V.; Ravi, S. Promising Approaches in Drug Delivery Against Resistant Bacteria. In Advances in Novel Formulations for Drug Delivery; Willey: Hoboken, NJ, USA, 2023; pp. 219–229. [Google Scholar]
- Gopinath, V.; Priyadarshini, S.; MubarakAli, D.; Loke, M.F.; Thajuddin, N.; Alharbi, N.S.; Yadavalli, T.; Alagiri, M.; Vadivelu, J. Anti-Helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: Multifaceted application. Arab. J. Chem. 2019, 12, 33–40. [Google Scholar] [CrossRef]
- Ortiz-Benitez, E.A.; Carrillo-Morales, M.; Velázquez-Guadarrama, N.; Fandiño-Armas, J.; Olivares-Trejo, J.D.J. Inclusion bodies and pH lowering: As an effect of gold nanoparticles in Streptococcus pneumoniae. Metallomics 2015, 7, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.R.; Britigan, B.E.; Narayanasamy, P. Ga(III) nanoparticles inhibit growth of both Mycobacterium tuberculosis and HIV and release of interleukin-6 (IL-6) and IL-8 in coinfected macrophages. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.M.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.S.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef]
- Sengupta, J.; Ghosh, S.; Datta, P.; Gomes, A.; Gomes, A. Physiologically important metal nanoparticles and their toxicity. J. Nanosci. Nanotechnol. 2014, 14, 990–1006. [Google Scholar] [CrossRef]
- Huang, H.; Feng, W.; Chen, Y.; Shi, J. Inorganic nanoparticles in clinical trials and translations. Nano Today 2020, 35, 100972. [Google Scholar] [CrossRef]
Dosage Form | Distinguishing Characteristics | Limitations | References |
---|---|---|---|
| |||
Solid tablets (mini, soft, scored) | For immediate or modified release (gastro-resistant, delayed, extended, protracted release kinetics), and tablets can be coated or uncoated. | Young children are unable to swallow pills whole. Higher doses require many minitablets, but tolerability has been acceptable. Poor dose flexibility. | [48] |
Chewable tablets | Immediate-release tablets can be chewed, crumbled, or broken without exerting any discernible effects on the stability and bioavailability of the active drug. | Taste may be drastically altered. Bioavailability may be altered depending on chewing ability. | [49] |
Capsules | Capsules help to mask the unpleasant taste of its contents and the drug has limited interaction with the excipients. They are good for hydrophobic drugs and oily active substances that are suspended or dissolved in oil. | Some might also be opened, but this action is more likely to affect bioavailability. Young children are unable to swallow the dosage form whole. | [50] |
Sprinkles | Can be used in neonates and seriously ill infants. Can be taken with foods and drinks to improve palatability. | Ability to swallow food or fluid substances (containing drug formulations) is needed. Compatibility with food/drinks. | [51] |
Gummy formulations | Ease of administration, safety, and lack of stability challenges for dosage formulations. Soft, elastic, springy, and flexible. The enhancement in flavour, fragrance, and texture can stimulate salivation, making swallowing easier. | Without adding a lot of sweets and flavourings, it could be difficult to include medications with strong or disagreeable tastes—like bitterness—into gummy formulations. They also require airtight storage in a dry environment due to their hygroscopic nature. These formulations have reportedly been linked to cases involving tooth damage or denture rupture. | [14,52,53] |
| |||
Powders for reconstitution | Due to the absence of the aqueous vehicle, reconstitution formulation lightens the final product’s weight, potentially lowering transportation costs. Avoiding the physical stability issues that conventional suspensions frequently have. | The integrity of a drug is influenced by several physical aspects of the dosage form, including storage temperature, formulation sedimentation rate, and liquid flow characteristics like viscosity, pourability, dispersion, flocculation, and content homogeneity. It is challenging to prevent the deterioration of powders that contain hygroscopic, deliquescent (tend to melt or dissolve in a humid atmosphere), or fragrant materials. | [35,54,55] |
Effervescent tablets | Excellent dose flexibility. Guarantees active ingredient. Stable until dissolution and administration. | Handling friable and brittle. | [48] |
