Buccal Absorption of Biopharmaceutics Classification System III Drugs: Formulation Approaches and Mechanistic Insights
Abstract
:1. Introduction
2. Formulation Approaches and Mechanisms
2.1. Mucoadhesive Polymers
2.2. Permeation Enhancers
2.3. Prodrug
2.4. Ion Pairing
2.5. pH Modifiers
3. Expert Opinion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sahoo, D.; Bandaru, R.; Samal, S.K.; Naik, R.; Kumar, P.; Kesharwani, P.; Dandela, R. Oral Drug Delivery of Nanomedicine. In Theory and Applications of Nonparenteral Nanomedicines; Kesharwani, P., Taurin, S., Greish, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 181–207. ISBN 9780128204665. [Google Scholar]
- Bocci, G.; Oprea, T.I.; Benet, L.Z. State of the Art and Uses for the Biopharmaceutics Drug Disposition Classification System (BDDCS): New Additions, Revisions, and Citation References. AAPS J. 2022, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.; Rasul, A.; Abbas, G.; Shah, M.A.; Nazir, I. Self-Emulsifying Drug Delivery Systems: A Versatile Approach to Enhance the Oral Delivery of BCS Class III Drug via Hydrophobic Ion Pairing. PLoS ONE 2023, 18, e0286668. [Google Scholar] [CrossRef] [PubMed]
- Papich, M.G.; Martinez, M.N. Applying Biopharmaceutical Classification System (BCS) Criteria to Predict Oral Absorption of Drugs in Dogs: Challenges and Pitfalls. AAPS J. 2015, 17, 948–964. [Google Scholar] [CrossRef]
- Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A.K. Buccal Bioadhesive Drug Delivery—A Promising Option for Orally Less Efficient Drugs. J. Control. Release 2006, 114, 15–40. [Google Scholar] [CrossRef]
- Gandhi, R.B.; Robinson, J.R. Oral Cavity as a Site for Bioadhesive Drug Delivery. Adv. Drug Deliv. Rev. 1994, 13, 43–74. [Google Scholar] [CrossRef]
- Hua, S. Advances in Nanoparticulate Drug Delivery Approaches for Sublingual and Buccal Administration. Front. Pharmacol. 2019, 10, 1328. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Streisand, J.B. Oral Mucosal Drug Delivery: Clinical Pharmacokinetics and Therapeutic Applications. Clin. Pharmacokinet. 2002, 41, 661–680. [Google Scholar] [CrossRef]
- Pickering, G.; Macian, N.; Libert, F.; Cardot, J.M.; Coissard, S.; Perovitch, P.; Maury, M.; Dubray, C. Buccal Acetaminophen Provides Fast Analgesia: Two Randomized Clinical Trials in Healthy Volunteers. Drug Des. Devel Ther. 2014, 8, 1621–1627. [Google Scholar] [CrossRef]
- Garren, K.W.; Repta, A.J. Buccal Drug Absorption. I. Comparative Levels of Esterase and Peptidase Activities in Rat and Hamster Buccal and Intestinal Homogenates. Int. J. Pharm. 1988, 48, 189–194. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Boddu, S.H.S.; Gorain, B.; Sreeharsha, N.; Shah, J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021, 13, 1206. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Sandri, G.; Caramella, C.M. Buccal Drug Delivery: A Challenge Already Won? Drug Discov. Today Technol. 2005, 2, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Smart, J.D. Buccal Drug Delivery. Expert. Opin. Drug Deliv. 2005, 2, 507–517. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Mu, H. Microenvironmental PH Modification in Buccal/Sublingual Dosage Forms for Systemic Drug Delivery. Pharmaceutics 2023, 15, 637. [Google Scholar] [CrossRef]
- Lam, J.K.W.; Cheung, C.C.K.; Chow, M.Y.T.; Harrop, E.; Lapwood, S.; Barclay, S.I.G.; Wong, I.C.K. Transmucosal Drug Administration as an Alternative Route in Palliative and End-of-Life Care during the COVID-19 Pandemic. Adv. Drug Deliv. Rev. 2020, 160, 234–243. [Google Scholar] [CrossRef]
