Inhalable Anti-EGFR Antibody-Conjugated Osimertinib Liposomes for Non-Small Cell Lung Cancer
<p>Schematic diagram for liposomal formulation preparation.</p> "> Figure 2
<p>The XRD diffractogram of OB, blank formulation (blank LPs), unconjugated OB liposomes (OB-LPs), and conjugated OB liposomes (CTX-OB-LPs). The crystalline peaks of OB are absent in the XRD diffractogram of OB-LPs and CTX-OB-LPs, indicating drug encapsulation within the liposomes.</p> "> Figure 3
<p>(<b>a</b>) Cumulative release profile for OB from immunoliposomes (CTX-OB-LPs) in phosphate buffer saline (PBS), pH 7.4. Data represents mean ± SD (<span class="html-italic">n</span> = 4). (<b>b</b>) In vitro aerosol deposition profile represented as percentage of drug deposited on each stage of next generation impactor (NGI). Data represents mean ± SD (<span class="html-italic">n</span> = 3).</p> "> Figure 4
<p>Kinetic analysis using SPR for the (<b>a</b>) binding of antibodies (CTX) to the EGFR protein and (<b>b</b>) binding of CTX-OB-LPs to the EGFR protein. Data were fitted using the TraceDrawer software at various concentrations injected at 20 μL/min over EGFR immobilized on the sensor’s surface. Data represents mean ± SD (<span class="html-italic">n</span> = 3).</p> "> Figure 5
<p>Cytotoxicity studies after 72 h treatment, as determined using the MTT assay in the H1975 cell line. (<b>a</b>) Blank liposomes (blank LPs) and CTX-conjugated liposomes (CTX-LPs); (<b>b</b>) OB, unconjugated OB liposomes (OB-LPs), and conjugated OB liposomes (CTX-OB-LPs). Data represents mean ± SD (<span class="html-italic">n</span> = 3).</p> "> Figure 6
<p>Colony-forming ability of H1975 cells under treatment for 72 h, followed by a 10-day incubation in fresh media. (<b>a</b>) Quantitative analysis of the clonogenic nature of the H1975 cells after treatment with OB, unconjugated OB liposomes (OB-LPs), and conjugated OB liposomes (CTX-OB-LPs). (<b>b</b>) Images of the colonies after crystal violet staining. The data are expressed as % colony growth versus the respective treatment. Data represents mean ± SD (<span class="html-italic">n</span> = 3). *** <span class="html-italic">p</span> < 0.0001 and ** <span class="html-italic">p</span> < 0.001; ns—non-significant.</p> "> Figure 7
<p>(<b>a</b>) Scratch assay analysis of the H1975 cell line, shown as % of wound healing over time after treatment with OB, unconjugated OB liposomes (OB-LPs), and conjugated OB liposomes (CTX-OB-LPs). Data represents mean ± SD (<span class="html-italic">n</span> = 3). **** <span class="html-italic">p</span> < 0.0001, ** <span class="html-italic">p</span> < 0.01, and * <span class="html-italic">p</span> < 0.05; ns—non-significant. (<b>b</b>) Effect of OB and liposomal formulations (OB-LPs and CTX-OB-LPs) on the metastatic potential of the H1975 cell line. Representative microscopic images of the scratch after the following treatment times are provided: 0 h, 12 h, 24 h, and 48 h. Scale bar 400 µm.</p> "> Figure 8
<p>Stability data for CTX-OB-LPs when stored at 4 °C. (<b>a</b>) % entrapment efficiency (EE); (<b>b</b>) drug content; (<b>c</b>) particle size; (<b>d</b>) zeta potential.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Cell Line
