Principles and Biomedical Applications of Self-Assembled Peptides: Potential Treatment of Type 2 Diabetes Mellitus
<p>(<b>a</b>) Atomic force microscopy (AFM) image of β-lactoglobulin nanofibrils [<a href="#B145-pharmaceutics-16-01442" class="html-bibr">145</a>]. (<b>b</b>) Atomic resolution structure of a nanofibril using the magic angle spinning (MAS) nuclear magnetic resonance (NMR) technique from the cryo-EM image of the nanofibrils: left picture side shows the cryo-EM image of the nanofibrils, center picture shows the MAS NMR atomic resolution of the zoomed-in section of a nanofibril from the cryo-EM image, right picture shows the ribbon-like configuration of the β-sheets in the zoomed-in section of the center picture [<a href="#B144-pharmaceutics-16-01442" class="html-bibr">144</a>]. (<b>c</b>) AFM images of the multistranded twisted ribbon-like nanofibrils with various numbers of filaments [<a href="#B145-pharmaceutics-16-01442" class="html-bibr">145</a>]. (<b>b</b>) Reprinted/adapted with permission from [<a href="#B144-pharmaceutics-16-01442" class="html-bibr">144</a>]. 2013, Fitzpatrick, A.W., et al. (<b>a</b>,<b>c</b>) Reprinted/adapted with permission from [<a href="#B145-pharmaceutics-16-01442" class="html-bibr">145</a>]. 2010, Adamcik, J., et al.</p> "> Figure 1 Cont.
<p>(<b>a</b>) Atomic force microscopy (AFM) image of β-lactoglobulin nanofibrils [<a href="#B145-pharmaceutics-16-01442" class="html-bibr">145</a>]. (<b>b</b>) Atomic resolution structure of a nanofibril using the magic angle spinning (MAS) nuclear magnetic resonance (NMR) technique from the cryo-EM image of the nanofibrils: left picture side shows the cryo-EM image of the nanofibrils, center picture shows the MAS NMR atomic resolution of the zoomed-in section of a nanofibril from the cryo-EM image, right picture shows the ribbon-like configuration of the β-sheets in the zoomed-in section of the center picture [<a href="#B144-pharmaceutics-16-01442" class="html-bibr">144</a>]. (<b>c</b>) AFM images of the multistranded twisted ribbon-like nanofibrils with various numbers of filaments [<a href="#B145-pharmaceutics-16-01442" class="html-bibr">145</a>]. (<b>b</b>) Reprinted/adapted with permission from [<a href="#B144-pharmaceutics-16-01442" class="html-bibr">144</a>]. 2013, Fitzpatrick, A.W., et al. (<b>a</b>,<b>c</b>) Reprinted/adapted with permission from [<a href="#B145-pharmaceutics-16-01442" class="html-bibr">145</a>]. 2010, Adamcik, J., et al.</p> "> Figure 2
<p>Cross-sectional schematic hierarchy of the peptide self-assembly mechanism towards formation of a nanofibril structure [<a href="#B144-pharmaceutics-16-01442" class="html-bibr">144</a>]. Each β-strand represents a peptide. Peptides stack together via formation of the backbone–backbone hydrogen bonds to generate a β-sheet. Two cross-β-sheets (anti-parallel β-sheets) line up together via interactions between their amino acid side chains to create a proto-filament. Afterwards, the protofilaments line up next to each other or in an anti-parallel fashion to generate a filament. Finally, the filaments stack up together by interactions between corresponding side chains to form a stable nanofibrillar structure. Reprinted/adapted with permission from [<a href="#B144-pharmaceutics-16-01442" class="html-bibr">144</a>]. 2013, Fitzpatrick, A.W., et al.</p> "> Figure 3
<p>Schematics of the thermodynamics of the peptide self-assembly process to form a nanofibrillar structure. (<b>a</b>) Gibbs free energy change via peptide self-assembly into a nanofibril [<a href="#B165-pharmaceutics-16-01442" class="html-bibr">165</a>]. (<b>b</b>) Gibbs free energy change depends on concentration of free peptides in the system [<a href="#B146-pharmaceutics-16-01442" class="html-bibr">146</a>]. (<b>a</b>) Reprinted/adapted with permission from [<a href="#B165-pharmaceutics-16-01442" class="html-bibr">165</a>]. 2015, Arosio, P., et al. (<b>b</b>) Reprinted/adapted with permission from [<a href="#B146-pharmaceutics-16-01442" class="html-bibr">146</a>]. 2005, Nelson, R., et al.</p> "> Figure 4
<p>(<b>a</b>) Sigmoidal curve to illustrate the kinetics of the peptide self-assembly process generating mature stable nanofibrillar structures [<a href="#B165-pharmaceutics-16-01442" class="html-bibr">165</a>]. (<b>b</b>) Molecular steps in the peptide self-assembly process: primary nucleation, nanofibril elongation, secondary nucleation via fragmentation, secondary nucleation via nanofibril surface nucleation [<a href="#B165-pharmaceutics-16-01442" class="html-bibr">165</a>]. Reprinted/adapted with permission from [<a href="#B165-pharmaceutics-16-01442" class="html-bibr">165</a>]. 2015, Arosio, P., et al.</p> "> Figure 5
<p>Applications of the biological self-assembled nanofibrils for biomedical purposes [<a href="#B197-pharmaceutics-16-01442" class="html-bibr">197</a>]. Highly ordered nanostructures (nanofibrils) with strong regulatory monitoring show tremendous advantages in various fields of biomedicine: tissue engineering, biological scaffolds, drug delivery systems, dentistry, food safety, biosensors. Reprinted/adapted with permission from [<a href="#B197-pharmaceutics-16-01442" class="html-bibr">197</a>]. 2024, Afjadi, M.N., et al.</p> "> Figure 6
<p>Application of self-assembled peptides into highly organized nanofibrils as a smart drug delivery system. Nanofibrils can be generated via self-assembly of peptides under certain physical conditions [<a href="#B197-pharmaceutics-16-01442" class="html-bibr">197</a>]. Upon administration, the nanofibrils can release bioactive peptides from the ends of the nanofibrils. This enables the highly controlled and sustained release of pharmaceutic peptides into the body to induce their pharmacological effects at the target site. Reprinted/adapted with permission from [<a href="#B197-pharmaceutics-16-01442" class="html-bibr">197</a>]. 2024, Afjadi, M.N., et al.</p> ">
