Precisely Tailoring Molecular Structure of Doxorubicin Prodrugs to Enable Stable Nanoassembly, Rapid Activation, and Potent Antitumor Effect
<p>Preparation and characterization of fatty alcohol-DOX prodrug nanoassemblies. (<b>A</b>) Schematic diagram of prodrug nanoassemblies; Photographs and particle size distribution profiles of (<b>B</b>) DSSC8 NAs, (<b>C</b>) DSSC12 NAs, (<b>D</b>) DSSC16 Nas, and (<b>E</b>) DSSC20 NAs; (<b>F</b>) Molecular docking simulation of prodrug nanoassemblies pink and light blue: Carbon atom, red: Oxygen atom, yellow: Sulfur atom, blue: Nitrogen atom; (<b>G</b>) The size change curves of prodrug nanoassemblies (n = 3); Colloidal stability of prodrug nanoassemblies incubated in (<b>H</b>) PBS (pH 7.4) and (<b>I</b>) PBS (pH 7.4) containing 10% FBS (n = 3); and (<b>J</b>) Long-term colloidal stability of prodrug nanoassemblies at 4 °C (n = 3).</p> "> Figure 2
<p>DTT-triggered prodrug activation and mechanism. The in vitro drug release of the active intermediate (DOX-SH) at 5 mM DTT from DSSC8 NAs (<b>A</b>), DSSC12 NAs (<b>B</b>), DSSC16 NAs (<b>C</b>), and DSSC20 NAs (<b>D</b>) (n = 3). The proportion of remaining prodrug in 1 mM (<b>E</b>) and 0 mM (<b>F</b>) (n = 3); (<b>G</b>) DTT-triggered drug release mechanism of DSSC8 NAs, DSSC12 NAs, DSSC16 Nas, and DSSC20 NAs.</p> "> Figure 3
<p>Cellular uptake and MTT assay. (<b>A</b>) CLSM images of 4T1 cells incubated with C6 Sol or C6-labeled prodrug-nanoassemblies for 0.5 h and 2 h (scale bar = 10 μm); Flow cytometric analyses of 4T1 cells incubated with C6 sol or C6-labeled prodrug-nanoassemblies for (<b>B</b>) 0.5 and (<b>C</b>) 2 h (n = 3) * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, n.s. no significant; Cell viability after treated with various concentrations of DOX Sol and prodrug nanoassemblies for 48 h in (<b>D</b>) 4T1 cells, (<b>E</b>) RM-1 cells, and (<b>F</b>) CT26 cells (n = 3).</p> "> Figure 4
<p>Pharmacokinetic and in vivo biodistribution. (<b>A</b>) Pharmacokinetic profiles of DiR Sol and DiR-labeled prodrug-nanoassemblies following a single intravenous administration of 2 mg/kg (DiR equivalent) (n = 5); (<b>B</b>) Living images of 4T1 tumor-bearing BALB/c mice treated with DiR Sol and DiR-labeled prodrug-nanoassemblies at a DiR equivalent dose of 1.5 mg/kg; (<b>C</b>) Quantitative analysis of excised tissues treated with various formulations at the time when tumor accumulation was brightest (n = 3). ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>In vivo antitumor efficacy of prodrug nanoassemblies. (<b>A</b>) Treatment schedule; (<b>B</b>) Digital images of excised tumors from 4T1 tumor-bearing BALB/c mice following various treatments (× represents the death of the mice); (<b>C</b>) Tumor growth curves post-treatment; (<b>D</b>) Tumor burden following different treatments; (<b>E</b>) Hepatic and renal function assessments post-treatment, including alanine aminotransferase (ALT, U/L), aspartate aminotransferase (AST, U/L), creatinine (CREA, μmol/L), and blood urea nitrogen (BUN, mg/dL) (n = 3). (<b>F</b>) Body weight changes during treatment; (<b>G</b>) H&E and TUNEL staining of tumor tissues after treatment (Scale bar = 100 μm). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Scheme 1
<p>Precisely Programming Prodrug Molecular Structure to Enable Stable Nanoassembly and Rapid Activation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Fatty Alcohol-DOX Prodrugs
2.3. Preparation of DOX Prodrug NAs
2.4. In Vitro Stability Study
2.5. Nanoassembly Mechanisms
2.6. Drug Release
2.7. Cell Culture
2.8. Cellular Uptake
2.9. MTT Assay
2.10. Animal Studies
2.11. Pharmacokinetics
2.12. Biodistribution
2.13. In Vivo Antitumor Efficacy
2.14. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Fatty Alcohol-DOX Prodrugs
3.2. Nanoassembly Capacity of DOX Prodrugs
3.3. In Vitro Prodrug Activation
3.4. Cellular Uptake
3.5. MTT Assay
3.6. Pharmacokinetics and Biodistribution
3.7. In Vivo Antitumor Efficacy
