A Multi-Criteria Decision Aid Tool for Radiopharmaceutical Selection in Tau PET Imaging
Abstract
:1. Introduction
2. Background on Tau PET Imaging
Tau PET Radiotracers
3. Methodology
3.1. Application of Fuzzy PROMETHEE
- The preference function Pj(d) of each criteria j should be defined;
- The importance weights of each criteria wt = (w1, w2, …, wk) should be defined;
- For each of the alternative pairs , ∈ A, the outranking relation (π) should be determined by:
- The positive and negative outranking flows should be determined as follows:
- The net outranking flow can be calculated for each alternative using Equation (7):
3.2. Comparison with the Weighted Sum Method and TOPSIS
3.3. Defining Criteria
3.3.1. Target Binding Affinity
3.3.2. Specificity
3.3.3. Brain Uptake and Penetration
3.3.4. Adverse Reactions
4. Results
4.1. Sensitivity Analysis
4.2. Comparison with Other Multiple-Criteria Decision Methods to Further Validate Our Approach
5. Discussion
5.1. Comparison with Previous Studies to Further Validate Our Approach
5.2. Limitations of This Study
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saint-Aubert, L.; Lemoine, L.; Chiotis, K.; Leuzy, A.; Rodriguez-Vieitez, E.; Nordberg, A. Tau PET imaging: Present and future directions. Mol. Neurodegener. 2017, 12, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Edison, P. Tau Imaging in Neurodegenerative Diseases Using Positron Emission Tomography. Curr. Neurol. Neurosci. Rep. 2019, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Schöll, M.; Maass, A.; Mattsson, N.; Ashton, N.J.; Blennow, K.; Zetterberg, H.; Jagust, W. Biomarkers for tau pathology. Mol. Cell. Neurosci. 2018, 97, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Tiepolt, S.; Patt, M.; Aghakhanyan, G.; Meyer, P.M.; Hesse, S.; Barthel, H.; Sabri, O. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm. Chem. 2019, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Murugan, N.A.; Nordberg, A.; Ågren, H. Different Positron Emission Tomography Tau Tracers Bind to Multiple Binding Sites on the Tau Fibril: Insight from Computational Modeling. ACS Chem. Neurosci. 2018, 9, 1757–1767. [Google Scholar] [CrossRef] [PubMed]
- Shoghi-Jadid, K.; Small, G.W.; Agdeppa, E.D.; Kepe, V.; Ercoli, L.M.; Siddarth, P.; Read, S.; Satyamurthy, N.; Petric, A.; Huang, S.-C.; et al. Localization of Neurofibrillary Tangles and Beta-Amyloid Plaques in the Brains of Living Patients with Alzheimer Disease. Am. J. Geriatr. Psychiatry 2002, 10, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Betthauser, T.J.; Lao, P.J.; Murali, D.; Barnhart, T.E.; Furumoto, S.; Okamura, N.; Stone, C.K.; Johnson, S.C.; Christian, B.T. In Vivo Comparison of Tau Radioligands 18F-THK-5351 and 18F-THK-5317. J. Nucl. Med. 2016, 58, 996–1002. [Google Scholar] [CrossRef]
- Uzuegbunam, B.C.; Librizzi, D.; Yousefi, B.H. PET Radiopharmaceuticals for Alzheimer’s Disease and Parkinson’s Disease Diagnosis, the Current and Future Landscape. Molecules 2020, 25, 977. [Google Scholar] [CrossRef]
- Goumas, M.; Lygerou, V. An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects. Eur. J. Oper. Res. 2000, 123, 606–613. [Google Scholar] [CrossRef]
- Uzun, B.; Ozsahin, I.; Agbor, V.O.; Ozsahin, D.U. Theoretical aspects of multi-criteria decision-making (MCDM) methods. In Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering; Academic Press: Cambridge, MA, USA, 2021; pp. 3–40. [Google Scholar] [CrossRef]