Abstract
:1. Self-Assembly of Peptides and Its Biomedical Applications
2. What Are Self-Assembled Peptides?
3. Peptide Self-Assembly: Thermodynamics and Kinetics
3.1. Thermodynamics
3.2. Kinetics
4. Pathophysiology of Self-Assembled Peptides
4.1. Biophysics of Self-Assembled Peptides in Physiology
4.2. Protein Misfolding
4.3. Self-Assembled Peptides in Disease
5. Applications of Molecular Self-Assembly in Bio-Nanotechnology
6. Type 2 Diabetes Mellitus (T2DM): Pathology and Treatment Methods and Their Challenges
6.1. Pathology of Type 2 Diabetes Mellitus (T2DM)
6.2. T2DM: Treatment Methods
6.3. T2DM: Challenges in Current Treatment Methods
7. T2DM: Treatment by Self-Assembled Peptide Hormones
8. Conclusions and Discussion
- The molecular structures of these nanofibrils are still not fully resolved. It is extremely vital to have completely uniform nanofibrils in terms of length, structure, and thickness. And so forth, the nanofibrils can release the bioactive peptides in a controlled and precise manner in vivo. This concern intends to avoid adverse pharmacological effects of this revolutionary drug delivery route such as hypoglycemia and hyperglycemia in T2DM patients.
- It is still not clear if the generated nanofibrils could overcome severe physical conditions including harsh temperature variation, abrupt mechanical environment such as agitation and container’s surface hydrophobicity, etc. The nanofibrils might undergo alternative conformations due to these environmental condition changes, which can consequently influence the efficacy and safety profiles of the drug delivery route when administered into patients in vivo.
- This technique has not yet been applied on human subjects. After the first challenge is fully resolved, the safety and efficacy of this smart drug delivery method must be tested on human subjects. The clinical possibility of the smart nanofibrils can only be completely recognized once the physicochemical, biochemical, pharmacokinetic, and pharmacodynamic features of the nanofibrils are precisely regulated in vivo on human subjects.
9. Future Research Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vendruscolo, M.; Zurdo, J.; MacPhee, C.E.; Dobson, C.M. Protein folding and misfolding: A paradigm of self-assembly and regulation in complex biological systems. Philos. Trans. R. Soc. Lond. A 2003, 361, 1205–1222. [Google Scholar] [CrossRef]
- Sreerama, N.; Woody, R.W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef]
- Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef]
- Shankar, S.S.; Shankar, R.R.; Mixson, L.A.; Miller, D.L.; Pramanik, B.; O’Dowd, A.K.; Williams, D.M.; Frederick, C.B.; Beals, C.R.; Stoch, S.A.; et al. Native oxyntomodulin has significant glucoregulatory effects independent of weight loss in obese humans with and without type 2 diabetes. Diabetes 2018, 67, 1105–1112. [Google Scholar] [CrossRef]
- Prothiwa, M.; Syed, I.; Huising, M.O.; van der Meulen, T.; Donaldson, C.J.; Trauger, S.A.; Kahn, B.B.; Saghatelian, A. Data-driven synthesis of proteolysis-resistant peptide hormones. J. Am. Chem. Soc. 2014, 136, 17710–17713. [Google Scholar] [CrossRef]
- Demizu, Y.; Doi, M.; Kurihara, M.; Okuda, H.; Nagano, M.; Suemune, H.; Tanaka, M. Conformational studies on peptides containing α,α-disubstituted α-amino acids: Chiral cyclic α,α-disubstituted α-amino acid as an α-helical inducer. Org. Biomol. Chem. 2011, 9, 3303–3314. [Google Scholar] [CrossRef]
- Bruckenstein, S.; Shay, M. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta 1985, 30, 1295–1300. [Google Scholar] [CrossRef]
- Martin, S.J.; Granstaff, V.E.; Frye, G.C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 1991, 63, 2272–2281. [Google Scholar] [CrossRef]
- Fogel, R.; Limson, J.; Seshia, A.A. Acoustic biosensors. Essays Biochem. 2016, 60, 101–110. [Google Scholar]
- Marx, K.A. Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 2003, 4, 1099–1120. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2005, 1751, 119–139. [Google Scholar] [CrossRef]
- Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J.M.; Raussens, V. ATR-FTIR: A ‘rejuvenated’ tool to investigate amyloid proteins. Biochim. Biophys. Acta (BBA) Biomembr. 2013, 1828, 2328–2338. [Google Scholar] [CrossRef]
- Tidy, R.J.; Lam, V.; Fimognari, N.; Mamo, J.C.; Hackett, M.J. FTIR studies of the similarities between pathology induced protein aggregation in vivo and chemically induced protein aggregation ex vivo. Vib. Spectrosc. 2017, 91, 68–76. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta (BBA) Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Yagi, H.; Abe, Y.; Takayanagi, N.; Goto, Y. Elongation of amyloid fibrils through lateral binding of monomers revealed by total internal reflection fluorescence microscopy. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2014, 1844, 1881–1888. [Google Scholar] [CrossRef]
- Zou, Y.; Li, Y.; Hao, W.; Hu, X.; Ma, G. Parallel β-Sheet Fibril and Antiparallel β-Sheet Oligomer: New Insights into Amyloid Formation of Hen Egg White Lysozyme under Heat and Acidic Condition from FTIR Spectroscopy. J. Phys. Chem. B 2013, 117, 4003–4013. [Google Scholar] [CrossRef]
- Moran, S.D.; Zanni, M.T. How to get insight into amyloid structure and formation from infrared spectroscopy. J. Phys. Chem. Lett. 2014, 5, 1984–1993. [Google Scholar] [CrossRef]
- Glassford, S.E.; Byrne, B.; Kazarian, S.G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013, 1834, 2849–2858. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Elliott, A.; Ambrose, E.J. Structure of synthetic polypeptides. Nature 1950, 165, 921–922. [Google Scholar] [CrossRef]
- Jackson, M.; Mantsch, H.H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120. [Google Scholar] [CrossRef]
- Calero, M.; Gasset, M. Fourier Transform Infrared and Circular Dichroism Spectroscopies for Amyloid Studies. Amyloid Proteins Methods Protoc. 2005, 299, 129–152. [Google Scholar]