2.2. Osimertinib Liposomes/Unconjugated OB Liposomes (OB-LPs)
2.3. Targeted Osimertinib Liposomes/Immunoliposomes (with Cetuximab) (CTX-OB-LPs)
2.4. Liposome Characterization (OB-LPs and CTX-OB-LPs)
2.4.1. Particle Size Distribution and Zeta Potential
2.4.2. Encapsulation Efficiency and Drug Loading
2.4.3. Antibody Conjugation Efficiency
2.4.4. In Vitro Drug Release
2.4.5. Powder X-Ray Diffraction (PXRD)
2.5. In Vitro Aerosol Performance
Effect of Nebulization on Liposomal Integrity
2.6. Antibody–Antigen Binding Kinetics—LSPR (CTX and CTX-OB-LPs)
2.7. Stability of CTX-OB-LPs
2.8. In Vitro Cell Studies
2.8.1. Cytotoxicity Study
2.8.2. Clonogenic Assay
2.8.3. Scratch Assay
3. Results and Discussion
3.1. Physicochemical Characterization of OB-LPs and CTX-OB-LPs
3.2. Solid State Characterization
3.3. In Vitro Drug Release
3.4. Aerosolization of CTX-OB-LPs
Integrity of CTX-OB-LPs Post-Nebulization
3.5. Binding Kinetics of EGFR with CTX and CTX-OB-LPs
3.6. In Vitro Cell Culture Studies
3.6.1. Cytotoxicity Study
3.6.2. Clonogenic Assay
3.6.3. Scratch Assay
3.7. Stability of CTX-OB-LPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Yang, J.C.-H.; Yang, P.-C. Precision Management of Advanced Non–Small Cell Lung Cancer. Annu. Rev. Med. 2020, 71, 117–136. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef] [PubMed]
- McDonald, F.; De Waele, M.; Hendriks, L.E.L.; Faivre-Finn, C.; Dingemans, A.-M.C.; Van Schil, P.E. Management of Stage I and II Nonsmall Cell Lung Cancer. Eur. Respir. J. 2017, 49, 1600764. [Google Scholar] [CrossRef]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non–Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef]
- Stewart, E.L.; Tan, S.Z.; Liu, G.; Tsao, M.-S. Known and Putative Mechanisms of Resistance to EGFR Targeted Therapies in NSCLC Patients with EGFR Mutations-a Review. Transl. Lung Cancer Res. 2015, 4, 67–81. [Google Scholar] [CrossRef]
- Lee, N.Y.; Hazlett, T.L.; Koland, J.G. Structure and Dynamics of the Epidermal Growth Factor Receptor C-terminal Phosphorylation Domain. Protein Sci. 2006, 15, 1142–1152. [Google Scholar] [CrossRef]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef]
- Lee, D.H. Treatments for EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC): The Road to a Success, Paved with Failures. Pharmacol. Ther. 2017, 174, 1–21. [Google Scholar] [CrossRef]
- Zubair, T.; Bandyopadhyay, D. Small Molecule EGFR Inhibitors as Anti-Cancer Agents: Discovery, Mechanisms of Action, and Opportunities. Int. J. Mol. Sci. 2023, 24, 2651. [Google Scholar] [CrossRef] [PubMed]
- Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef] [PubMed]
- Zámečníkova, A. Novel Approaches to the Development of Tyrosine Kinase Inhibitors and Their Role in the Fight against Cancer. Expert Opin. Drug Discov. 2014, 9, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, S.; Han, M.; Yang, X.; Sun, K.; Wang, H.; Mu, H.; Du, Y.; Wang, A.; Ni, L.; et al. Afatinib-Loaded Immunoliposomes Functionalized with Cetuximab: A Novel Strategy Targeting the Epidermal Growth Factor Receptor for Treatment of Non-Small-Cell Lung Cancer. Int. J. Pharm. 2019, 560, 126–135. [Google Scholar] [CrossRef]