- Basílio, M.P.; Pereira, V.; Costa, H.G.; Santos, M.; Ghosh, A. A Systematic Review of the Applications of Multi-Criteria Decision Aid Methods (1977–2022). Electronics 2022, 11, 1720. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P. Note—A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The Promethee method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Yildirim, F.S.; Sayan, M.; Sanlidag, T.; Uzun, B.; Ozsahin, D.U.; Ozsahin, I. Comparative Evaluation of the Treatment of COVID-19 with Multicriteria Decision-Making Techniques. J. Healthc. Eng. 2021, 2021, 8864522. [Google Scholar] [CrossRef] [PubMed]
- Ozsahin, I.; Mustapha, M.T.; Albarwary, S.; Sanlidag, B.; Ozsahin, D.U.; Butler, T.A. An investigation to choose the proper therapy technique in the management of autism spectrum disorder. J. Comp. Eff. Res. 2021, 10, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Meng, X.; Zhang, M. Application of Multiple Criteria Decision Making Methods in Construction: A Systematic Literature Review. J. Civ. Eng. Manag. 2021, 27, 372–403. [Google Scholar] [CrossRef]
- Shimada, H.; Kitamura, S.; Ono, M.; Kimura, Y.; Ichise, M.; Takahata, K.; Moriguchi, S.; Kubota, M.; Ishii, T.; Takado, Y.; et al. [IC-P-198]: FIRST-IN-HUMAN PET STUDY WITH 18 F-AM-PBB3 AND 18 F-PM-PBB3. Alzheimer’s Dement. 2017, 13, 146. [Google Scholar] [CrossRef]
- Petersen, G.C.; Roytman, M.; Chiang, G.C.; Li, Y.; Gordon, M.L.; Franceschi, A.M. Overview of tau PET molecular imaging. Curr. Opin. Neurol. 2022, 35, 230–239. [Google Scholar] [CrossRef]
- Wood, H. [11C]PBB3—A new PET ligand that identifies tau pathology in the brains of patients with AD. Nat. Rev. Neurol. 2013, 9, 599. [Google Scholar] [CrossRef]
- Alzghool, O.M.; Rokka, J.; López-Picón, F.R.; Snellman, A.; Helin, J.S.; Okamura, N.; Solin, O.; Rinne, J.O.; Haaparanta-Solin, M. (S)-[18F]THK5117 brain uptake is associated with Aβ plaques and MAO-B enzyme in a mouse model of Alzheimer’s disease. Neuropharmacology 2021, 196, 108676. [Google Scholar] [CrossRef]
- Beyer, L.; Brendel, M. Imaging of Tau Pathology in Neurodegenerative Diseases: An Update. Semin. Nucl. Med. 2021, 51, 253–263. [Google Scholar] [CrossRef]
- Ng, K.P.; Pascoal, T.A.; Mathotaarachchi, S.; Therriault, J.; Kang, M.S.; Shin, M.; Guiot, M.-C.; Guo, Q.; Harada, R.; Comley, R.A.; et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimer’s Res. Ther. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Bohórquez, S.S.; Marik, J.; Ogasawara, A.; Tinianow, J.N.; Gill, H.S.; Barret, O.; Tamagnan, G.; Alagille, D.; Ayalon, G.; Manser, P.; et al. [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2077–2089. [Google Scholar] [CrossRef] [PubMed]
- Kroth, H.; Oden, F.; Molette, J.; Schieferstein, H.; Capotosti, F.; Mueller, A.; Berndt, M.; Schmitt-Willich, H.; Darmency, V.; Gabellieri, E.; et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2178–2189. [Google Scholar] [CrossRef] [PubMed]
- Aguero, C.; Dhaynaut, M.; Normandin, M.D.; Amaral, A.C.; Guehl, N.J.; Neelamegam, R.; Marquie, M.; Johnson, K.A.; El Fakhri, G.; Frosch, M.P.; et al. Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol. Commun. 2019, 7, 37. [Google Scholar] [CrossRef]
- Declercq, L.; Rombouts, F.; Koole, M.; Fierens, K.; Mariën, J.; Langlois, X.; Andrés, J.I.; Schmidt, M.; Macdonald, G.; Moechars, D.; et al. Preclinical Evaluation of18F-JNJ64349311, a Novel PET Tracer for Tau Imaging. J. Nucl. Med. 2017, 58, 975–981. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Alizadeh, H.; Marton, J.; Cumming, P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer’s Disease Patients and Healthy Controls by PET. Biomolecules 2023, 13, 290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Dong, H.; Bian, J.; Li, D.; Liu, C. Targeting amyloid proteins for clinical diagnosis of neurodegenerative diseases. Fundam. Res. 2022, in press. [Google Scholar] [CrossRef]