- Lam, J.K.W.; Xu, Y.; Worsley, A.; Wong, I.C.K. Oral Transmucosal Drug Delivery for Pediatric Use. Adv. Drug Deliv. Rev. 2014, 73, 50–62. [Google Scholar] [CrossRef]
- Gilhotra, R.M.; Ikram, M.; Srivastava, S.; Gilhotra, N. A Clinical Perspective on Mucoadhesive Buccal Drug Delivery Systems. J. Biomed. Res. 2014, 28, 81. [Google Scholar] [CrossRef]
- Bala, R.; Pawar, P.; Khanna, S.; Arora, S. Orally Dissolving Strips: A New Approach to Oral Drug Delivery System. Int. J. Pharm. Investig. 2013, 3, 76. [Google Scholar] [CrossRef]
- Squier, C.A. The Permeability of Oral Mucosa. Crit. Rev. Oral Biol. Med. 1991, 2, 13–32. [Google Scholar] [CrossRef]
- Wertz, P.W. Roles of Lipids in the Permeability Barriers of Skin and Oral Mucosa. Int. J. Mol. Sci. 2021, 22, 5229. [Google Scholar] [CrossRef]
- Chinna Reddy, P.; Chaitanya, K.S.C.; Madhusudan Rao, Y. A Review on Bioadhesive Buccal Drug Delivery Systems: Current Status of Formulation and Evaluation Methods. DARU J. Pharm. Sci. 2011, 19, 385–403. [Google Scholar]
- Veuillez, F.; Kalia, Y.N.; Jacques, Y.; Deshusses, J.; Buri, P. Factors and Strategies for Improving Buccal Absorption of Peptides. Eur. J. Pharm. Biopharm. 2001, 51, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Salamat-Miller, N.; Chittchang, M.; Johnston, T.P. The Use of Mucoadhesive Polymers in Buccal Drug Delivery. Adv. Drug Deliv. Rev. 2005, 57, 1666–1691. [Google Scholar] [CrossRef] [PubMed]
- Khutoryanskiy, V.V. Advances in Mucoadhesion and Mucoadhesive Polymers. Macromol. Biosci. 2011, 11, 748–764. [Google Scholar] [CrossRef]
- Shivanand, K.; Sa, R.; Nizamuddin, S.; Jayakar, B. In Vivo Bioavailability Studies of Sumatriptan Succinate Buccal Tablets. DARU J. Pharm. Sci. 2011, 19, 224–230. [Google Scholar]
- Adhikari, S.N.R.; Nayak, B.S.; Nayak, A.K.; Mohanty, B. Formulation and Evaluation of Buccal Patches for Delivery of Atenolol. AAPS PharmSciTech 2010, 11, 1038–1044. [Google Scholar] [CrossRef]
- Laffleur, F. Mucoadhesive Polymers for Buccal Drug Delivery. Drug Dev. Ind. Pharm. 2014, 40, 591–598. [Google Scholar] [CrossRef]
- Shaikh, R.; Raj Singh, T.; Garland, M.; Woolfson, A.; Donnelly, R. Mucoadhesive Drug Delivery Systems. J. Pharm. Bioallied Sci. 2011, 3, 89–100. [Google Scholar] [CrossRef]
- Kavitha, K.; Rupesh Kumar, M.; Jagadeesh Singh, S. Novel Mucoadhesive Polymers—A Review. J. Appl. Pharm. Sci. 2011, 01, 37–42. [Google Scholar]
- Zhang, Q. Role of Polymer Physicochemical Properties on In Vitro Mucoadhesion. Ph.D. Thesis, University of the Pacific, Stockton, CA, USA, 2020. [Google Scholar]
- Wasnik, M.N.; Godse, R.D.; Nair, H.A. Development and Evaluation of Buccoadhesive Tablet for Selegiline Hydrochloride Based on Thiolated Polycarbophil. Drug Dev. Ind. Pharm. 2014, 40, 632–638. [Google Scholar] [CrossRef]
- Bakhrushina, E.; Anurova, M.; Demina, N.; Kashperko, A.; Rastopchina, O.; Bardakov, A.; Krasnyuk, I. Comparative Study of the Mucoadhesive Properties of Polymers for Pharmaceutical Use. Open Access Maced. J. Med. Sci. 2020, 8, 639–645. [Google Scholar] [CrossRef]
- Silva, C.A.; Nobre, T.M.; Pavinatto, F.J.; Oliveira, O.N. Interaction of Chitosan and Mucin in a Biomembrane Model Environment. J. Colloid. Interface Sci. 2012, 376, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, B.; Amalina, N.; Sengupta, P.; Mandal, U.K. Mucoadhesive Polymers and Their Mode of Action: A Recent Update. J. Appl. Pharm. Sci. 2017, 7, 195–203. [Google Scholar] [CrossRef]
- Patel, P.S.; Parmar, A.M.; Doshi, N.S.; Patel, H.V.; Patel, R.R.; Nayee, C. Buccal Drug Delivery System: A Review. Int. J. Drug Dev. Res. 2013, 5, 35–48. [Google Scholar]
