A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation
<p>Single-crystal X-ray structures of the polymorphs Form I (CARSUL) (<b>a</b>) and Form II (CARSOF) (<b>b</b>). Conformation of asymmetric unit of Form I (<b>c</b>) and Form II (<b>d</b>).</p> "> Figure 2
<p>Dissolution profiles of samples employed in the Plackett–Burman design. (<b>a</b>) Samples 1 (●), 2 (▲), and 3 (□); (<b>b</b>) samples 4 (■), 5 (◇), and 6 (▼); (<b>c</b>) samples 7 (◆), 8 (⬟), and 9 (⬡); and (<b>d</b>) samples 10 (△), 11 (⬟), and 12 (★).</p> "> Figure 3
<p>Dissolution profiles of test (<tt>■</tt> and □) and predicted (<tt>■</tt>). Tablets with 12.5 mg of cornstarch and 15% of FI (<b>a</b>), 24 mg of cornstarch and 50% of FI (<b>b</b>), and 36 mg of cornstarch and 87% of FI (<b>c</b>).</p> "> Figure 4
<p>Maximum dissolution profile (▲) and the dissolution region with an f<sub>2</sub> > 85 (blue) (<b>a</b>). CPP’s region that yields a f<sub>2</sub> > 85 dissolution performance (<b>b</b>).</p> "> Figure 5
<p>Raw NIR data for the calibration and validation set (<b>a</b>). Actual vs. predicted values of FI content in entire tablets for the calibration (■) and validation set (□) (<b>b</b>). Actual vs. predicted values of cornstarch in tablets for the calibration (■) and validation set (□) (<b>c</b>).</p> "> Figure 6
<p>Actual (●) and estimated (□) CPPs values of T1 (green) and T2 (black) overlapped with the DS (blue region) (<b>a</b>). Experimental (-●-) and predicted (--□--) dissolution profiles of T1 and T2 overlapped with the DS dissolution projection (blue region) (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Chemicals
2.3. The Obtention of TCB Polymorphs
2.4. Tablets Preparation
2.5. Chemometrics and Software
3. Results and Discussion
3.1. Development of an Empirical Model for the Study of Dissolution Profiles
3.2. Definition of Design Space
3.2.1. Quantification of CPP Using a NIR-PLS Method
3.2.2. Dissolution Prediction of Actual Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, N.; Yang, D.; Jin, G.; Liu, S.; Du, G.; Lu, Y. Structure, characterization, solubility and stability of podophyllotoxin polymorphs. J. Mol. Struct. 2019, 1195, 323–330. [Google Scholar] [CrossRef]
- Censi, R.; Di Martino, P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 2015, 20, 18759–18776. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, P.H. Polymorphism of Active Pharmaceutical Ingredients. Chem. Eng. Technol. 2006, 29, 233–237. [Google Scholar] [CrossRef]
- Duthaler, U.; Smith, T.A.; Keiser, J. In vivo and in vitro sensitivity of fasciola hepatica to triclabendazole combined with artesunate, artemether, or OZ78. Antimicrob. Agents Chemother. 2010, 54, 4596–4604. [Google Scholar] [CrossRef]
- Thakare, R.; Dasgupta, A.; Chopra, S. Triclabendazole for the treatment of fascioliasis. Drugs Today 2019, 55, 743–752. [Google Scholar] [CrossRef]
- Nyindo, M.; Lukambagire, A.-H. Fascioliasis: An Ongoing Zoonotic Trematode Infection. BioMed Res. Int. 2015, 2015, 786195. [Google Scholar] [CrossRef]
- Gandhi, P.; Schmitt, E.K.; Chen, C.W.; Samantray, S.; Venishetty, V.K.; Hughes, D. Triclabendazole in the treatment of human fascioliasis: A review. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 797–804. [Google Scholar] [CrossRef]
- Valero, M.A.; Bargues, M.D.; Calderón, L.; Artigas, P.; Mas-Coma, S. First phenotypic and genotypic description of Fasciola hepatica infecting highland cattle in the state of Mexico, Mexico. Infect. Genet. Evol. 2018, 64, 231–240. [Google Scholar] [CrossRef]
- Lecaillon, J.B.; Godbillon, J.; Campestrini, J.; Naquira, C.; Miranda, L.; Pacheco, R.; Mull, R.; Poltera, A.A. Effect of food on the bioavailability of triclabendazole in patients with fascioliasis. Br. J. Clin. Pharmacol. 1998, 45, 601–604. [Google Scholar] [CrossRef]
- Real, D.; Hoffmann, S.; Leonardi, D.; Salomon, C.; Goycoolea, F.M. Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS ONE 2018, 13, e0207625. [Google Scholar] [CrossRef]