- Ni, R.; Nitsch, R.M. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front. Aging Neurosci. 2022, 13, 873. [Google Scholar] [CrossRef] [PubMed]
- Bischof, G.N.; Dodich, A.; Boccardi, M.; van Eimeren, T.; Festari, C.; Barthel, H.; Hansson, O.; Nordberg, A.; Ossenkoppele, R.; Sabri, O.; et al. Clinical validity of second-generation tau PET tracers as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework. Eur. J. Nucl. Med. 2021, 48, 2110–2120. [Google Scholar] [CrossRef]
- Leuzy, A.; Chiotis, K.; Lemoine, L.; Gillberg, P.-G.; Almkvist, O.; Rodriguez-Vieitez, E.; Nordberg, A. Tau PET imaging in neurodegenerative tauopathies—Still a challenge. Mol. Psychiatry 2019, 24, 1112–1134. [Google Scholar] [CrossRef]
- Honer, M.; Gobbi, L.; Knust, H.; Kuwabara, H.; Muri, D.; Koerner, M.; Valentine, H.; Dannals, R.F.; Wong, D.F.; Borroni, E. Preclinical Evaluation of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as Novel PET Radiotracers for Imaging Tau Aggregates in Alzheimer Disease. J. Nucl. Med. 2018, 59, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Özgen, A.; Tuzkaya, G.; Tuzkaya, U.R.; Özgen, D. A Multi-Criteria Decision Making Approach for Machine Tool Selection Problem in a Fuzzy Environment. Int. J. Comput. Intell. Syst. 2011, 4, 431–445. [Google Scholar] [CrossRef]
- Macharis, C.; Springael, J.; De Brucker, K.; Verbeke, A. PROMETHEE and AHP: The design of operational synergies in multicriteria analysis.: Strengthening PROMETHEE with ideas of AHP. Eur. J. Oper. Res. 2004, 153, 307–317. [Google Scholar] [CrossRef]
- Musa, M.S.; Ozsahin, D.U.; Ozsahin, I. A Comparison for Liver Cancer Treatment Alternatives. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 26 March–10 April 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Ozsahin, D.U.; Nyakuwanikwa, K.; Wallace, T.; Ozsahin, I. Evaluation and Simulation of Colon Cancer Treatment Techniques with Fuzzy PROMETHEE. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 26 March–10 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Brans, J.-P.; De Smet, Y. PROMETHEE Methods. In Multiple Criteria Decision Analysis; Springer: New York, NY, USA, 2016; pp. 187–219. [Google Scholar] [CrossRef]
- Pike, V.W. PET radiotracers: Crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol. Sci. 2009, 30, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Honer, M.; Gobbi, L.; Martarello, L.; Comley, R.A. Radioligand development for molecular imaging of the central nervous system with positron emission tomography. Drug Discov. Today 2014, 19, 1936–1944. [Google Scholar] [CrossRef]
- Pinto, S.R.; Santos, L.F.C.; Dos Reis, S.R.R.; Bastos, M.K.; da Silva Gomes, V.; de Oliveira Vieira, T.; Santos-Oliveira, R. Adverse reactions to radiopharmaceuticals: A survey based on clinical cases using criteria of systematic review. Ther. Innov. Regul. Sci. 2018, 52, 109–113. [Google Scholar] [CrossRef]
- Agrawal, K.; Meher, B.R.; Gnanasegaran, G. Review of adverse reactions associated with the use of common diagnostic radiopharmaceuticals. Indian J. Nucl. Med. 2021, 36, 163–167. [Google Scholar] [CrossRef]
- Ozsahin, D.U.; Gelisen, M.I.; Taiwo, M.; Agachan, Y.; Rahi, D.; Uzun, U. Decision Analysis of the COVID-19 Vaccines. EuroBiotech J. 2021, 5, 20–25. [Google Scholar] [CrossRef]
- Albarwary, S.A.; Kibarer, A.G.; Mustapha, M.T.; Hamdan, H.; Ozsahin, D.U. The Efficiency of AuNPs in Cancer Cell Targeting Compared to Other Nanomedicine Technologies Using Fuzzy PROMETHEE. J. Healthc. Eng. 2021, 2021, 1566834. [Google Scholar] [CrossRef]
- FDA; CDER. Highlights of Prescribing Information. Available online: www.fda.gov/medwatch (accessed on 15 December 2022).