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, G.; Liu, S.; Su, H.; Wang, Y.; Li, J.; Luo, C. Remodeling the tumor microenvironment with emerging nanotherapeutics. Trends Pharmacol. Sci. 2018, 39, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Bocci, G.; Kerbel, R.S. Pharmacokinetics of metronomic chemotherapy: A neglected but crucial aspect. Nat. Rev. Clin. Oncol. 2016, 13, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Arabi, L.; Alibolandi, M. Doxorubicin-loaded composite nanogels for cancer treatment. J. Control. Release 2020, 328, 171–191. [Google Scholar] [CrossRef]
- Wu, L.; Wang, L.; Du, Y.; Zhang, Y.; Ren, J. Mitochondrial quality control mechanisms as therapeutic targets in doxorubicin-induced cardiotoxicity. Trends Pharmacol. Sci. 2023, 44, 34–49. [Google Scholar] [CrossRef]
- Pautier, P.; Italiano, A.; Piperno-Neumann, S.; Chevreau, C.; Penel, N.; Firmin, N.; Boudou-Rouquette, P.; Bertucci, F.; Lebrun-Ly, V.; Ray-Coquard, I.; et al. Doxorubicin-trabectedin with trabectedin maintenance in leiomyosarcoma. N. Engl. J. Med. 2024, 391, 789–799. [Google Scholar] [CrossRef]
- Ma, P.; Wang, G.; Men, K.; Li, C.; Gao, N.; Li, L. Advances in clinical application of nanoparticle-based therapy for cancer treatment: A systematic review. Nano TransMed 2024, 3, 100036. [Google Scholar] [CrossRef]
- Li, G.; Sun, B.; Li, Y.; Luo, C.; He, Z.; Sun, J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small 2021, 17, e2101460. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, R.; He, J.; Yu, L.; Li, X.; Zhang, J.; Li, S.; Zhang, C.; Kagan, J.C.; Karp, J.M.; et al. Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity. Nat. Commun. 2023, 14, 3877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, T.; Sun, Y.; Wang, S.; Wang, W.; Kuang, Z.; Duan, M.; Du, T.; Liu, M.; Wu, L.; et al. Carbon-spaced tandem-disulfide bond bridge design addresses limitations of homodimer prodrug nanoassemblies: Enhancing both stability and activatability. J. Am. Chem. Soc. 2024, 146, 22675–22688. [Google Scholar] [CrossRef]
- Lepeltier, E.; Rijo, P.; Rizzolio, F.; Popovtzer, R.; Petrikaite, V.; Assaraf, Y.G.; Passirani, C. Nanomedicine to target multidrug resistant tumors. Drug Resist. Updates 2020, 52, 100704. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zang, W.; Mi, Z.; Li, J.; Wang, L.; Xie, D.; Zhao, L.; Wang, D. Tailoring carrier-free nanocombo of small-molecule prodrug for combinational cancer therapy. J. Control. Release 2022, 352, 256–275. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Deng, H.; Niu, T.; Qu, Y.; Qian, Z. Stimulus-responsive nano-prodrug strategies for cancer therapy: A focus on camptothecin delivery. Small Methods 2024, 8, e2301271. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, T.; Huang, Y.; Du, C.; Wang, D.; Wang, X.; Lv, Q.; He, Z.; Zhai, Y.; Sun, B.; et al. The effect of lengths of branched-chain fatty alcohols on the efficacy and safety of docetaxel-prodrug nanoassemblies. Acta Pharm. Sin. B 2024, 14, 1400–1411. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H.M.N. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur. J. Med. Chem. 2018, 157, 705–715. [Google Scholar] [CrossRef]
- Zeng, Y.; Ma, J.; Zhan, Y.; Xu, X.; Zeng, Q.; Liang, J.; Chen, X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int. J. Nanomed. 2018, 13, 6551–6574. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Bigham, A.; Taheriazam, A.; Saghari, Y.; Mirzaei, S.; Hashemi, M.; Hushmandi, K.; Karimi-Maleh, H.; Nazarzadeh Zare, E.; et al. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med. Res. Rev. 2023, 43, 2115–2176. [Google Scholar] [CrossRef]
- Cheng, R.; Meng, F.; Deng, C.; Klok, H.A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013, 34, 3647–3657. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325. [Google Scholar] [CrossRef]
- Peng, S.; Xiao, F.; Chen, M.; Gao, H. Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy. Adv. Sci. 2022, 9, e2103836. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Chen, S.; Ding, L.; Liu, J.; Cui, X.; Li, F.; Qiu, F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J. Control. Release 2022, 352, 211–241. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Jin, Q.; Liu, T.; Sun, J.; Wang, Y.; Yang, Z.; He, Z.; Sun, B. Impact of the amount of PEG on prodrug nanoassemblies for efficient cancer therapy. Asian J. Pharm. Sci. 2022, 17, 241–252. [Google Scholar] [CrossRef]