- Tothadi, S.; Bhogala, B.R.; Gorantla, A.R.; Thakur, T.S.; Jetti, R.K.R.; Desiraju, G.R. Triclabendazole: An intriguing case of co-existence of conformational and tautomeric polymorphism. Chem. Asian J. 2012, 7, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Rojas, D.; Kaufman, T.S.; Maggio, R.M. A comprehensive approach toward concomitant triclabendazole polymorphism in pharmaceutical products. J. Drug Deliv. Sci. Technol. 2021, 62, 102386. [Google Scholar] [CrossRef]
- Elder, D. ICH Q6A—Specifications: Test procedures and acceptance criteria for new drug substances and new drug products: Chemical substances. Eur. Pharm. Rev. 2013, 6–7. [Google Scholar] [CrossRef]
- Brittain, H.G. Polymorphism in Pharmaceutical Solids, 2nd ed.; Informa Healthcare: New York, NY, USA, 2009. [Google Scholar]
- Bauer, J.F. Polymorphism—A Critical Consideration in Pharmaceutical Development, Manufacturing, and Stability. J. Valid. Technol. 2008, 14, 15–23. [Google Scholar]
- Yao, X.; Henry, R.F.; Zhang, G.G.Z. Ritonavir Form III: A New Polymorph After 24 Years. J. Pharm. Sci. 2023, 112, 237–242. [Google Scholar] [CrossRef]
- Fujiwara, M.; Nagy, Z.K.; Chew, J.W.; Braatz, R.D. First-principles and direct design approaches for the control of pharmaceutical crystallization. J. Process Control 2005, 15, 493–504. [Google Scholar] [CrossRef]
- Deng, J.; Staufenbiel, S.; Bodmeier, R. Evaluation of a biphasic in vitro dissolution test for estimating the bioavailability of carbamazepine polymorphic forms. Eur. J. Pharm. Sci. 2017, 105, 64–70. [Google Scholar] [CrossRef]
- Swanepoel, E.; Liebenberg, W.; De Villiers, M.M. Quality evaluation of generic drugs by dissolution test: Changing the USP dissolution medium to distinguish between active and non-active mebendazole polymorphs. Eur. J. Pharm. Biopharm. 2003, 55, 345–349. [Google Scholar] [CrossRef]
- International Conference on Harmonisation Committee. Pharmaceutical Development in ICH Harmonised Tripartite Guideline; Q8 (R2), Current Step 4 Version; Pharmexcil: Brussels, Belgium, 2009. [Google Scholar]
- Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. (Eds.) Handbook of Chemometrics and Qualimetrics: Part A; Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Armstrong, N.A. Pharmaceutical Experimental Design and Interpretation; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- U.S. Department of Health and Human Services Food and Drug Administration. Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Development, Manufacuring, and Quality Assurance; FDA Official Document; FDA: Silver Spring, MD, USA, 2004; p. 16. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070305.pdf (accessed on 13 November 2024).
- De Beer, T.; Burggraeve, A.; Fonteyne, M.; Saerens, L.; Remon, J.P.; Vervaet, C. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int. J. Pharm. 2011, 417, 32–47. [Google Scholar] [CrossRef]
- Amidon, G.; Lennernäs, H.; Shah, V.; Crison, J. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of In Vitro Drug Product Dissolution and In Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef]
- Soares, T.d.S.P.; Souza, J.d.; Rosa, L.d.S.; Marques-Marinho, F.D. Dissolution test for oral suspension: An overview about use and importance. Braz. J. Pharm. Sci. 2022, 58, e19423. [Google Scholar] [CrossRef]
- Bai, G.; Wang, Y.; Armenante, P.M. Velocity profiles and shear strain rate variability in the USP Dissolution Testing Apparatus 2 at different impeller agitation speeds. Int. J. Pharm. 2011, 403, 1–14. [Google Scholar] [CrossRef] [PubMed]
- FDA. Guidance for Industry Dissolution Testing of Immediate Realese Solid Oral Dosage Forms; U.S. Department of Health and Human Services: Washington, DC, USA, 1997; pp. 15–22. [Google Scholar]
- Thakore, S.D.; Sirvi, A.; Joshi, V.C.; Panigrahi, S.S.; Manna, A.; Singh, R.; Sangamwar, A.T.; Bansal, A.K. Biorelevant dissolution testing and physiologically based absorption modeling to predict in vivo performance of supersaturating drug delivery systems. Int. J. Pharm. 2021, 607, 120958. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeia (USP), 38th ed.; United States Pharmacopeial Convention: Rockville, MD, USA, 2015.