- Barret, O.; Alagille, D.; Sanabria, S.; Comley, R.A.; Weimer, R.M.; Borroni, E.; Mintun, M.; Seneca, N.; Papin, C.; Morley, T.; et al. Kinetic Modeling of the Tau PET Tracer 18F-AV-1451 in Human Healthy Volunteers and Alzheimer Disease Subjects. J. Nucl. Med. 2016, 58, 1124–1131. [Google Scholar] [CrossRef]
- Baker, S.L.; Provost, K.; Thomas, W.; Whitman, A.J.; Janabi, M.; Schmidt, M.E.; Timmers, M.; Kolb, H.C.; Rabinovici, G.D.; Jagust, W.J.; et al. Evaluation of [18F]-JNJ-64326067-AAA tau PET tracer in humans. J. Cereb. Blood Flow Metab. 2021, 41, 3302–3313. [Google Scholar] [CrossRef] [PubMed]
- Bischof, G.N.; Dodich, A.; Ashton, N.J.; Boccardi, M.; Barthel, H.; Carrillo, M.C.; Chiotis, K.; Corre, J.; Démonet, J.; Gietl, A.F.; et al. Alzheimer’s disease biomarker roadmap 2020: Second-generation tau PET tracers. Alzheimer’s Dement. 2020, 16, e039556. [Google Scholar] [CrossRef]
- Endo, H.; Tagai, K.; Ono, M.; Ikoma, Y.; Oyama, A.; Matsuoka, K.; Kokubo, N.; Hirata, K.; Sano, Y.; Oya, M.; et al. A Machine Learning–Based Approach to Discrimination of Tauopathies Using [18F] PM-PBB3 PET Images. Mov. Disord. 2022, 37, 2236–2246. [Google Scholar] [CrossRef] [PubMed]
- Tagai, K.; Ikoma, Y.; Endo, H.; Debnath, O.B.; Seki, C.; Matsuoka, K.; Matsumoto, H.; Oya, M.; Hirata, K.; Shinotoh, H.; et al. An optimized reference tissue method for quantification of tau protein depositions in diverse neurodegenerative disorders by PET with 18F-PM-PBB3 (18F-APN-1607). Neuroimage 2022, 264, 119763. [Google Scholar] [CrossRef]
- Beyer, L.; Nitschmann, A.; Barthel, H.; Van Eimeren, T.; Unterrainer, M.; Sauerbeck, J.; Marek, K.; Song, M.; Palleis, C.; Respondek, G.; et al. Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. Eur. J. Nucl. Med. 2020, 47, 2911–2922. [Google Scholar] [CrossRef]
- Ozsahin, D.U.; Onakpojeruo, E.P.; Uzun, B.; Mustapha, M.T.; Ozsahin, I. Mathematical Assessment of Machine Learning Models Used for Brain Tumor Diagnosis. Diagnostics 2023, 13, 618. [Google Scholar] [CrossRef]
- Smith, R.; Schöll, M.; Leuzy, A.; Jögi, J.; Ohlsson, T.; Strandberg, O.; Hansson, O. Head-to-head comparison of tau positron emission tomography tracers [18F]flortaucipir and [18F]RO948. Eur. J. Nucl. Med. 2019, 47, 342–354. [Google Scholar] [CrossRef]
Linguistic Scale | Triangular Fuzzy Scale | Criteria |
---|---|---|
Very High (VH) | (0.75, 1, 1) | Specificity, brain uptake, and penetration |
High (H) | (0.50, 0.75, 1) | Target binding affinity |