- Lu, L.; Deng, Y.; Li, X.; Li, H.; Karniadakis, G.E. Understanding the twisted structure of amyloid fibrils via molecular simulations. J. Phys. Chem. B 2018, 122, 11302–11310. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Fitzpatrick, A.W.; Meehan, S.; Mott, H.R.; Vendruscolo, M.; Dobson, C.M.; Welland, M.E. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 2007, 318, 1900–1903. [Google Scholar] [CrossRef]
- Park, J.; Kahng, B.; Kamm, R.D.; Hwang, W. Atomistic simulation approach to a continuum description of self-assembled β-sheet filaments. Biophys. J. 2006, 90, 2510–2524. [Google Scholar] [CrossRef]
- Close, W.; Neumann, M.; Schmidt, A.; Hora, M.; Annamalai, K.; Schmidt, M.; Reif, B.; Schmidt, V.; Grigorieff, N.; Fändrich, M. Physical basis of amyloid fibril polymorphism. Nat. Commun. 2018, 9, 699. [Google Scholar] [CrossRef]
- Reynolds, N.P.; Adamcik, J.; Berryman, J.T.; Handschin, S.; Hakami Zanjani, A.A.; Li, W.; Liu, K.; Zhang, A.; Mezzenga, R. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nat. Commun. 2017, 8, 1338. [Google Scholar] [CrossRef]
- Eichner, T.; Radford, S.E. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell 2011, 43, 8–18. [Google Scholar] [CrossRef]
- Lomakin, A.; Chung, D.S.; Benedek, G.B.; Kirschner, D.A.; Teplow, D.B. On the nucleation and growth of amyloid β-protein fibrils: Detection of nuclei and quantification of rate constants. Proc. Natl. Acad. Sci. USA 1996, 93, 1125–1129. [Google Scholar] [CrossRef]
- Naiki, H.; Nakakuki, K. First-order kinetic model of Alzheimer’s beta-amyloid fibril extension in vitro. Lab. Investig. 1996, 74, 374–383. [Google Scholar] [PubMed]
- Esler, W.P.; Stimson, E.R.; Ghilardi, J.R.; Vinters, H.V.; Lee, J.P.; Mantyh, P.W.; Maggio, J.E. In vitro growth of Alzheimer’s disease β-amyloid plaques displays first-order kinetics. Biochemistry 1996, 35, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Crothers, D. Physical Chemistry with Applications to the Life Sciences; Physical Chemistry (Benjamin/Cummings): Menlo Park, CA, USA, 1979; pp. 242–244. [Google Scholar]
- Hall, D.M.; Bruss, I.S.; Barone, J.R.; Grason, G.M. Morphology selection via geometric frustration in chiral filament bundles. Nat. Mater. 2016, 15, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Haliloglu, T.; Bahar, I.; Erman, B. Gaussian dynamics of folded proteins. Phys. Rev. Lett. 1997, 79, 3090–3093. [Google Scholar] [CrossRef]
- Fändrich, M.; Fletcher, M.A.; Dobson, C.M. Amyloid fibrils from muscle myoglobin. Nature 2001, 410, 165–166. [Google Scholar] [CrossRef]
- Aggeli, A.; Nyrkova, I.A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T.C.B.; Semenov, A.N.; Boden, N. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl. Acad. Sci. USA 2001, 98, 11857–11862. [Google Scholar] [CrossRef]
- Jiménez, J.L.; Guijarro, J.I.; Orlova, E.; Zurdo, J.; Dobson, C.M.; Sunde, M.; Saibil, H.R. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 1999, 18, 815–821. [Google Scholar] [CrossRef]
- Sunde, M.; Serpell, L.C.; Bartlam, M.; Fraser, P.E.; Pepys, M.B.; Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 1997, 273, 729–739. [Google Scholar] [CrossRef]
- Tanaka, M.; Collins, S.R.; Toyama, B.H.; Weissman, J.S. The physical basis of how prion conformations determine strain phenotypes. Nature 2006, 442, 585–589. [Google Scholar] [CrossRef]
- Graumann, P.L. Cytoskeletal elements in bacteria. Annu. Rev. Microbiol. 2007, 61, 589–618. [Google Scholar] [CrossRef]
- Kueh, H.Y.; Mitchison, T.J. Structural plasticity in actin and tubulin polymer dynamics. Science 2009, 325, 960–963. [Google Scholar] [CrossRef] [PubMed]
- Periole, X.; Huber, T.; Bonito-Oliva, A.; Aberg, K.C.; van der Wel, P.C.A.; Sakmar, T.P.; Marrink, S.J. Energetics underlying twist polymorphisms in amyloid fibrils. J. Phys. Chem. B 2018, 122, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Turner, M.S.; Agarwal, G.; Kwong, S.; Josephs, R.; Ferrone, F.A.; Briehl, R.W. Micromechanics of isolated sickle cell haemoglobin fibers: Bending moduli and persistence lengths. J. Mol. Biol. 2002, 315, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.F.; Knowles, T.P.J.; Dobson, C.M.; MacPhee, C.E.; Welland, M.E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA 2006, 103, 15806–15811. [Google Scholar] [CrossRef] [PubMed]
- Sachse, C.; Fändrich, M.; Grigorieff, N. Paired β-sheet structure of an Aβ(1–40) amyloid fibril revealed by electron microscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 7462–7466. [Google Scholar] [CrossRef]
- Schmidt, M.; Sachse, C.; Richter, W.; Xu, C.; Fändrich, M.; Grigorieff, N. Comparison of Alzheimer Aβ(1–40) and Aβ(1–42) amyloid fibrils reveals similar protofilament structures. Proc. Natl. Acad. Sci. USA 2009, 106, 19813–19818. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, X.; Khant, H.; Ludtke, S.J.; Chiu, W.; Schmid, M.F.; Frieden, C.; Lee, J. Inter-protofilament interactions between Alzheimer’s Aβ1–42 peptides in amyloid fibrils revealed by cryo-EM. Proc. Natl. Acad. Sci. USA 2009, 106, 4653–4658. [Google Scholar] [CrossRef]
- Goldsbury, C.S.; Wirtz, S.; Müller, S.A.; Sunderji, S.; Wicki, P.; Aebi, U.; Frey, P. Studies on the in vitro assembly of Aβ 1–40: Implications for the search for Aβ fibril formation inhibitors. J. Struct. Biol. 2000, 130, 217–231. [Google Scholar] [CrossRef]
- Petkova, A.T.; Leapman, R.D.; Guo, Z.; Yau, W.; Mattson, M.P.; Tycko, R. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 2005, 307, 262–265. [Google Scholar] [CrossRef]
- O’Nuallain, B.; Shivaprasad, S.; Kheterpal, I.; Wetzel, R. Thermodynamics of Aβ(1–40) amyloid fibril elongation. Biochemistry 2005, 44, 12709–12718. [Google Scholar] [CrossRef]
- Bai, X.; McMullan, G.; Scheres, S.H.W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 2015, 40, 49–57. [Google Scholar] [CrossRef] [PubMed]