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Garg, M.; Rathore, A.S. Process development in the QbD paradigm: Implementing design of experiments (DoE) in anti-solvent crystallization for production of pharmaceuticals. J. Cryst. Growth 2021, 571, 126263. [Google Scholar] [CrossRef]
- Real, D.; Orzan, L.; Leonardi, D.; Salomon, C.J. Improving the Dissolution of Triclabendazole from Stable Crystalline Solid Dispersions Formulated for Oral Delivery. AAPS PharmSciTech 2020, 21, 16. [Google Scholar] [CrossRef]
- Gray, V.A. Power of the Dissolution Test in Distinguishing a Change in Dosage Form Critical Quality Attributes. AAPS PharmSciTech 2018, 19, 3328–3332. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.; Quinn, M. Handbook of Pharmaceutical Excipients, 6th ed.; Rowe, R.C., Ed.; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Moore, J.W.; Flanner, H.H. Mathematical comparison of dissolution profiles. Pharm. Technol. 1996, 20, 64–74. [Google Scholar]
- Yu, L.X. Pharmaceutical Quality by Design: Product and Process Development, Understanding, and Control. Pharm. Res. 2008, 25, 781–791. [Google Scholar] [CrossRef]
- Pawar, P.; Wang, Y.; Keyvan, G.; Callegari, G.; Cuitino, A.; Muzzio, F. Enabling real time release testing by NIR prediction of dissolution of tablets made by continuous direct compression (CDC). Int. J. Pharm. 2016, 512, 96–107. [Google Scholar] [CrossRef]
- Antonio, M.; Maggio, R.M. Assessment of mefenamic acid polymorphs in commercial tablets using chemometric coupled to MIR and NIR spectroscopies. Prediction of dissolution performance. J. Pharm. Biomed. Anal. 2018, 149, 603–611. [Google Scholar] [CrossRef]
- Antonio, M.; Carneiro, R.L.; Maggio, R.M. A comparative approach of MIR, NIR and Raman based chemometric strategies for quantification of Form I of Meloxicam in commercial bulk drug. Microchem. J. 2022, 180, 107575. [Google Scholar] [CrossRef]
- De Marco, B.A.; Maggio, R.M.; Nunes Salgado, H.R. Development of a general strategy for the quantification of pseudopolymorphs: Analysis of cefadroxil monohydrate in commercial products. J. Pharm. Investig. 2020, 50, 425–433. [Google Scholar] [CrossRef]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Appl. Spectrosc. 2000, 54, 413–419. [Google Scholar] [CrossRef]
Sample | Form of TCB | Compression Force (kN) | Talc (mg) | Lactose (mg) | Cornstarch (mg) | Magnesium Stearate (mg) |
---|---|---|---|---|---|---|
1, 1′ | II | 12 | 39.5 | 29.3 | 14.3 | 19.4 |
2, 2′ | I | 12 | 19.2 | 14.8 | 14.4 | 9.5 |
3, 3′ | I | 16 | 19.1 | 28.9 | 29.0 | 11.2 |
4, 4′ | II | 12 | 39.0 | 29.1 | 29.0 | 9.6 |
5, 5′ | I | 12 | 19.5 | 29.2 | 14.3 | 19.2 |
6, 6′ | II | 16 | 19.4 | 28.8 | 28.9 | 19.1 |
7, 7′ | II | 16 | 39.3 | 14.4 | 14.6 | 10.0 |
8, 8′ | I | 16 | 38.9 | 29.0 | 14.7 | 9.7 |