- Fang, W.; Huang, Y.; Gan, J.; Hong, S.; Zhang, L. A Patient with EGFR Exon 20 Insertion–Mutant Non–Small Cell Lung Cancer Responded to Osimertinib plus Cetuximab Combination Therapy. J. Thorac. Oncol. 2019, 14, e201–e202. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Guan, J. Nanoparticle-Based Drug Delivery Systems for Cancer Therapy. Smart Mater. Med. 2020, 1, 10–19. [Google Scholar] [CrossRef]
- Tran, S.; DeGiovanni, P.-J.; Piel, B.; Rai, P. Cancer Nanomedicine: A Review of Recent Success in Drug Delivery. Clin. Transl. Med. 2017, 6, 44. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent Advances in Liposome Surface Modification for Oral Drug Delivery. Nanomedicine 2016, 11, 1169–1185. [Google Scholar] [CrossRef]
- Muttil, P.; Kunda, N.K. (Eds.) Mucosal Delivery of Drugs and Biologics in Nanoparticles; AAPS Advances in the Pharmaceutical Sciences Series; Springer International Publishing: Cham, Switzerland, 2020; Volume 41, ISBN 978-3-030-35909-6. [Google Scholar]
- Sawant, S.S.; Patil, S.M.; Shukla, S.K.; Kulkarni, N.S.; Gupta, V.; Kunda, N.K. Pulmonary Delivery of Osimertinib Liposomes for Non-Small Cell Lung Cancer Treatment: Formulation Development and in Vitro Evaluation. Drug Deliv. Transl. Res. 2022, 12, 2474–2487. [Google Scholar] [CrossRef] [PubMed]
- Nicoya Lifesciences Performing an SPR Experiment. Nicoya.
- Nicoya Lifesciences Properly Publishing OpenSPR Data. Nicoya.
- Nicoya Lifesciences How to Perform a Kinetic Evaluation with TraceDrawer-OpenSPR Rev 4. Nicoya.
- Zheng, Y.; Stephan, M.T.; Gai, S.A.; Abraham, W.; Shearer, A.; Irvine, D.J. In Vivo Targeting of Adoptively Transferred T-Cells with Antibody- and Cytokine-Conjugated Liposomes. J. Control. Release 2013, 172, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Van Rijt, S.H.; Bein, T.; Meiners, S. Medical Nanoparticles for next Generation Drug Delivery to the Lungs. Eur. Respir. J. 2014, 44, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Owensiii, D.; Peppas, N. Opsonization, Biodistribution, and Pharmacokinetics of Polymeric Nanoparticles. Int. J. Pharm. 2006, 307, 93–102. [Google Scholar] [CrossRef]
- Petrilli, R.; Eloy, J.; Lopez, R.; Lee, R. Cetuximab Immunoliposomes Enhance Delivery of 5-FU to Skin Squamous Carcinoma Cells. Anticancer Agents Med. Chem. 2017, 17, 301–308. [Google Scholar] [CrossRef]
- Hamamichi, S.; Fukuhara, T.; Umeda, I.O.; Fujii, H.; Hattori, N. Novel Method for Screening Functional Antibody with Comprehensive Analysis of Its Immunoliposome. Sci. Rep. 2021, 11, 4625. [Google Scholar] [CrossRef]
- Patil, S.M.; Barji, D.S.; Chavan, T.; Patel, K.; Collazo, A.J.; Prithipaul, V.; Muth, A.; Kunda, N.K. Solubility Enhancement and Inhalation Delivery of Cyclodextrin-Based Inclusion Complex of Delamanid for Pulmonary Tuberculosis Treatment. AAPS PharmSciTech 2023, 24, 49. [Google Scholar] [CrossRef]
- Patil, S.M.; Sawant, S.S.; Kunda, N.K. Inhalable Bedaquiline-Loaded Cubosomes for the Treatment of Non-Small Cell Lung Cancer (NSCLC). Int. J. Pharm. 2021, 607, 121046. [Google Scholar] [CrossRef]
