In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria
"> Figure 1
<p>Total ion chromatogram of the <span class="html-italic">F. ulmaria</span> extract before (<b>A</b>) and after (<b>B</b>) in vitro gastrointestinal biotransformation.</p> "> Figure 2
<p>Time profiles (time in hours) of rutin (<b>A</b>), isoquercitrin (<b>B</b>) and quercetin (<b>C</b>) during gastrointestinal biotransformation. The gastric phase continued for 1 h, followed by the small intestinal phase for 1.5 h and a 72 h colonic phase. FEX (i.e., <span class="html-italic">F. ulmaria</span> extract) in red, NCFEX (i.e., negative control) in blue and MB (i.e., method blank) in green.</p> "> Figure 3
<p>Time profiles (time in hours) of astragalin (<b>A</b>) and isorhamnetin-O-hexoside (<b>B</b>) during gastrointestinal biotransformation. See also legend of <a href="#pharmaceutics-15-01291-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>Metabolic pathway of rutin. Detected metabolites are in black; non-detected metabolites are in grey.</p> "> Figure 5
<p>Time profile (time in hours) of luteolin (<b>A</b>), kaempferol (<b>B</b>), isorhamnetin (<b>C</b>), apigenin (<b>D</b>), naringenin (<b>E</b>), phloretin (<b>F</b>), chrysoeriol (<b>G</b>) and 3′-methoxy-5,7-dihydroxyflavone (<b>H</b>) during gastrointestinal biotransformation. See also legend of <a href="#pharmaceutics-15-01291-f002" class="html-fig">Figure 2</a>.</p> "> Figure 6
<p>Time profiles (time in hours) of monotropitin (<b>A</b>) and salicylic acid (<b>B</b>) during gastrointestinal biotransformation. See also legend of <a href="#pharmaceutics-15-01291-f002" class="html-fig">Figure 2</a>.</p> "> Figure 7
<p>Time profiles (time in hours) of tellimagrandin II (<b>A</b>) and ellagic acid (<b>B</b>) during gastrointestinal biotransformation. See also legend of <a href="#pharmaceutics-15-01291-f002" class="html-fig">Figure 2</a>.</p> "> Figure 8
<p>The effect of the <span class="html-italic">F. ulmaria</span> extract and the mix (20 µM of gallic acid and salicylic acid, 6 µM of quercetin and 4 µM of syringic acid) on COX-1 enzyme inhibition. Indomethacin (1.25 µM), in yellow, served as positive control. The graph depicts compiled data of three independent experiments (mean ± SD). <span class="html-italic">p</span>-values are expressed as * <span class="html-italic">p</span> < 0.05 and *** <span class="html-italic">p</span> < 0.0001 compared to control.</p> "> Figure 9
<p>The effect of the <span class="html-italic">F. ulmaria</span> extract and the mix (20 µM of gallic acid and salicylic acid, 6 µM of quercetin and 4 µM of syringic acid) on COX-2 enzyme inhibition. Celecoxib (2.5 µM), in yellow, served as positive control. The graph depicts compiled data of three independent experiments (mean ± SD). <span class="html-italic">p</span>-values are expressed as *** <span class="html-italic">p</span> < 0.0001 compared to control.</p> "> Figure 10
<p>The effect of the digested <span class="html-italic">F. ulmaria</span> extract (FEX 72 h) and different extraction procedures of FEX 72 h on COX-1 enzyme inhibition. Indomethacin (1.25 µM), in yellow, served as positive control. The graph depicts compiled data of three independent experiments (mean ± SD). <span class="html-italic">p</span>-values are expressed as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.0001 compared to control.</p> "> Figure 11
<p>The effect of the digested <span class="html-italic">F. ulmaria extract</span> (FEX 72 h) and different extraction procedures of FEX 72 h on COX-2 enzyme inhibition. Celecoxib (2.5 µM), in yellow, served as positive control. The graph depicts compiled data of three independent experiments (mean ± SD). <span class="html-italic">p</span>-values are expressed as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.0001 compared to control.</p> "> Figure 12