- Ibrahim, Y.H.E.Y.; Regdon, G.; Hamedelniel, E.I.; Sovány, T. Review of Recently Used Techniques and Materials to Improve the Efficiency of Orally Administered Proteins/Peptides. DARU J. Pharm. Sci. 2020, 28, 416. [Google Scholar] [CrossRef]
- Morales, J.O.; Brayden, D.J. Buccal Delivery of Small Molecules and Biologics: Of Mucoadhesive Polymers, Films, and Nanoparticles. Curr. Opin. Pharmacol. 2017, 36, 22–28. [Google Scholar] [CrossRef]
- Fantini, A.; Giulio, L.; Delledonne, A.; Pescina, S.; Sissa, C.; Nicoli, S.; Santi, P.; Padula, C. Buccal Permeation of Polysaccharide High Molecular Weight Compounds: Effect of Chemical Permeation Enhancers. Pharmaceutics 2023, 15, 129. [Google Scholar] [CrossRef]
- Sahni, J.; Raj, S.; Ahmad, F.J.; Khar, R.K. Design and In Vitro Characterization of Buccoadhesive Drug Delivery System of Insulin. Indian J. Pharm. Sci. 2008, 70, 61–65. [Google Scholar]
- Stojančević, M.; Pavlović, N.; Goločorbin-Kon, S.; Mikov, M. Application of Bile Acids in Drug Formulation and Delivery. Front. Life Sci. 2013, 7, 112–122. [Google Scholar] [CrossRef]
- Sattar, M.; Sayed, O.M.; Lane, M.E. Oral Transmucosal Drug Delivery—Current Status and Future Prospects. Int. J. Pharm. 2014, 471, 498–506. [Google Scholar] [CrossRef]
- Som, I.; Bhatia, K.; Yasir, M. Status of Surfactants as Penetration Enhancers in Transdermal Drug Delivery. J. Pharm. Bioallied Sci. 2012, 4, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Siegel, I.A.; Gordon, H.P. Surfactant-Induced Alterations of Permeability of Rabbit Oral Mucosa in Vitro. Exp. Mol. Pathol. 1986, 44, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Ganem-Quintanar, A.; Kalia, Y.N.; Falson-Rieg, F.; Buri, P. Mechanisms of Oral Permeation Enhancement. Int. J. Pharm. 1997, 156, 127–142. [Google Scholar] [CrossRef]
- Prasanth, V.V.; Puratchikody, A.; Mathew, S.T.; Ashok, K.B. Effect of Permeation Enhancers in the Mucoadhesive Buccal Patches of Salbutamol Sulphate for Unidirectional Buccal Drug Delivery. Res. Pharm. Sci. 2014, 9, 259–268. [Google Scholar]
- Sharma, S.; Kulkarni, J.; Pawar, A.P. Permeation Enhancers in the Transmucosal Delivery of Macromolecules. Pharmazie 2006, 61, 495–504. [Google Scholar]
- Sharma, N.; Baldi, A. Exploring Versatile Applications of Cyclodextrins: An Overview. Drug Deliv. 2016, 23, 739–757. [Google Scholar] [CrossRef]
- Masson, M.; Loftsson, T.; Masson, G.; Stefansson, E. Cyclodextrins as Permeation Enhancers: Some Theoretical Evaluations and in Vitro Testing. J. Control. Release 1999, 59, 107–118. [Google Scholar] [CrossRef]
- Yoo, S.D.; Yoon, B.M.; Lee, H.S.; Lee, K.C. Increased Bioavailability of Clomipramine after Sublingual Administration in Rats. J. Pharm. Sci. 1999, 88, 1119–1121. [Google Scholar] [CrossRef]
- Marzo, M.; Ciccarelli, R.; Di Iorio, P.; Giuliani, P.; Caciagli, F.; Marzo, A. Synergic Development of Pharmacokinetics and Bioanalytical Methods as Support of Pharmaceutical Research. Int. J. Immunopathol. Pharmacol. 2016, 29, 168–179. [Google Scholar] [CrossRef]
- Figueiras, A.; Pais, A.A.C.C.; Veiga, F.J.B. A Comprehensive Development Strategy in Buccal Drug Delivery. AAPS PharmSciTech 2010, 11, 1703–1712. [Google Scholar] [CrossRef]
- Markovic, M.; Ben-Shabat, S.; Dahan, A. Prodrugs for Improved Drug Delivery: Lessons Learned from Recently Developed and Marketed Products. Pharmaceutics 2020, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.A.; Aungst, B.J.; Koval, C.A.; Shefter, E. Improved Buccal Delivery of Opioid Analgesics and Antagonists with Bitterless Prodrugs. Pharm.Res. Off. J. Am. Assoc. Pharm. Sci. 1988, 5, 615–618. [Google Scholar]