- Fu, S.; Li, G.; Zang, W.; Zhou, X.; Shi, K.; Zhai, Y. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm. Sin. B 2022, 12, 92–106. [Google Scholar] [CrossRef]
- Karaosmanoglu, S.; Zhou, M.; Shi, B.; Zhang, X.; Williams, G.R.; Chen, X. Carrier-free nanodrugs for safe and effective cancer treatment. J. Control. Release 2021, 329, 805–832. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, Q.; Liao, R.; Wang, X.; Zhou, Z.; Zhang, X.; Zhang, H.; He, Z.; Zhang, S.; Luo, C.; et al. Modularly engineered prodrug-nanoassemblies for cancer therapy: Nonpharmacological moiety dominating delivery fates. Nano Res. 2022, 16, 980–990. [Google Scholar] [CrossRef]
- Chen, W. On nano-solutions to overcome cancer hypoxia and resistance. Nano TransMed 2023, 2, e9130020. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Wang, X.; Chen, Q.; He, Z.; Luo, C.; Sun, J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021, 271, 120737. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, M.G.; Won, M.; Koo, S.; Arambula, J.F.; Sessler, J.L.; Chi, S.G.; Kim, J.S. Targeting heterogeneous tumors using a multifunctional molecular prodrug. J. Am. Chem. Soc. 2019, 141, 15611–15618. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Zhang, S.; Sun, B.; Chen, Q.; He, Z.; Luo, C.; Sun, J. Emerging carrier-free nanosystems based on molecular self-assembly of pure drugs for cancer therapy. Med. Res. Rev. 2020, 40, 1754–1775. [Google Scholar] [CrossRef]
- Ibrahim, M.; Ramadan, E.; Elsadek, N.E.; Emam, S.E.; Shimizu, T.; Ando, H.; Ishima, Y.; Elgarhy, O.H.; Sarhan, H.A.; Hussein, A.K.; et al. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control. Release 2022, 351, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.E.; Zhang, P.; Azizuddin, K.; Delos Santos, G.B.; Chiu, S.M.; Xue, L.Y.; Berlin, J.C.; Peng, X.; Wu, H.; Lam, M.; et al. Structural factors and mechanisms underlying the improved photodynamic cell killing with silicon phthalocyanine photosensitizers directed to lysosomes versus mitochondria. Photochem. Photobiol. 2009, 85, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Sun, L.; Huang, Y.; Wang, Y.; Zhang, M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol. 2016, 11, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Z.; Qiu, N.; Zhou, Q.; Wang, G.; Jiang, H.; Piao, Y.; Zhou, Z.; Tang, J.; Shen, Y. Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nat. Commun. 2021, 12, 2425. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, B.; Zuo, S.; Li, X.; Zhou, S.; Li, L.; Luo, C.; Liu, H.; Cheng, M.; Wang, Y.; et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Wang, Y.; Xu, J.; Zheng, Y.; Zhou, W.; Wang, Y.; Luo, C. Precisely Tailoring Molecular Structure of Doxorubicin Prodrugs to Enable Stable Nanoassembly, Rapid Activation, and Potent Antitumor Effect. Pharmaceutics 2024, 16, 1582. https://doi.org/10.3390/pharmaceutics16121582
Feng C, Wang Y, Xu J, Zheng Y, Zhou W, Wang Y, Luo C. Precisely Tailoring Molecular Structure of Doxorubicin Prodrugs to Enable Stable Nanoassembly, Rapid Activation, and Potent Antitumor Effect. Pharmaceutics. 2024; 16(12):1582. https://doi.org/10.3390/pharmaceutics16121582
Chicago/Turabian StyleFeng, Chengcheng, Yuting Wang, Jiaxu Xu, Yanzi Zheng, Wenhu Zhou, Yuequan Wang, and Cong Luo. 2024. "Precisely Tailoring Molecular Structure of Doxorubicin Prodrugs to Enable Stable Nanoassembly, Rapid Activation, and Potent Antitumor Effect" Pharmaceutics 16, no. 12: 1582. https://doi.org/10.3390/pharmaceutics16121582
APA StyleFeng, C., Wang, Y., Xu, J., Zheng, Y., Zhou, W., Wang, Y., & Luo, C. (2024). Precisely Tailoring Molecular Structure of Doxorubicin Prodrugs to Enable Stable Nanoassembly, Rapid Activation, and Potent Antitumor Effect. Pharmaceutics, 16(12), 1582. https://doi.org/10.3390/pharmaceutics16121582