Medium (M) | (0.25, 0.50, 0.75) | Adverse reactions |
Low (L) | (0, 0.25, 0.50) | |
Very Low (VL) | (0, 0, 0.25) |
Aim | Max. | Max. | Max. | Min. |
---|---|---|---|---|
Weight | VH | H | VH | M |
Alternative/Criteria | Specificity | Target Binding Affinity | Brain Uptake and Penetration | Adverse Reactions |
First-generation tau PET radiotracers | ||||
[18F]AV-1451 [3,6,7,21,22,44,45] | VH | L | H | M |
[11C]PBB3 [18,19] | H | M | H | M |
[18F]THK5105 [7,8,21,22] | M | L | M | M |
[18F]THK5117 [7,20,21,22] | M | L | M | M |
[18F]THK5317 [7,7,21,22] | M | L | M | L |
[18F]THK5351 [7,7,21,22] | H | L | M | L |
Second-generation tau PET radiotracers | ||||
[18F]MK-6240 [3,21,23,24,25] | H | VH | VH | L |
[18F]GTP1 [23,46,47] | H | H | H | M |
[18F]PM-PBB3 [48,49] | H | H | H | L |
[18F]JNJ-067 [3,21,23,24,25] | H | VH | H | L |
[18F]JNJ-311 [26] | H | H | H | L |
[11C]RO-643 [32] | VH | VH | VH | M |
[11C]RO-963 [32] | VH | VH | VH | M |
[18F]RO-948 [3,21,23,24,25,32] | VH | VH | VH | L |
[18F]PI-2620 [3,21,23,24,25,50] | H | VH | H | M |
Rank | Tau PET Radiotracers | Net Outranking Flow | Positive Outranking Flow | Negative Outranking Flow |
---|---|---|---|---|
1 | [18F]RO-948 | 0.0051 | 0.0051 | 0.0000 |
2 | [11C]RO-643 | 0.0045 | 0.0048 | 0.0003 |
2 | [11C]RO-963 | 0.0045 | 0.0048 | 0.0003 |
4 | [18F]MK-6240 | 0.0042 | 0.0043 | 0.0001 |
5 | [18F]JNJ-067 | 0.0033 | 0.0036 | 0.0003 |
6 | [18F]PI-2620 | 0.0027 | 0.0032 | 0.0006 |
7 | [18F]PM-PBB3 | 0.0019 | 0.0023 | 0.0004 |
7 | [18F]JNJ-311 | 0.0019 | 0.0023 | 0.0004 |
9 | [18F]GTP1 | 0.0013 | 0.0020 | 0.0007 |
10 | [18F]AV-1451 | −0.0023 | 0.0014 | 0.0037 |
11 | [18F]THK5351 | −0.0041 | 0.0006 | 0.0048 |
12 | [11C]PBB3 | −0.0047 | 0.0003 | 0.0050 |
13 | [18F]THK5317 | −0.0057 | 0.0003 | 0.0060 |
14 | [18F]THK5105 | −0.0063 | 0.0000 | 0.0063 |
15 | [18F]THK5117 | −0.0063 | 0.0000 | 0.0063 |
Aim | Max. | Max. | Max. | Min. |
Weight | H | H | VH | M |
Alternative/Criteria | Specificity | Target binding affinity | Brain uptake and penetration | Adverse reactions |
Rank | Tau PET Radiotracers | Net Outranking Flow | Positive Outranking Flow | Negative Outranking Flow |
---|---|---|---|---|
1 | [18F]RO-948 | 0.0049 | 0.0049 | 0.0000 |
2 | [11C]RO-643 | 0.0043 | 0.0046 | 0.0003 |
2 | [11C]RO-963 | 0.0043 | 0.0046 | 0.0003 |
4 | [18F]MK-6240 | 0.0041 | 0.0043 | 0.0001 |
5 | [18F]JNJ-067 | 0.0032 | 0.0035 | 0.0003 |
6 | [18F]PI-2620 | 0.0026 | 0.0032 | 0.0006 |