- He, S. Helical Reconstruction in RELION. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2018. [Google Scholar]
- Kuhlbrandt, W. Cryo-EM enters a new era. eLife 2014, 3, e03678. [Google Scholar] [CrossRef] [PubMed]
- De Rosier, D.J.; Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 1968, 217, 130–134. [Google Scholar] [CrossRef] [PubMed]
- De Rosier, D.J.; Moore, P.B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 1970, 52, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.; Crick, F.; Vand, V. The structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Cryst. 1952, 5, 581–586. [Google Scholar]
- Klug, A.; Crick, F.H.C.; Wyckoff, H.W. Diffraction by helical structures. Acta Cryst. 1958, 11, 199–213. [Google Scholar] [CrossRef]
- Diaz, R.; Rice, W.J.; Stokes, D.L. Fourier-Bessel reconstruction of helical assemblies. Methods Enzymol. 2010, 482, 131–165. [Google Scholar]
- Bluemke, D.A.; Carragher, B.; Josephs, R. The reconstruction of helical particles with variable pitch. Ultramicroscopy 1988, 26, 255–270. [Google Scholar] [CrossRef]
- Sosa, H.; Hoenger, A.; Milligan, R.A. Three different approaches for calculating the three-dimensional structures of microtubules decorated with kinesin motor domains. J. Struct. Biol. 1997, 118, 149–158. [Google Scholar] [CrossRef]
- Beroukhim, R.; Unwin, N. Distortion correction of tubular crystals: Improvements in the acetylcholine receptor structure. Ultramicroscopy 1997, 70, 57–81. [Google Scholar] [CrossRef]
- He, S.; Scheres, S.H.W. Helical reconstruction in RELION. J. Struct. Biol. 2017, 198, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Midgley, P.A.; Weyland, M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413–431. [Google Scholar] [CrossRef] [PubMed]
- Nogales, E.; Scheres, S.H. Cryo-EM: A unique tool for the visualization of macromolecular complexity. Mol. Cell 2015, 58, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Steven, A.C.; Aebi, U. The next ice age: Cryo-electron tomography of intact cells. Trends Cell Biol. 2003, 13, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 2017, 547, 185–190. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Luo, F.; Liu, Z.; Gui, X.; Luo, Z.; Zhang, X.; Li, D.; Liu, C.; Li, X. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 2018, 28, 897–903. [Google Scholar] [CrossRef]
- Falcon, B.; Zhang, W.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Vidal, R.; Crowther, R.A.; Ghetti, B.; Scheres, S.H.W.; Goedert, M. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 2018, 561, 137–140. [Google Scholar] [CrossRef]
- Iadanza, M.G.; Silvers, R.; Boardman, J.; Smith, H.I.; Karamanos, T.K.; Debelouchina, G.T.; Su, Y.; Griffin, R.G.; Ranson, N.A.; Radford, S.E. The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nat. Commun. 2018, 9, 4517. [Google Scholar] [CrossRef]
- Liberta, F.; Loerch, S.; Rennegarbe, M.; Schierhorn, A.; Westermark, P.; Westermark, G.T.; Hazenberg, B.P.C.; Grigorieff, N.; Fändrich, M.; Schmidt, M. Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids. Nat. Commun. 2019, 10, 1104. [Google Scholar] [CrossRef]
- Radamaker, L.; Lin, Y.-H.; Annamalai, K.; Huhn, S.; Hegenbart, U.; Schönland, S.O.; Fritz, G.; Schmidt, M.; Fändrich, M. Cryo-EM structure of a light chain-derived amyloid fibril from a patient with systemic AL amyloidosis. Nat. Commun. 2019, 10, 1103. [Google Scholar] [CrossRef]
- Cao, Q.; Boyer, D.R.; Sawaya, M.R.; Ge, P.; Eisenberg, D.S. Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nat. Struct. Mol. Biol. 2019, 26, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Kollmer, M.; Close, W.; Funk, L.; Rasmussen, J.; Bsoul, A.; Schierhorn, A.; Schmidt, M.; Sigurdson, C.J.; Jucker, M.; Fändrich, M. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 2019, 10, 4760. [Google Scholar] [CrossRef] [PubMed]
- Scheres, S.H.W. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 2012, 415, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Scheres, S.H.W. Amyloid structure determination in RELION-3.1. Acta Cryst. 2020, D76, 94–101. [Google Scholar]
- Hervas, R.; Rau, M.J.; Park, Y.; Zhang, W.; Murzin, A.G.; Fitzpatrick, J.A.J.; Scheres, S.H.W.; Si, K. Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Science 2020, 367, 1230–1234. [Google Scholar] [CrossRef]
- Scheres, S.H.W. RELION: Implementation of a Bayesian approach to cryo-EM structure determinatioin. J. Struct. Biol. 2012, 180, 519–530. [Google Scholar] [CrossRef]
- Dimitrov, A.; Quesnoit, M.; Moutel, S.; Cantaloube, I.; Pous, C.; Perez, F. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 2008, 322, 1353–1356. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Shu, W.; Devlin, G.L.; Meehan, S.; Auer, S.; Dobson, C.M.; Welland, M.E. Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proc. Nat. Acad. Sci. USA 2007, 104, 10016–10021. [Google Scholar] [CrossRef]
- Buell, A.K.; Dhulesia, A.; White, D.A.; Knowles, T.P.J.; Dobson, C.M.; Welland, M.E. Detailed analysis of the energy barriers for amyloid fibril growth. Angew. Chem. Int. Ed. 2012, 51, 5247–5251. [Google Scholar] [CrossRef]
- Gursky, O.; Aleshkov, S. Temperature-dependent β-sheet formation in β-amyloid Aβ1–40 peptide in water: Uncoupling β-structure folding from aggregation. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 2000, 1476, 93–102. [Google Scholar] [CrossRef]
- Ow, S.Y.; Dunstan, D.E. The effect of concentration, temperature and stirring on hen egg white lysozyme amyloid formation. Soft Matter 2013, 9, 9692–9701. [Google Scholar] [CrossRef] [PubMed]
- Qiang, W.; Kelley, K.; Tycko, R. Polymorph-Specific Kinetics and Thermodynamics of β-Amyloid Fibril Growth. J. Am. Chem. Soc. 2013, 135, 6860–6871. [Google Scholar] [CrossRef] [PubMed]