- Stella, V.J.; Nti-Addae, K.W. Prodrug Strategies to Overcome Poor Water Solubility. Adv. Drug Deliv. Rev. 2007, 59, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Khamis, M.; Agbaria, R.; Karaman, R. Targeted Prodrugs in Oral Drug Delivery: The Modern Molecular Biopharmaceutical Approach. Expert. Opin. Drug Deliv. 2012, 9, 1001–1013. [Google Scholar] [CrossRef]
- Dahan, A.; Zimmermann, E.M.; Ben-Shabat, S. Modern Prodrug Design for Targeted Oral Drug Delivery. Molecules 2014, 19, 16489–16505. [Google Scholar] [CrossRef]
- Christrup, L.L.; Christensen, C.B.; Friis, G.J.; Jorgensen, A. Improvement of Buccal Delivery of Morphine Using the Prodrug Approach. Int. J. Pharm. 1997, 154, 157–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Wen, X.; Ma, H. Current Prodrug Strategies for Improving Oral Absorption of Nucleoside Analogues. Asian J. Pharm. Sci. 2014, 9, 65–74. [Google Scholar] [CrossRef]
- Dave, V.S.; Gupta, D.; Yu, M.; Nguyen, P.; Varghese Gupta, S. Current and Evolving Approaches for Improving the Oral Permeability of BCS Class III or Analogous Molecules. Drug Dev. Ind. Pharm. 2017, 43, 177–189. [Google Scholar] [CrossRef]
- Suresh, P.; Paul, S. Ion-Paired Drug Delivery: An Avenue for Bioavailability Improvement. Sierra Leone J. Biomed. Res. 2011, 3, 70–76. [Google Scholar] [CrossRef]
- Samiei, N.; Shafaati, A.; Zarghi, A.; Moghimi, H.R.; Foroutan, S.M. Enhancement and in Vitro Evaluation of Amifostine Permeation through Artificial Membrane (PAMPA) via Ion Pairing Approach and Mechanistic Selection of Its Optimal Counter Ion. Eur. J. Pharm. Sci. 2014, 51, 218–223. [Google Scholar] [CrossRef]
- ElShaer, A.; Khan, S.; Perumal, D.; Hanson, P.; Mohammed, A.R. Use of Amino Acids as Counterions Improves the Solubility of the BCS II Model Drug, Indomethacin. Curr. Drug Deliv. 2011, 8, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.M.; Dahan, A.; Gupta, D.; Varghese, S.; Amidon, G.L. Quasi-Equilibrium Analysis of the Ion-Pair Mediated Membrane Transport of Low-Permeability Drugs. J. Control. Release 2009, 137, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Samiei, N.; Mangas-Sanjuan, V.; González-Álvarez, I.; Foroutan, M.; Shafaati, A.; Zarghi, A.; Bermejo, M. Ion-Pair Strategy for Enabling Amifostine Oral Absorption: Rat in Situ and in Vivo Experiments. Eur. J. Pharm. Sci. 2013, 49, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.M.; Dahan, A.; Gupta, D.; Varghese, S.; Amidon, G.L. Enabling the Intestinal Absorption of Highly Polar Antiviral Agents: Ion-Pair Facilitated Membrane Permeation of Zanamivir Heptyl Ester and Guanidino Oseltamivir. Mol. Pharm. 2010, 7, 1223–1234. [Google Scholar] [CrossRef]
- Bashyal, S.; Seo, J.E.; Keum, T.; Noh, G.; Lamichhane, S.; Kim, J.H.; Kim, C.H.; Choi, Y.W.; Lee, S. Facilitated Buccal Insulin Delivery via Hydrophobic Ion-Pairing Approach: In Vitro and Ex Vivo Evaluation. Int. J. Nanomed. 2021, 16, 4677–4691. [Google Scholar] [CrossRef]
- Gamboa, A.; Schüßler, N.; Soto-Bustamante, E.; Romero-Hasler, P.; Meinel, L.; Morales, J.O. Delivery of Ionizable Hydrophilic Drugs Based on Pharmaceutical Formulation of Ion Pairs and Ionic Liquids. Eur. J. Pharm. Biopharm. 2020, 156, 203–218. [Google Scholar] [CrossRef]
- Iyire, A.; Alayedi, M.; Mohammed, A.R. Pre-Formulation and Systematic Evaluation of Amino Acid Assisted Permeability of Insulin across in Vitro Buccal Cell Layers. Sci. Rep. 2016, 6, 32498. [Google Scholar] [CrossRef]
- Kang, W.H.; Van Nguyen, H.; Park, C.; Choi, Y.W.; Lee, B.J. Modulation of Microenvironmental PH for Dual Release and Reduced in Vivo Gastrointestinal Bleeding of Aceclofenac Using Hydroxypropyl Methylcellulose-Based Bilayered Matrix Tablet. Eur. J. Pharm. Sci. 2017, 102, 85–93. [Google Scholar] [CrossRef]