<p>The effect of the <span class="html-italic">F. ulmaria</span> extract and the mix (20 µM of gallic acid and salicylic acid, 6 µM of quercetin and 4 µM of syringic acid) on NF-κB-driven transcription in L929 cells. Dexamethasone (Dexa, 1 µM), in yellow, served as positive control. The graph depicts compiled data of three independent experiments (mean ± SD). <span class="html-italic">p</span>-values are expressed as *** <span class="html-italic">p</span> < 0.0001 compared to control stimulated with TNF-α.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Extract
2.3. Preparation of Standard Solutions
2.4. Gastrointestinal Biotransformation
2.5. Instrumental Analysis
2.6. Data Analysis
2.7. In Vitro Pharmacological Assays
2.7.1. Sample Preparation
2.7.2. COX Enzyme Inhibition Assay
2.7.3. NF-κB Luciferase Reporter Gene Assay
2.7.4. Data Analysis
3. Results
3.1. Gastrointestinal Biotransformation
3.1.1. Biotransformation of Flavonoid Glycosides
3.1.2. Biotransformation of Flavonoid Aglycons
3.1.3. Biotransformation of Salicylic Acid Glycosides
3.1.4. Biotransformation of Ellagitannins
3.2. Pharmacological Activity
3.2.1. COX-1 and COX-2 Enzyme Inhibition
3.2.2. NF-κB Luciferase Reporter Gene Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Medicines Agency. Assessment Report on Filipendula ulmaria (L.) Maxim., Herba and Filipendula ulmaria (L.) Maxim., Flos. Available online: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-filipendula-ulmaria-l-maxim-herba-filipendula-ulmaria-l-maxim-flos-first_en.pdf (accessed on 13 March 2023).
- Halkes, S.B.A.; Beukelman, C.J.; Kroes, B.H.; van den Berg, A.J.J.; Labadie, R.P.; van Dijk, H. In vitro immunomodulatory activity of Filipendula ulmaria. Phytother. Res. 1997, 11, 518–520. [Google Scholar] [CrossRef]
- Samardzic, S.; Tomic, M.; Pecikoza, U.; Stepanovic-Petrovic, R.; Maksimovic, Z. Antihyperalgesic activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench in a rat model of inflammation. J. Ethnopharmacol. 2016, 193, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Katanic, J.; Boroja, T.; Mihailovic, V.; Nikles, S.; Pan, S.P.; Rosic, G.; Selakovic, D.; Joksimovic, J.; Mitrovic, S.; Bauer, R. In vitro and in vivo assessment of meadowsweet (Filipendula ulmaria) as anti-inflammatory agent. J. Ethnopharmacol. 2016, 193, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Cholet, J.; Decombat, C.; Vareille-Delarbre, M.; Gainche, M.; Berry, A.; Ogeron, C.; Ripoche, I.; Delort, L.; Vermerie, M.; Fraisse, D.; et al. Comparison of the anti-inflammatory and immunomodulatory mechanisms of two medicinal herbs: Meadowsweet (Filipendula ulmaria) and harpagophytum (Harpagophytum procumbens). Int. J. Plant Anim. Environ. Sci. 2019, 9, 145–163. [Google Scholar]
- Bijttebier, S.; Van der Auwera, A.; Voorspoels, S.; Noten, B.; Hermans, N.; Pieters, L.; Apers, S. A first step in the quest for the active constituents in Filipendula ulmaria (Meadowsweet): Comprehensive phytochemical identification by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry. Planta Med. 2016, 82, 559–572. [Google Scholar] [CrossRef]
- Bijttebier, S.; Van der Auwera, A.; Foubert, K.; Voorspoels, S.; Pieters, L.; Apers, S. Bridging the gap between comprehensive extraction protocols in plant metabolomics studies and method validation. Anal. Chim. Acta 2016, 935, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Chen, L. Polyphenols and bioavailability: An update. Crit. Rev. Food Sci. Nutr. 2019, 59, 2040–2051. [Google Scholar] [CrossRef]