Orodispersible tablets, strips, and films | Designed to dissolve in the mouth in a matter of seconds. Orodispersible tablets (ODTs) eliminate the need to swallow the tablet whole. They provide a great deal of flexibility in terms of administration because the tablet can be pre-dispersed in an appropriate vehicle, administered straight into the mouth, or even completely swallowed, depending on preference. Films and strips have greater dosage flexibility because varied strengths can be achieved by simply cutting films/strips to the appropriate size. | They make medications easier to administer and swallow but they do not offer the same degree of dosing flexibility as traditional tablets, necessitating the use of a range of dosage strengths to meet the needs of all populations. Orally disintegrating formulations with unpleasant-tasting active pharmaceutical ingredients would require taste and flavour masking because the medicine becomes exposed to the patients’ taste buds within the mouth. Sweeteners and flavours are typically added to the recipe to improve palatability. Time spent in the mouth may affect the drug’s bioavailability. They are usually friable and brittle, so they are quite challenging to handle. | [56,57,58,59] |
Granules | Infants and young children can swallow powders and grains easily. Stability, portability, good dosage uniformity. Options for different doses and modified release. | Children may not enjoy the way they feel in their mouths. | [49] |
| |||
Oral drops and solutions | Easy to swallow. | For this dosage type, the effectiveness of the dose-measuring equipment is crucial. | [60] |
Suspensions and syrups | In some circumstances, using an API in suspended form can help mask unpleasant taste and flavour and thus make swallowing easier. | Resuspendability should be a stability criterion since, in some cases, caking or sedimentation of the suspension during storage may pose a major risk for dosing errors. Healthcare professionals must make sure that children will receive a dosing device that is suitable to deliver the recommended dose and that any inappropriate devices are removed from the packaging because formulations may be marketed for a broad patient population without a dosing device or with a device that is specific for certain doses. The drug substance may be chemically unstable in the aqueous vehicle. | [61,62] |
Disease | Drug | Oral Formulation | Age Range | Dosage and Duration | References |
---|---|---|---|---|---|
Group A streptococcus pharyngitis | Penicillin V | Oral solutions, tablets, capsules, reconstitutable suspensions | 1 month–12 years | 250 mg/kg (6–12 h) for 10 days | [79,183,184] |
0–18 years | 250 mg/kg (6 h) for 10 days | ||||
Amoxicillin | Reconstitutable suspensions, liquid suspensions | 0–18 years | 50 mg/kg four times a day for 10 days | ||
Cephalexin | Reconstitutable suspensions | ≥3 years | 40 mg/kg/day twice a day for 10 days; max dose 500 mg | ||
Pneumococcal diseases | Azithromycin | Tablets, liquid suspension, oral reconstitutable suspension | ≥6 months | 10 mg/kg/day for 5 days | [105,185,186,187] |
Clarithromycin | Tablets, oral reconstitutable suspensions | 15 mg/kg/day for 10 days | |||
Amoxicillin | Liquid suspensions | ≥3 months | 90 mg/kg/day for 5–10 days | ||
Clavulanate | Tablets, oral suspensions | ≤3 months ≥40 kg | 6–13 mg/kg (500 mg twice a day for 10 days) | ||
Helicobacter pylori | Clarithromycin | Liquid suspensions, oral solutions | 15–24 kg | 750 mg twice a day for 14 days | [116,188,189] |
25–34 kg | 1000 mg twice a day for 14 days | ||||
≥35 kg | 1000 mg twice a day for 14 days | ||||
Amoxicillin | Reconstitutable suspensions | 15–24 kg | 500 mg twice a day twice a day for 14 days | ||
25–34 kg | 750 mg twice a day for 14 days | ||||
≥35 kg | 1000 mg twice a day for 14 days | ||||
Omeprazole | Tablets, capsules, oral suspensions | 15–24 kg | 20 mg twice a day for 14 days | ||
25–34 kg | 30 mg twice a day for 14 days | ||||
≥35 kg | 40 mg twice a day for 14 days | ||||
Clostridioides difficile | Metronidazole | Tablets, capsules, oral suspensions | 25–30 mg/kg/day for 14 days | [190,191] | |
Vancomycin | Capsules, oral solutions | 30–40 mg/kg/day | |||
Fidaxomicin | Tablets, oral suspensions | >6 months | 200 mg twice a day for 10 days | ||
Whooping cough (Pertussis) | Erythromycin | Tablets, powders, liquids | 1–5 months | 40–50 mg/kg four times a day for 14 days | [192] |
≥6 months | 40–50 mg/kg twice a day for 14 days (max of 2 g per day) | ||||
Azithromycin | Suspensions, tablets, capsules | ≤1 months | 10 mg/kg/day for 5 days | ||
1–5 months | 10 mg/kg/day for 5 days | ||||
≥6 months | 10 mg/kg day 1 and 5 mg/kg for day 2–5 | ||||