- Kinna, S.; Ouberai, M.M.; Sonzini, S.; Dos Santos, A.L.G.; Welland, M.E. Thermo-Responsive self-assembly of a dual glucagon-like peptide and glucagon receptor agonist. Int. J. Pharm. 2021, 604, 120719. [Google Scholar] [CrossRef] [PubMed]
- Giehm, L.; Otzen, D.E. Strategies to increase the reproducibility of α-synuclein in plate reader assays. Anal. Biochem. 2010, 400, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Camargo, D.C.R.; Sileikis, E.; Chia, S.; Axell, E.; Bernfur, K.; Cataldi, R.L.; Cohen, S.I.A.; Meisl, G.; Habchi, J.; Knowles, T.P.J.; et al. Proliferation of Tau 304-380 fragment aggregates through autocatalytic secondary nucleation. ACS Chem. Neurosci. 2021, 12, 4406–4415. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.I.A.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol. 2012, 421, 160–171. [Google Scholar] [CrossRef]
- Buell, A.K.; Blundell, J.R.; Dobson, C.M.; Welland, M.E.; Terentjev, E.M.; Knowles, T.P.J. Frequency factors in a landscape model of filamentous protein aggregation. Phys. Rev. Lett. 2010, 104, 228101. [Google Scholar] [CrossRef]
- Buell, A.K.; Hung, P.; Salvatella, X.; Welland, M.E.; Dobson, C.M.; Knowles, T.P.J. Electrostatic effects in filamentous protein aggregation. Biophys. J. 2013, 104, 1116–1126. [Google Scholar] [CrossRef]
- Kusumoto, Y.; Lomakin, A.; Teplow, D.B.; Benedek, G.B. Temperature dependence of amyloid β-protein fibrillization. Proc. Natl. Acad. Sci. USA 1998, 95, 12277–12282. [Google Scholar] [CrossRef]
- Lee, S.-W.; Mou, Y.; Lin, S.-Y.; Chou, F.-C.; Tseng, W.-H.; Chen, C.; Lu, C.-Y.D.; Yu, S.S.-F.; Chan, J.C.C. Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein. J. Mol. Biol. 2008, 378, 1142–1154. [Google Scholar] [CrossRef]
- Grünewald, K.; Medalia, O.; Gross, A.; Steven, A.C.; Baumeister, W. Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: Implications of crowding. Biophys. Chem. 2003, 100, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Vollrath, F.; Porter, D. Spider silk as archetypal protein elastomer. Soft Matter 2006, 2, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Kis, A.; Kasas, S.; Babić, B.; Kulik, A.J.; Benoît, W.; Briggs, G.A.D.; Schönenberger, C.; Catsicas, S.; Forró, L. Nanomechanics of microtubules. Phys. Rev. Lett. 2002, 89, 248101. [Google Scholar] [CrossRef] [PubMed]
- Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 1993, 120, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Käs, J.; Strey, H.; Sackmann, E. Direct imaging of reptation for semiflexible actin filaments. Nature 1994, 368, 226–229. [Google Scholar] [CrossRef]
- Ashby, M.F.; Jones, D.R.H. Engineering Materials: An Introduction to Their Properties and Applications, 1st ed.; Pergamon: Oxford, UK, 1980. [Google Scholar]
- Ouberai, M.M.; Gomes Dos Santos, A.L.; Kinna, S.; Hornigold, D.C.; Baker, D.; Naylor, J.; Liang, L.; Corkill, D.J.; Welland, M.E. Self-assembled GLP-1/glucagon peptide nanofibrils prolong inhibition of food intake. Front. Endocrinol. 2023, 14, 1217021. [Google Scholar] [CrossRef]
- Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today 2013, 18, 807–817. [Google Scholar] [CrossRef]
- Hutchinson, J.A.; Burholt, S.; Hamley, I.W. Peptide hormones and lipopeptides: From self-assembly to therapeutic applications. J. Pept. Sci. 2017, 23, 82–94. [Google Scholar] [CrossRef]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2014, 20, 122–128. [Google Scholar] [CrossRef]
- Sleep, D.; Cameron, J.; Evans, L.R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta (BBA) Gen. Subj. 2013, 1830, 5526–5534. [Google Scholar] [CrossRef]
- Adler-Abramovich, L.; Gazit, E. The physical properties of supramolecular peptide assemblies: From building block association to technological applications. Chem. Soc. Rev. 2014, 43, 6881–6893. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.K.; Schubert, D.; Rivier, C.; Lee, S.; Rivier, J.E.; Riek, R. Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol. 2008, 6, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.K.; Perrin, M.H.; Sawaya, M.R.; Jessberger, S.; Vadodaria, K.; Rissman, R.A.; Singru, P.S.; Nilsson, K.P.R.; Simon, R.; Schubert, D.; et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 2009, 325, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Knowles, T.P.J.; Buehler, M.J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 2011, 6, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Nasrolahi Shirazi, A.; Parang, K. Self-assembly of peptides to nanostructures. Org. Biomol. Chem. 2014, 12, 3544–3561. [Google Scholar] [CrossRef]
- Afjadi, M.N.; Aziziyan, F.; Farzam, F.; Dabirmanesh, B. Biotechnological applications of amyloid fibrils. Prog. Mol. Biol. Transl. Sci. 2024, 206, 435–472. [Google Scholar]
- Brummitt, R.K.; Andrews, J.M.; Jordan, J.L.; Fernandez, E.J.; Roberts, C.J. Thermodynamics of amyloid dissociation provide insights into aggregate stability regimes. Biophys. Chem. 2012, 168–169, 10–18. [Google Scholar]
- Chapman, M.R.; Robinson, L.S.; Pinkner, J.S.; Roth, R.; Heuser, J.; Hammar, M.; Normark, S.; Hultgren, S.J. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 2002, 295, 851–855. [Google Scholar] [CrossRef]
- Shimanovich, U.; Bernardes, G.J.L.; Knowles, T.P.J.; Cavaco-Paulo, A. Protein micro- and nano-capsules for biomedical applications. Chem. Soc. Rev. 2014, 43, 1361–1371. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Dasgupta, A.; Mondal, J.H.; Das, D. Peptide hydrogels. RSC Adv. 2013, 3, 9117–9149. [Google Scholar] [CrossRef]
- Vemula, P.K.; Wiradharma, N.; Ankrum, J.A.; Miranda, O.R.; John, G.; Karp, J.M. Prodrugs as self-assembled hydrogels: A new paradigm for biomaterials. Curr. Opin. Biotechnol. 2013, 24, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ma, M.L.; Xu, B. Molecular hydrogels of therapeutic agents. Chem. Soc. Rev. 2009, 38, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 7 August 2024).