- Kankanala, S. Binding Studies of Epidermal Growth Factor Receptor Targeted Compounds Using Surface Plasmon Resonance. Master’s Thesis, Virginia Commonwealth University, Richmond, VA, USA, 2009; 73p. [Google Scholar]
- Li, S.; Schmitz, K.R.; Jeffrey, P.D.; Wiltzius, J.J.W.; Kussie, P.; Ferguson, K.M. Structural Basis for Inhibition of the Epidermal Growth Factor Receptor by Cetuximab. Cancer Cell 2005, 7, 301–311. [Google Scholar] [CrossRef]
- Goldstein, N.I.; Prewett, M.; Zuklys, K.; Rockwell, P.; Mendelsohn, J. Biological Efficacy of a Chimeric Antibody to the Epidermal Growth Factor Receptor in a Human Tumor Xenograft Model. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1995, 1, 1311–1318. [Google Scholar]
- Canato, E.; Grigoletto, A.; Zanotto, I.; Tedeschini, T.; Campara, B.; Quaglio, G.; Toffoli, G.; Mandracchia, D.; Dinarello, A.; Tiso, N.; et al. Anti-HER2 Super Stealth Immunoliposomes for Targeted-Chemotherapy. Adv. Healthc. Mater. 2023, 12, 2301650. [Google Scholar] [CrossRef] [PubMed]
- Zalba, S.; Contreras, A.M.; Haeri, A.; Ten Hagen, T.L.M.; Navarro, I.; Koning, G.; Garrido, M.J. Cetuximab-Oxaliplatin-Liposomes for Epidermal Growth Factor Receptor Targeted Chemotherapy of Colorectal Cancer. J. Control. Release 2015, 210, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zheng, Z.; Zheng, L.; Qin, J.; Li, H.; Xue, X.; Gao, J.; Fang, G. SATB1 siRNA-Encapsulated Immunoliposomes Conjugated with CD44 Antibodies Target and Eliminate Gastric Cancer-Initiating Cells. OncoTargets Ther. 2018, 11, 6811–6825. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, J.; Zhao, J.; Wang, B. Folate-Modified Liposomes Mediate the Co-Delivery of Cisplatin with miR-219a-5p for the Targeted Treatment of Cisplatin-Resistant Lung Cancer. BMC Pulm. Med. 2024, 24, 159. [Google Scholar] [CrossRef]
Formulation | Size (nm) | PDI (a.u) | Zeta Potential (mV) |
---|---|---|---|
OB-LPs (pre-conjugation) | 130.38 ± 4.40 | 0.22 ± 0.01 | +4.39 ± 0.37 |
CTX-OB-LPs (post-conjugation) | 153.97 ± 7.86 | 0.35 ± 0.01 | −2.69 ± 0.98 |
Aerodynamic Properties | OB Immunoliposomes (CTX-OB-LPs) |
---|---|
MMAD (μm) | 3.22 ± 0.12 |
FPF (%) | 88.43 ± 0.38 |
GSD | 2.12 ± 0.08 |
ED (μg) | 87.35 ± 8.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daram, A.; Sawant, S.S.; Mehta, D.A.; Sanhueza, C.A.; Kunda, N.K. Inhalable Anti-EGFR Antibody-Conjugated Osimertinib Liposomes for Non-Small Cell Lung Cancer. Pharmaceutics 2024, 16, 1444. https://doi.org/10.3390/pharmaceutics16111444
Daram A, Sawant SS, Mehta DA, Sanhueza CA, Kunda NK. Inhalable Anti-EGFR Antibody-Conjugated Osimertinib Liposomes for Non-Small Cell Lung Cancer. Pharmaceutics. 2024; 16(11):1444. https://doi.org/10.3390/pharmaceutics16111444
Chicago/Turabian StyleDaram, Apoorva, Shruti S. Sawant, Dhwani A. Mehta, Carlos A. Sanhueza, and Nitesh K. Kunda. 2024. "Inhalable Anti-EGFR Antibody-Conjugated Osimertinib Liposomes for Non-Small Cell Lung Cancer" Pharmaceutics 16, no. 11: 1444. https://doi.org/10.3390/pharmaceutics16111444
APA StyleDaram, A., Sawant, S. S., Mehta, D. A., Sanhueza, C. A., & Kunda, N. K. (2024). Inhalable Anti-EGFR Antibody-Conjugated Osimertinib Liposomes for Non-Small Cell Lung Cancer. Pharmaceutics, 16(11), 1444. https://doi.org/10.3390/pharmaceutics16111444