- Breynaert, A.; Bosscher, D.; Kahnt, A.; Claeys, M.; Cos, P.; Pieters, L.; Hermans, N. Development and validation of an in vitro experimental gastrointestinal dialysis model with colon phase to study the availability and colonic metabolisation of polyphenolic compounds. Planta Med. 2015, 81, 1075–1083. [Google Scholar] [CrossRef]
- Beirnaert, C.; Peeters, L.; Meysman, P.; Bittremieux, W.; Foubert, K.; Custers, D.; Van der Auwera, A.; Cuykx, M.; Pieters, L.; Covaci, A.; et al. Using expert driven machine learning to enhance dynamic metabolomics data analysis. Metabolites 2019, 9, 54. [Google Scholar] [CrossRef]
- Peeters, L.; Beirnaert, C.; Van der Auwera, A.; Bijttebier, S.; De Bruyne, T.; Laukens, K.; Pieters, L.; Hermans, N.; Foubert, K. Revelation of the metabolic pathway of hederacoside C using an innovative data analysis strategy for dynamic multiclass biotransformation experiments. J. Chromatogr. A 2019, 1595, 240–247. [Google Scholar] [CrossRef]
- Peeters, L.; Van der Auwera, A.; Beirnaert, C.; Bijttebier, S.; Laukens, K.; Pieters, L.; Hermans, N.; Foubert, K. Compound characterization and metabolic profile elucidation after in vitro gastrointestinal and hepatic biotransformation of an herniaria hirsuta extract using unbiased dynamic metabolomic data analysis. Metabolites 2020, 10, 111. [Google Scholar] [CrossRef]
- Peeters, L.; Foubert, K.; Baldé, M.A.; Tuenter, E.; Matheeussen, A.; Van Pelt, N.; Caljon, G.; Hermans, N.; Pieters, L. Antiplasmodial activity of constituents and their metabolites after in vitro gastrointestinal biotransformation of a Nauclea pobeguinii extract. Phytochemistry 2022, 194, 113029. [Google Scholar] [CrossRef] [PubMed]
- Serasanambati, M.; Chilakapati, S.R. Function of Nuclear Factor Kappa B (NF-kB) in human diseases—A Review. South Indian J. Biol. Sci. 2016, 2, 368–387. [Google Scholar] [CrossRef]
- Vitale, P.; Panella, A.; Scilimati, A.; Perrone, M.G. COX-1 inhibitors: Beyond structure toward therapy. Med. Res. Rev. 2016, 36, 641–671. [Google Scholar] [CrossRef]
- Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res. 2009, 50, S29–S34. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Shen, Z. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharm. J. 2019, 27, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Kolimár, D.; Spittler, A.; Wisgrill, L.; Herbold, C.W.; Abrankó, L.; Berry, D. Conversion of rutin, a prevalent dietary flavonol, by the human gut microbiota. Front. Microbiol. 2020, 11, 585428. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.F.; Maier, C.S. The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev. 2016, 15, 425–444. [Google Scholar] [CrossRef]
- Espin, J.C.; Larrosa, M.; Garcia-Conesa, M.T.; Tomas-Barberan, F. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: The evidence so far. Evid. Based Complement. Alternat. Med. 2013, 2013, 2704. [Google Scholar] [CrossRef] [PubMed]
- Piwowarski, J.P.; Granica, S.; Zwierzyńska, M.; Stefańska, J.; Schopohl, P.; Melzig, M.F.; Kiss, A.K. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials. J. Ethnopharmacol. 2014, 155, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Popowski, D.; Pawłowska, K.A.; Piwowarski, J.P.; Granica, S. Gut microbiota-assisted isolation of flavonoids with a galloyl moiety from flowers of meadowsweet, Filipendula ulmaria (L.) Maxim. Phytochem. Lett. 2019, 30, 220–223. [Google Scholar] [CrossRef]
- Olthof, M.R.; Hollman, P.C.; Buijsman, M.N.; van Amelsvoort, J.M.; Katan, M.B. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J. Nutr. 2003, 133, 1806–1814. [Google Scholar] [CrossRef] [PubMed]