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Field, B.C.T.; Chaudhri, O.B.; Bloom, S.R. Bowels control brain: Gut hormones and obesity. Nat. Rev. Endocrinol. 2010, 6, 444–453. [Google Scholar] [CrossRef]
- Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet 2014, 383, 1068–1083. [Google Scholar] [CrossRef]
- Grundy, S.M. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J. Am. Coll. Cardiol. 2012, 59, 635–643. [Google Scholar] [CrossRef]
- Leibowitz, G.; Kaiser, N.; Cerasi, E. β-Cell failure in type 2 diabetes. J. Diabetes Investig. 2011, 2, 82–91. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes. Lancet 1998, 352, 854–865. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, D.C.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; Grimm, R.H.; et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008, 358, 2545–2559. [Google Scholar]
- Tan, T.; Bloom, S. Gut hormones as therapeutic agents in treatment of diabetes and obesity. Curr. Opin. Pharmacol. 2013, 13, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Sadry, S.A.; Drucker, D.J. Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat. Rev. Endocrinol. 2013, 9, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Wynne, K.; Bloom, S.R. The role of oxyntomodulin and peptide tyrosine–tyrosine (PYY) in appetite control. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Pocai, A. Unraveling oxyntomodulin, GLP1’s enigmatic brother. J. Endocrinol. 2012, 215, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Pocai, A. Action and therapeutic potential of oxyntomodulin. Mol. Metab. 2014, 3, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Rössner, S.; Van Gaal, L.; Rissanen, A.; Niskanen, L.; Al Hakim, M.; Madsen, J.; Rasmussen, M.F.; Lean, M.E.J. Effects of liraglutide in the treatment of obesity: A randomised, double-blind, placebo-controlled study. Lancet 2009, 374, 1606–1616. [Google Scholar] [CrossRef]
- Zander, M.; Madsbad, S.; Madsen, J.L.; Holst, J.J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: A parallel-group study. Lancet 2002, 359, 824–830. [Google Scholar] [CrossRef]
- Jorgensen, R.; Kubale, V.; Vrecl, M.; Schwartz, T.W.; Elling, C.E. Oxyntomodulin Differentially Affects Glucagon-Like Peptide-1 Receptor β-Arrestin Recruitment and Signaling through Gα. J. Pharmacol. Exp. Ther. 2007, 322, 148–154. [Google Scholar] [CrossRef]
- Irwin, N.; Pathak, V.; Pathak, N.M.; Gault, V.A.; Flatt, P.R. Sustained treatment with a stable long-acting oxyntomodulin analogue improves metabolic control and islet morphology in an experimental model of type 1 diabetes. Diabetes Obes. Metab. 2015, 17, 887–895. [Google Scholar] [CrossRef]
- Sowden, G.L.; Drucker, D.J.; Weinshenker, D.; Swoap, S.J. Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon-like peptide-1 receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, 962–970. [Google Scholar] [CrossRef]
- Dakin, C.L.; Small, C.J.; Batterham, R.L.; Neary, N.M.; Cohen, M.A.; Patterson, M.; Ghatei, M.A.; Bloom, S.R. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004, 145, 2687–2695. [Google Scholar] [CrossRef] [PubMed]
- Lynch, A.M.; Pathak, N.; Flatt, Y.E.; Gault, V.A.; O’Harte, F.P.M.; Irwin, N.; Flatt, P.R. Comparison of stability, cellular, glucose-lowering and appetite supressing effects of oxyntomodulin analogues modified at the N-terminus. Eur. J. Pharmacol. 2014, 743, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.A.; Ellis, S.M.; Le Roux, C.W.; Batterham, R.L.; Park, A.; Patterson, M.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Oxyntomodulin Suppresses Appetite and Reduces Food Intake in Humans. J. Clin. Endocrinol. Metab. 2003, 88, 4696–4701. [Google Scholar] [CrossRef] [PubMed]
- Wynne, K.; Park, A.J.; Small, C.J.; Patterson, M.; Ellis, S.M.; Murphy, K.G.; Wren, A.M.; Frost, G.S.; Meeran, K.; Ghatei, M.A.; et al. Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subjects: A Double-Blind, Randomized, Controlled Trial. Diabetes 2005, 54, 2390–2395. [Google Scholar] [CrossRef]
- Zhu, L.; Tamvakopoulos, C.; Xie, D.; Dragovic, J.; Shen, X.; Fenyk-Melody, J.E.; Schmidt, K.; Bagchi, A.; Griffin, P.R.; Thornberry, N.A.; et al. The Role of Dipeptidyl Peptidase IV in the Cleavage of Glucagon Family Peptides: In vivo metabolism of pituitary adenylate cyclase-activating polypeptide-(1–38). J. Biol. Chem. 2003, 278, 22418–22423. [Google Scholar] [CrossRef]
- Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef]
- Jiménez, J.L.; Nettleton, E.J.; Bouchard, M.; Robinson, C.V.; Dobson, C.M.; Saibil, H.R. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA 2002, 99, 9196–9201. [Google Scholar] [CrossRef]
- Jadhav, P.R.; Agersø, H.; Tornøe, C.W.; Gobburu, J.V.S. Semi-mechanistic pharmacodynamic modeling for degarelix, a novel gonadotropin releasing hormone (GnRH) blocker. J. Pharmacokinet. Pharmacodyn. 2006, 33, 609–634. [Google Scholar] [CrossRef]
- Fitzpatrick, A.W.; Debelouchina, G.T.; Bayro, M.J.; Clare, D.K.; Caporini, M.A.; Bajaj, V.S.; Jaroniec, C.P.; Wang, L.; Ladizhansky, V.; Muller, S.A.; et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl. Acad. Sci. USA 2013, 110, 5468–5473. [Google Scholar] [CrossRef]
- Adamcik, J.; Jung, J.M.; Flakowski, J.; De Los Rios, P.; Dietler, G.; Mezzenga, R. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotechnol. 2010, 5, 423–428. [Google Scholar] [CrossRef]
- Nelson, R.; Sawaya, M.R.; Balbirnie, M.; Madsen, A.O.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-β spine of amyloid-like fibrils. Nature 2005, 435, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.B.; Otzen, D.; Christiansen, G.; Rischel, C. Glucagon amyloid-like fibril morphology is selected via morphology-dependent growth inhibition. Biochemistry 2007, 46, 7314–7324. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, K.; Schneider, J.P. Self-assembling peptides and proteins for nanotechnological applications. Curr. Opin. Struct. Biol. 2004, 14, 480–486. [Google Scholar] [CrossRef] [PubMed]