9, 9′ | II | 16 | 19.2 | 14.6 | 14.9 | 19.1 |
10, 10′ | II | 12 | 19.5 | 14.8 | 29.4 | 9.7 |
11, 11′ | I | 12 | 38.8 | 14.5 | 29.9 | 19.3 |
12, 12′ | I | 16 | 38.8 | 14.7 | 28.8 | 19.2 |
Time (min) | Model (P) | Factor 1 | (P) | Factor 2 | (P) | SD (%) | R2 |
---|---|---|---|---|---|---|---|
5 | 0.0004 | Cornstarch | 0.0002 | Magnesium stearate | 0.005 | 0.43 | 0.862 |
10 | 0.001 | 0.0006 | 0.01 | 1.2 | 0.817 | ||
15 | 0.0006 | 0.0003 | 0.01 | 1.4 | 0.847 | ||
30 | 0.003 | 0.002 | Type of polymorph | 0.08 | 2.3 | 0.772 | |
45 | 0.004 | 0.003 | 0.05 | 2.9 | 0.755 | ||
60 | 0.003 | 0.003 | 0.03 | 3.2 | 0.770 | ||
90 | 0.002 | 0.004 | 0.009 | 3.4 | 0.790 | ||
120 | 0.003 | Type of polymorph | 0.005 | Cornstarch | 0.006 | 3.8 | 0.793 |
Sample | Polymorphic Purity (% w/w) | Cornstarch (mg) | Sample | Polymorphic Purity (% w/w) | Cornstarch (mg) |
---|---|---|---|---|---|
1 | 24.9 | 31.2 | 1’ | 25.0 | 31.3 |
2 | 50.0 | 38.2 | 2’ | 50.0 | 38.5 |
3 | 50.0 | 9.5 | 3’ | 50.1 | 9.5 |
4 | 75.0 | 17.0 | 4’ | 75.0 | 16.7 |
5 | 49.9 | 24.0 | 5’ | 49.9 | 24.1 |
6 | 24.9 | 17.2 | 6’ | 25.0 | 17.0 |
7 | 75.0 | 31.1 | 7’ | 75.0 | 31.5 |
8 | 100.0 | 23.8 | 8’ | 100.0 | 24.3 |
9 | 0.0 | 24.0 | 9’ | 0.0 | 24.1 |
Time (min) | Equation | Equations |
---|---|---|
5 | (1) | |
10 | (2) | |
15 | (3) | |
30 | (4) | |
45 | (5) | |
60 | (6) | |
90 | (7) | |
120 | (8) |
Parameter | FI Content | Cornstarch |
---|---|---|
Calibration summary | ||
Calibration samples | 54 | |
Concentration levels | 5 | |
Latent variables | 6 | |
Spectral range (nm) | 925–2500 | |
Calibration range | 0–100 (% w/w) | 10–40 (mg) |
Pre-treatment | MC, MSC a | |
Figures of merit | ||
R2 b | 0.9974 | 0.9947 |
Sensibility | 0.0060 | 0.0148 |
Analytical sensibility (γ) | 7.56 | 2.024 |
REP (%) c | 5.14 | 5.17 |
RMSE d | 2.52 (% w/w) | 1.25 (mg) |
LOQ e | 4.89 (% w/w) | 6.53 (mg) |
Results and statistics of validation | ||
Validation samples | 30 | 30 |
Recovery | 103.65 | 99.93 |
RSD f (%) | 11.14 | 5.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzi, L.P.; Antonio, M.; Maggio, R.M. A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation. Pharmaceutics 2024, 16, 1594. https://doi.org/10.3390/pharmaceutics16121594
Muzi LP, Antonio M, Maggio RM. A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation. Pharmaceutics. 2024; 16(12):1594. https://doi.org/10.3390/pharmaceutics16121594
Chicago/Turabian StyleMuzi, Lucas P., Marina Antonio, and Rubén M. Maggio. 2024. "A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation" Pharmaceutics 16, no. 12: 1594. https://doi.org/10.3390/pharmaceutics16121594
APA StyleMuzi, L. P., Antonio, M., & Maggio, R. M. (2024). A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation. Pharmaceutics, 16(12), 1594. https://doi.org/10.3390/pharmaceutics16121594