- Braune, A.; Blaut, M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016, 7, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Beekwilder, J.; Marcozzi, D.; Vecchi, S.; de Vos, R.; Janssen, P.; Francke, C.; van Hylckama Vlieg, J.; Hall, R.D. Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl. Environ. Microbiol. 2009, 75, 3447–3454. [Google Scholar] [CrossRef]
- Bang, S.H.; Hyun, Y.J.; Shim, J.; Hong, S.W.; Kim, D.H. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. J. Microbiol. Biotechnol. 2015, 25, 18–25. [Google Scholar] [CrossRef]
- Bokkenheuser, V.D.; Shackleton, C.H.; Winter, J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J. 1987, 248, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Moon, J.S.; Shin, S.Y.; Li, L.; Lee, Y.B.; Kim, T.J.; Han, N.S. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin. Lett. Appl. Microbiol. 2016, 62, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Schwiertz, A.; Collins, M.D.; Blaut, M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch. Microbiol. 1999, 171, 81–91. [Google Scholar] [CrossRef]
- Schneider, H.; Simmering, R.; Hartmann, L.; Pforte, H.; Blaut, M. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria. J. Appl. Microbiol. 2000, 89, 1027–1037. [Google Scholar] [CrossRef]
- Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef]
- Espin, J.C.; Gonzalez-Sarrias, A.; Tomas-Barberan, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef]
- Fötsch, G.; Pfeifer, S. Die Biotransformation der phenolglycoside leiocarposid und Salicin―Beispiele für besonderheiten von absorption und metabolismus glycosidischer verbindungen. Pharmazie 1989, 44, 710–712. [Google Scholar]
- Schmid, B.; Kötter, I.; Heide, L. Pharmacokinetics of salicin after oral administration of a standardised willow bark extract. Eur. J. Clin. Pharmacol. 2001, 57, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Knuth, S.; Abdelsalam, R.M.; Khayyal, M.T.; Schweda, F.; Heilmann, J.; Kees, M.G.; Mair, G.; Kees, F.; Jürgenliemk, G. Catechol conjugates are in vivo metabolites of Salicis cortex. Planta Med. 2013, 79, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Pferschy-Wenzig, E.M.; Koskinen, K.; Moissl-Eichinger, C.; Bauer, R. A Combined LC-MS Metabolomics- and 16S rRNA sequencing platform to assess interactions between herbal medicinal products and human gut bacteria in vitro: A pilot study on willow bark extract. Front. Pharmacol. 2017, 8, 893. [Google Scholar] [CrossRef]
- Steinegger, V.E.; Hovel, H. Analytische und biologische untersuchungen an salicaceen-wirkstoffen, insbesondere an salicin. Pharm. Acta Helv. 1972, 47, 222–234. [Google Scholar] [PubMed]
- Pentz, R.; Busse, H.; König, R.; Siegers, C. Bioverfügbarkeit von salicylsäure und coffein aus einem phytoanalgetischen kombinationspräparat. Z Phytother. 1989, 10, 92–96. [Google Scholar]
- Selma, M.V.; Beltran, D.; Luna, M.C.; Romo-Vaquero, M.; Garcia-Villalba, R.; Mira, A.; Espin, J.C.; Tomas-Barberan, F.A. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin a from ellagic acid. Front. Microbiol. 2017, 8, 1521. [Google Scholar] [CrossRef]
- Beltran, D.; Romo-Vaquero, M.; Espin, J.C.; Tomas-Barberan, F.A.; Selma, M.V. Ellagibacter isourolithinifaciens gen. nov., sp. nov., a new member of the family Eggerthellaceae, isolated from human gut. Int. J. Syst. Evol. Microbiol. 2018, 68, 1707–1712. [Google Scholar] [CrossRef]
- Selma, M.V.; Beltrán, D.; García-Villalba, R.; Espín, J.C.; Tomás-Barberán, F.A. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct. 2014, 5, 1779–1784. [Google Scholar] [CrossRef]
- García-Villalba, R.; Giménez-Bastida, J.A.; Cortés-Martín, A.; Ávila-Gálvez, M.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C.; González-Sarrías, A. Urolithins: A comprehensive update on their metabolism, bioactivity, and associated gut microbiota. Mol. Nutr. Food Res. 2022, 66, 2101019. [Google Scholar] [CrossRef] [PubMed]