7 | [18F]PM-PBB3 | 0.0018 | 0.0023 | 0.0004 |
7 | [18F]JNJ-311 | 0.0018 | 0.0023 | 0.0004 |
9 | [18F]GTP1 | 0.0012 | 0.0020 | 0.0007 |
10 | [18F]AV-1451 | −0.0025 | 0.0012 | 0.0037 |
11 | [11C]PBB3 | −0.0033 | 0.0005 | 0.0038 |
12 | [18F]THK5351 | −0.0042 | 0.0005 | 0.0048 |
13 | [18F]THK5317 | −0.0057 | 0.0003 | 0.0060 |
14 | [18F]THK5105 | −0.0063 | 0.0000 | 0.0063 |
15 | [18F]THK5117 | −0.0063 | 0.0000 | 0.0063 |
Tau PET Radiotracers | PROMETHEE Net Flow | Rank (PROMETHEE) | Weighted Sum Score | Rank (Weighted Sum) | TOPSIS Score | Rank (TOPSIS) |
---|---|---|---|---|---|---|
[18F]RO-948 | 0.0051 | 1 | 0.0884 | 1 | 1.0000 | 1 |
[11C]RO-643 | 0.0045 | 2 | 0.0810 | 3 | 0.7684 | 3 |
[11C]RO-963 | 0.0045 | 2 | 0.0810 | 3 | 0.7684 | 3 |
[18F]MK-6240 | 0.0042 | 4 | 0.0838 | 2 | 0.8282 | 2 |
[18F]JNJ-067 | 0.0033 | 5 | 0.0792 | 5 | 0.7541 | 5 |
[18F]PI-2620 | 0.0027 | 6 | 0.0718 | 8 | 0.6646 | 8 |
[18F]PM-PBB3 | 0.0019 | 7 | 0.0748 | 6 | 0.6865 | 6 |
[18F]JNJ-311 | 0.0019 | 7 | 0.0748 | 6 | 0.6865 | 6 |
[18F]GTP1 | 0.0013 | 9 | 0.0671 | 9 | 0.5987 | 9 |
[18F]AV-1451 | −0.0023 | 10 | 0.0588 | 10 | 0.4210 | 10 |
[18F]THK5351 | −0.0041 | 11 | 0.0548 | 11 | 0.3209 | 12 |
[11C]PBB3 | −0.0047 | 12 | 0.0543 | 12 | 0.3388 | 11 |
[18F]THK5317 | −0.0057 | 13 | 0.0487 | 13 | 0.2316 | 13 |
[18F]THK5105 | −0.0063 | 14 | 0.0408 | 14 | 0.0000 | 14 |
[18F]THK5117 | −0.0063 | 14 | 0.0408 | 14 | 0.0000 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozsahin, I.; Onakpojeruo, E.P.; Uzun, B.; Uzun Ozsahin, D.; Butler, T.A. A Multi-Criteria Decision Aid Tool for Radiopharmaceutical Selection in Tau PET Imaging. Pharmaceutics 2023, 15, 1304. https://doi.org/10.3390/pharmaceutics15041304
Ozsahin I, Onakpojeruo EP, Uzun B, Uzun Ozsahin D, Butler TA. A Multi-Criteria Decision Aid Tool for Radiopharmaceutical Selection in Tau PET Imaging. Pharmaceutics. 2023; 15(4):1304. https://doi.org/10.3390/pharmaceutics15041304
Chicago/Turabian StyleOzsahin, Ilker, Efe Precious Onakpojeruo, Berna Uzun, Dilber Uzun Ozsahin, and Tracy A. Butler. 2023. "A Multi-Criteria Decision Aid Tool for Radiopharmaceutical Selection in Tau PET Imaging" Pharmaceutics 15, no. 4: 1304. https://doi.org/10.3390/pharmaceutics15041304
APA StyleOzsahin, I., Onakpojeruo, E. P., Uzun, B., Uzun Ozsahin, D., & Butler, T. A. (2023). A Multi-Criteria Decision Aid Tool for Radiopharmaceutical Selection in Tau PET Imaging. Pharmaceutics, 15(4), 1304. https://doi.org/10.3390/pharmaceutics15041304