Influenza type A and B | Oseltamivir | Capsules, reconstitutable suspension | 0–8 months | 3 mg/kg/dose for 5 days | [141,193] |
9–11 months | 3.5 mg/kg/dose for 5days | ||||
1–12 years | >40 kg 75 mg per day for 5 days | ||||
Baloxavir | Tablets | 40–79 kg | 40 mg for 5 days | ||
≥80 kg | 80 mg for 5 days | ||||
Giardiasis | Quinacrine | Tablets, capsules | 0–12 years | 2 mg/kg three times a day for 5–7days | [194] |
13–18 years | 100 mg three times a day for 5–7 days | ||||
Metronidazole | Tablets, capsules, oral suspensions | 1–3 years | 100 mg four times a day for 5–7 days | ||
3–7 years | 800 mg four times a day for 5–7 days | ||||
7–10 years | 1000 mg four times a day for 5–7 days | ||||
>10 years | 400 mg three times a day for 5 days | ||||
Tinidazole (Off-label) | Tablets | >3 years | 50–60 mg/kg four times a day for 3–5 days | ||
Secnidazole | Tablets, oral granules | >12 years | 30 mg/kg once. Based on response | ||
Ornidazole | Tablets | ≤35 kg | 40 mg/kg single dose for 2 days | ||
>35 kg | 1500 mg single dose for 2 days | ||||
Albendazole | Chewable tablets | 6–12 years | 400 mg four times a day for 5 days | ||
Mebendazole | Chewable tablets | 5–15 years | 200 mg three times a day for 3 days | ||
Nitazoxanide | Tablets, oral suspensions | 1–3 years | 200 mg/day divided twice a day for 3 days | ||
4–11 years | 400 mg/day divided three times a day for 3 days | ||||
≥12 years | 1000 mg/day divided twice a day for 3 days | ||||
Paromomycin | Capsules | Not clearly stated | 25–30 mg/kg/day three times a day for 10 days | ||
Furazolidone | Tablets, oral suspension | >1 m | 400 mg three times a day for 7–10 days | ||
Tuberculosis | Isoniazid | Tablets, syrup | Based on weight | 10 mg/kg max of 300 mg for 3 times a week for 2 months | [195] |
Rifampicin | Capsules, oral suspension | Based on weight | 15 mg/kg max 600 mg/day twice weekly for 2 months | ||
Pyrazinamide | Tablets | Based on weight | 35 mg/kg max of 900 mg/day for 2 months | ||
Ethambutol | Tablets | Based on weight | range 15–25 mg/kg for 2 months | ||
HIV/AIDS | Efavirenz | Tablet | 10 to ˂14 kg | 200 mg daily | [92,196] |
>14 to ˂25 kg | 250–300 mg daily | ||||
>25 to <40 kg | 350–400 mg daily | ||||
≥40 kg | 600 mg daily | ||||
Abacavir/ Lamivudine | Orodispersible tablet (60 mg/30 mg) | 3 to ˂6 kg | 2 tablets daily | ||
6 to ˂10 kg | 3 tablets daily | ||||
10 to ˂14 kg | 4 tablets daily | ||||
14 to ˂20 kg | 5 tablets daily | ||||
20 to ˂25 kg | 6 tablets daily | ||||
Orodispersible tablet (120/60 mg) | 3 to ˂6 kg | 1 tablet daily | |||
6 to ˂10 kg | 1.5 tablets daily | ||||
10 to ˂14 kg | 2 tablets daily | ||||
14 to ˂20 kg | 2.5 tablets daily | ||||
20 to ˂25 kg | 3 tablets daily | ||||
Atazanavir | Capsules (100 mg) | 10–25 kg | 2 tablets daily | ||
Capsules (200 mg) | 10–25 kg | 1 tablet daily | |||
Dolutegravir | Dispersible tablet 5 mg | 3 to ˂6 | 1 tablet daily | ||
6 to ˂10 | 3 tablet daily | ||||
10 to ˂14 | 4 tablet daily | ||||
14 to ˂20 | 5 tablet daily | ||||
20 to ˂25 | 6 tablet daily | ||||
Dispersible tablet 10 mg | 3 to ˂6 | 0.5 tablet daily | |||
6 to ˂10 | 1.5 tablet daily | ||||
10 to ˂14 | 2 tablet daily | ||||
14 to ˂20 | 2.5 tablet daily | ||||
20 to ˂25 | 3 tablet daily | ||||
Zidovudine | Dispersible tablet | >4 weeks | 60 mg daily | ||
Oral liquid | 3–14 kg | 10 mg/mL daily | |||
Abacavir | Dispersible tablet | >4 weeks | 60 mg daily | ||
Oral liquid | >3–14 kg | 20 mg/mL daily | |||
Lamivudine | Oral liquid | 3–14 kg | 10 mg/mL daily | ||
Lopinavir/ritonavir | Tablet | >10 kg | 100 mg/25 mg daily | ||
Oral Pellets | >3 kg | 40 mg/10 mg daily | |||
Oral Granules | >3 kg | 40 mg/10 mg daily | |||
Oral solution | >3 kg | 80 mg/20 mg/mL daily | |||
Raltegravir | Oral granules for suspension | >4 weeks | 10 mg/mL daily |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rampedi, P.N.; Ogunrombi, M.O.; Adeleke, O.A. Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024, 16, 712. https://doi.org/10.3390/pharmaceutics16060712
Rampedi PN, Ogunrombi MO, Adeleke OA. Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics. 2024; 16(6):712. https://doi.org/10.3390/pharmaceutics16060712
Chicago/Turabian StyleRampedi, Penelope N., Modupe O. Ogunrombi, and Oluwatoyin A. Adeleke. 2024. "Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions" Pharmaceutics 16, no. 6: 712. https://doi.org/10.3390/pharmaceutics16060712
APA StyleRampedi, P. N., Ogunrombi, M. O., & Adeleke, O. A. (2024). Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics, 16(6), 712. https://doi.org/10.3390/pharmaceutics16060712