- De Jong, K.L.; Incledon, B.; Yip, C.M.; De Felippis, M.R. Amyloid fibrils of glucagon characterized by high-resolution atomic force microscopy. Biophys. J. 2006, 91, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Ghodke, S.; Nielsen, S.B.; Christiansen, G.; Hjuler, H.A.; Flink, J.; Otzen, D. Mapping out the multistage fibrillation of glucagon. FEBS J. 2012, 279, 752–765. [Google Scholar] [CrossRef] [PubMed]
- Macchi, F.; Hoffmann, S.V.; Carlsen, M.; Vad, B.; Imparato, A.; Rischel, C.; Otzen, D.E. Mechanical stress affects glucagon fibrillation kinetics and fibril structure. Langmuir 2011, 27, 12539–12549. [Google Scholar] [CrossRef]
- Volpatti, L.R.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. A clear View of polymorphism, twist, and chirality in amyloid fibril formation. ACS Nano 2013, 7, 10443–10448. [Google Scholar] [CrossRef]
- Adamcik, J.; Mezzenga, R. Adjustable twisting periodic pitch of amyloid fibrils. Soft Matter 2011, 7, 5437–5443. [Google Scholar] [CrossRef]
- Usov, I.; Adamcik, J.; Mezzenga, R. Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils. ACS Nano 2013, 7, 10465–10474. [Google Scholar] [CrossRef]
- Khurana, R.; Ionescu-Zanetti, C.; Pope, M.; Li, J.; Nielson, L.; Ramírez-Alvarado, M.; Regan, L.; Fink, A.L.; Carter, S.A. A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophys. J. 2003, 85, 1135–1144. [Google Scholar] [CrossRef]
- Kunes, K.C.; Cox, D.L.; Singh, R.R.P. One-dimensional model of yeast prion aggregation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005, 72, 051915. [Google Scholar] [CrossRef] [PubMed]
- Stromer, T.; Serpell, L.C. Structure and morphology of the Alzheimer’s amyloid fibril. Microsc. Res. Tech. 2005, 67, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Aggeli, A.; Bell, M.; Carrick, L.M.; Fishwick, C.W.G.; Harding, R.; Mawer, P.J.; Radford, S.E.; Strong, A.E.; Boden, N. pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases. J. Am. Chem. Soc. 2003, 125, 9619–9628. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.; Zhang, S.; Hauser, C.A.E. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol. Adv. 2012, 30, 593–603. [Google Scholar] [CrossRef]
- Frare, E.; Mossuto, M.F.; Polverino de Laureto, P.; Dumoulin, M.; Dobson, C.M.; Fontana, A. Identification of the Core Structure of Lysozyme Amyloid Fibrils by Proteolysis. J. Mol. Biol. 2006, 361, 551–561. [Google Scholar] [CrossRef]
- Matsuurua, K. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv. 2014, 4, 2942–2953. [Google Scholar] [CrossRef]
- Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 2002, 99, 5355–5360. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 2014, 15, 384–396. [Google Scholar] [CrossRef]
- Kardos, J.; Yamamoto, K.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct Measurement of the Thermodynamic Parameters of Amyloid Formation by Isothermal Titration Calorimetry. J. Biol. Chem. 2004, 279, 55308–55314. [Google Scholar] [CrossRef]
- Arosio, P.; Knowles, T.P.J.; Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 2015, 17, 7606–7618. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Waudby, C.A.; Devlin, G.L.; Cohen, S.I.A.; Aguzzi, A.; Vendruscolo, M.; Terentjev, E.M.; Welland, M.E.; Dobson, C.M. An analytical solution to the kinetics of breakable filament assembly. Science 2009, 326, 1533–1537. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.B.; Hicks, M.R.; Vetri, V.; Vandahl, B.; Rahbek-Nielsen, H.; Thøgersen, H.; Thøgersen, I.B.; Enghild, J.J.; Serpell, L.C.; Rischel, C.; et al. Glucagon fibril polymorphism reflects differences in protofilament backbone structure. J. Mol. Biol. 2010, 397, 932–946. [Google Scholar] [CrossRef] [PubMed]
- Batzli, K.M.; Love, B.J. Agitation of amyloid proteins to speed aggregation measured by ThT fluorescence: A call for standardization. Mater. Sci. Eng. C 2015, 48, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Esler, W.P.; Stimson, E.R.; Jennings, J.M.; Vinters, H.V.; Ghilardi, J.R.; Lee, J.P.; Mantyh, P.W.; Maggio, J.E. Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 2000, 39, 6288–6295. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Lin, T.Y.; Chang, D.; Guo, Z. Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci. 2016, 4, 160969. [Google Scholar] [CrossRef]
- Malmos, K.G.; Blancas-Mejia, L.M.; Weber, B.; Buchner, J.; Ramirez-Alvarado, M.; Naiki, H.; Otzen, D. ThT 101: A primer on the use of thioflavin T to investigate amyloid formation. Amyloid 2017, 24, 1–16. [Google Scholar] [CrossRef]
- Younan, N.D.; Viles, J.H. A comparison of three fluorophores for the detection of amyloid fibers and prefibrillar oligomeric assemblies. ThT (Thioflavin T); ANS (1-Anilinonaphthalene-8-sulfonic Acid); and bisANS (4,4′-Dianilino-1,1′-binaphthyl-5,5′-disulfonic Acid). Biochemistry 2015, 54, 4297–4306. [Google Scholar] [CrossRef]
- Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct observation of amyloid fibril growth monitored by Thioflavin T fluorescence. J. Biol. Chem. 2003, 278, 16462–16465. [Google Scholar] [CrossRef]
- Michaels, T.C.T.; Knowles, T.P.J. Mean-field master equation formalism for biofilament growth. Am. J. Phys. 2014, 82, 476–483. [Google Scholar] [CrossRef]
- Buell, A.K.; Galvagnion, C.; Gaspar, R.; Sparr, E.; Vendruscolo, M.; Knowles, T.P.J.; Linse, S.; Dobson, C.M. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl. Acad. Sci. USA 2014, 111, 7671–7676. [Google Scholar] [CrossRef]
- Pedersen, J.S.; Flink, J.M.; Dikov, D.; Otzen, D.E. Sulfates dramatically stabilize a salt-dependent type of glucagon fibrils. Biophys. J. 2006, 90, 4181–4194. [Google Scholar] [CrossRef] [PubMed]
- Knowles, T.P.J.; Smith, J.F.; Craig, A.; Dobson, C.M.; Welland, M.E. Spatial persistence of angular correlations in amyloid fibrils. Phys. Rev. Lett. 2006, 96, 238301. [Google Scholar] [CrossRef] [PubMed]