- Rawas-Qalaji, M.; Bafail, R.; Ahmed, I.S.; Uddin, M.N.; Nazzal, S. Modulation of the Sublingual Microenvironment and PH-Dependent Transport Pathways to Enhance Atropine Sulfate Permeability for the Treatment of Organophosphates Poisoning. Int. J. Pharm. 2021, 606, 120898. [Google Scholar] [CrossRef]
- Kim, J.C.; Park, E.J.; Na, D.H. Gastrointestinal Permeation Enhancers for the Development of Oral Peptide Pharmaceuticals. Pharmaceuticals 2022, 15, 1585. [Google Scholar] [CrossRef]
Ideal Characteristics for Pre-Gastric Absorption |
---|
Less than 20 mg dose |
Small-to-moderate molecular weight (<800 Da) |
Soluble in water/saliva |
Partially non-ionized at pH 6.8 (oral cavity pH) |
Ability to diffuse and partition into the upper GI tract |
Formulation Approach | Key Findings | Effect on Permeation | Mechanism of Action |
---|---|---|---|
Mucoadhesive Polymers | Enhances residence time of the drug on the mucosal surface, allowing for prolonged contact and increased absorption. | Potential to increase permeation due to extended exposure at the absorption site. | Binds to mucosal surface, reducing washout and sustaining release. |
Permeation Enhancers | Increases membrane permeability through surfactants or fatty acids, improving drug transport. | Enhances permeability by masking the drug’s charge. | Forms ion pairs that pass through membranes with reduced repulsion. |
Prodrugs | Enhances drug solubility, stability, and targeted absorption. | Facilitates drug absorption by releasing active moiety at target site. | Converts inactive prodrug to active form at absorption site. |
Ion pairing | Forms a neutral ion pair, increasing lipophilicity and membrane permeability. | Can increase permeation by altering membrane structure or reducing mucus viscosity. | Alters cell membrane properties or reduces mucus viscosity. |
pH modifiers | Adjusts the microenvironmental pH to enhance drug solubility and absorption, particularly effective for BCS III drugs in buccal formulations by creating an ideal pH environment within and around the solid dosage forms. | Enhances permeability and solubility through pH-dependent dissolution and absorption. | Uses acidifying or alkalizing agents or buffering systems to maintain optimal pH levels, facilitating drug release and permeability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabra, R.; Kirby, D.; Chouk, V.; Malgorzata, K.; Mohammed, A.R. Buccal Absorption of Biopharmaceutics Classification System III Drugs: Formulation Approaches and Mechanistic Insights. Pharmaceutics 2024, 16, 1563. https://doi.org/10.3390/pharmaceutics16121563
Sabra R, Kirby D, Chouk V, Malgorzata K, Mohammed AR. Buccal Absorption of Biopharmaceutics Classification System III Drugs: Formulation Approaches and Mechanistic Insights. Pharmaceutics. 2024; 16(12):1563. https://doi.org/10.3390/pharmaceutics16121563
Chicago/Turabian StyleSabra, Rayan, Daniel Kirby, Vikram Chouk, Kleta Malgorzata, and Afzal R. Mohammed. 2024. "Buccal Absorption of Biopharmaceutics Classification System III Drugs: Formulation Approaches and Mechanistic Insights" Pharmaceutics 16, no. 12: 1563. https://doi.org/10.3390/pharmaceutics16121563
APA StyleSabra, R., Kirby, D., Chouk, V., Malgorzata, K., & Mohammed, A. R. (2024). Buccal Absorption of Biopharmaceutics Classification System III Drugs: Formulation Approaches and Mechanistic Insights. Pharmaceutics, 16(12), 1563. https://doi.org/10.3390/pharmaceutics16121563