- Goldsbury, C.S.; Cooper, G.J.S.; Goldie, K.N.; Müller, S.A.; Saafi, E.L.; Gruijters, W.T.M.; Misur, M.P.; Engel, A.; Aebi, U.; Kistler, J. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 1997, 119, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Ferrone, F.A.; Hofrichter, J.; Eaton, W.A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J. Mol. Biol. 1985, 183, 611–631. [Google Scholar] [CrossRef]
- Collins, S.R.; Douglass, A.; Vale, R.D.; Weissman, J.S. Mechanism of prion propagation: Amyloid growth occurs by monomer addition. PLoS Biol. 2004, 2, e321. [Google Scholar] [CrossRef]
- Jarrett, J.T.; Lansbury, P.T., Jr. Seeding one-dimensional crystallization of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 1993, 73, 1055–1058. [Google Scholar] [CrossRef]
- Ruschak, A.M.; Miranker, A.D. Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proc. Natl. Acad. Sci. USA 2007, 104, 12341–12346. [Google Scholar] [CrossRef]
- Carulla, N.; Caddy, G.L.; Hall, D.R.; Zurdo, J.; Gairi, M.; Feliz, M.; Giralt, E.; Robinson, C.V.; Dobson, C.M. Molecular recycling within amyloid fibrils. Nature 2005, 436, 554–558. [Google Scholar] [CrossRef]
- Xue, W.-F.; Homans, S.W.; Radford, S.E. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. USA 2008, 105, 8926–8931. [Google Scholar] [CrossRef]
- Pöschel, T.; Brilliantov, N.V.; Frömmel, C. Kinetics of prion growth. Biophys. J. 2003, 85, 3460–3474. [Google Scholar] [CrossRef]
- Ecroyd, H.; Carver, J.A. Crystallin proteins and amyloid fibrils. Cell. Mol. Life Sci. 2009, 66, 62–81. [Google Scholar] [CrossRef] [PubMed]
- Shoffner, S.K.; Schnell, S. Estimation of the lag time in a subsequent monomer addition model for fibril elongation. Phys. Chem. Chem. Phys. 2016, 18, 21259–21268. [Google Scholar] [CrossRef] [PubMed]
- Van Heel, M. Angular reconstitution: A posterior assignment of projection directions for 3D reconstruction. Ultramicroscopy 1987, 21, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell 2012, 148, 1188–1203. [Google Scholar] [CrossRef] [PubMed]
- Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Vendruscolo, M.; Dobson, C.M. The physical basis of protein misfolding disorders. Phys. Today 2015, 68, 36–41. [Google Scholar] [CrossRef]
- Zhang, S.; Andreasen, M.; Nielsen, J.T.; Liu, L.; Nielsen, E.H.; Song, J.; Ji, G.; Sun, F.; Skrydstrup, T.; Besenbacher, F.; et al. Coexistence of ribbon and helical fibrils originating from HIAPP20-29 revealed by quantitative nanomechanical atomic force microscopy. Proc. Natl. Acad. Sci. USA 2013, 110, 2798–2803. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Mezzenga, R. Amyloid fibrils as building blocks for natural and artificial functional materials. Adv. Mater. 2016, 28, 6546–6561. [Google Scholar] [CrossRef]
- Barnhart, M.M.; Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef]
- Fowler, D.M.; Koulov, A.V.; Alory-Jost, C.; Marks, M.S.; Balch, W.E.; Kelly, J.W. Functional amyloid formation within mammalian tissue. PLoS Biol. 2006, 4, e6. [Google Scholar] [CrossRef]
- Fowler, D.M.; Koulov, A.V.; Balch, W.E.; Kelly, J.W. Functional amyloid—From bacteria to humans. Trends Biochem. Sci. 2007, 32, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. USA 2005, 102, 17342–17347. [Google Scholar] [CrossRef] [PubMed]
- Ouberai, M.M.; Santos, A.L.G.D.; Kinna, S.; Madalli, S.; Hornigold, D.C.; Baker, D.; Naylor, J.; Sheldrake, L.; Corkill, D.J.; Hood, J.; et al. Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly. Nat. Commun. 2017, 8, 1026. [Google Scholar] [CrossRef] [PubMed]
- Kinna, S. Self-Assembled Peptide as a Long-Acting Drug Formulation. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2019. [Google Scholar]
- Škerget, K.; Vilfan, A.; Pompe-Novak, M.; Turk, V.; Waltho, J.P.; Turk, D.; Žerovnik, E. The mechanism of amyloid-fibril formation by stefin B: Temperature and protein concentration dependence of the rates. Proteins Struct. Funct. Bioinform. 2009, 74, 425–436. [Google Scholar] [CrossRef]
- Wang, J.; Liu, K.; Xing, R.; Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604. [Google Scholar] [CrossRef]
- Hutchinson, J. The Impact of Lipidation on the Self-Assembly and Bioactivity of the Gastrointestinal Peptide Hormone PYY3–36. Ph.D. Thesis, University of Reading, Reading, UK, 2019. [Google Scholar]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Candeias, E.M.; Sebastiao, I.C.; Cardoso, S.M.; Correia, S.C.; Carvalho, C.I.; Placido, A.I.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I.; Duarte, A.I. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug Liraglutide. World J. Diabetes 2015, 6, 807–827. [Google Scholar] [CrossRef]
- Nygaard, R.; Nielbo, S.; Schwartz, T.W.; Poulsen, F.M. The PP-fold solution structure of human polypeptide YY and human PYY3–36 as determined by NMR. Biochemistry 2006, 45, 8350–8357. [Google Scholar] [CrossRef]
- Keire, D.A.; Bowers, C.W.; Solomon, T.E.; Reeve, J.R., Jr. Structure and receptor binding of PYY analogs. Peptides 2002, 23, 305–321. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad Karim, A. Principles and Biomedical Applications of Self-Assembled Peptides: Potential Treatment of Type 2 Diabetes Mellitus. Pharmaceutics 2024, 16, 1442. https://doi.org/10.3390/pharmaceutics16111442
Mohammad Karim A. Principles and Biomedical Applications of Self-Assembled Peptides: Potential Treatment of Type 2 Diabetes Mellitus. Pharmaceutics. 2024; 16(11):1442. https://doi.org/10.3390/pharmaceutics16111442
Chicago/Turabian StyleMohammad Karim, Alireza. 2024. "Principles and Biomedical Applications of Self-Assembled Peptides: Potential Treatment of Type 2 Diabetes Mellitus" Pharmaceutics 16, no. 11: 1442. https://doi.org/10.3390/pharmaceutics16111442
APA StyleMohammad Karim, A. (2024). Principles and Biomedical Applications of Self-Assembled Peptides: Potential Treatment of Type 2 Diabetes Mellitus. Pharmaceutics, 16(11), 1442. https://doi.org/10.3390/pharmaceutics16111442