- Samardzic, S.; Arsenijevic, J.; Bozic, D.; Milenkovic, M.; Tesevic, V.; Maksimovic, Z. Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench. J. Ethnopharmacol. 2018, 213, 132–137. [Google Scholar] [CrossRef]
- Vogl, S.; Picker, P.; Mihaly-Bison, J.; Fakhrudin, N.; Atanasov, A.G.; Heiss, E.H.; Wawrosch, C.; Reznicek, G.; Dirsch, V.M.; Saukel, J.; et al. Ethnopharmacological in vitro studies on Austria′s folk medicine-an unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J. Ethnopharmacol. 2013, 149, 750–771. [Google Scholar] [CrossRef]
- García-Villalba, R.; Giménez-Bastida, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C.; Larrosa, M. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J. Sep. Sci. 2012, 35, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Morais, M.; Luqman, S.; Kondratyuk, T.P.; Petronio, M.S.; Regasini, L.O.; Silva, D.H.S.; Bolzani, V.S.; Soares, C.P.; Pezzuto, J.M. Suppression of TNF-α induced NF-κB activity by gallic acid and its semi-synthetic esters: Possible role in cancer chemoprevention. Nat. Prod. Res. 2010, 24, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, W.; Zhang, M.; Deng, Y.; Jiang, M.; Bai, G. The screening research of NF-κB inhibitors from Moutan Cortex based on bioactivity-integrated UPLC-Q/TOF-MS. J. Evid. Based Complement. Altern. Med. 2019, 2019, 6150357. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.; Peskar, B.A. Anti-inflammatory effects of aspirin and sodium salicylate. Eur. J. Pharmacol. 2002, 447, 1–9. [Google Scholar] [CrossRef]
- Kopp, E.; Ghosh, S. Inhibition of NF-κB by sodium salicylate and aspirin. Science 1994, 265, 956–959. [Google Scholar] [CrossRef]
- Bayón, Y.; Alonso, A.; Crespo, M.S. 4-trifluoromethyl derivatives of salicylate, triflusal and its main metabolite 2-hydroxy-4-trifluoromethylbenzoic acid, are potent inhibitors of nuclear factor-κB activation. Br. J. Pharmacol. 1999, 126, 1359–1366. [Google Scholar] [CrossRef]
- Grilli, M.; Pizzi, M.; Memo, M.; Spano, P. Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science 1996, 274, 1383–1385. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.W.; Read, M.A.; Ding, H.; Luscinskas, F.W.; Collins, T. Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J. Immun. 1996, 156, 3961. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Yamamoto, Y.; Gaynor, R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 1998, 396, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kim, C.; Ha, T.; Ahn, H. Inhibition of NF-kB and STAT3 by quercetin with suppression of adhesion molecule expression in vascular endothelial cells. Farmacia 2016, 64, 668–673. [Google Scholar]
- Fang, W.; Zhu, S.; Niu, Z.; Yin, Y. The protective effect of syringic acid on dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug Dev. Res. 2019, 80, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Al-Fayez, M.; Cai, H.; Tunstall, R.; Steward, W.P.; Gescher, A.J. Differential modulation of cyclooxygenase-mediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemother. Pharmacol. 2006, 58, 816–825. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Ringbom, T.; Torssell, K.; Bohlin, L. Constituents of Hypericum laricifolium and their cyclooxygenase (COX) enzyme activities. Chem. Pharm. Bull. 2003, 51, 1439–1440. [Google Scholar] [CrossRef] [PubMed]
- Kutil, Z.; Temml, V.; Maghradze, D.; Pribylova, M.; Dvorakova, M.; Schuster, D.; Vanek, T.; Landa, P. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity. Mediat. Inflamm. 2014, 2014, 178931. [Google Scholar] [CrossRef]
- Mitchell, J.A.; Akarasereenont, P.; Thiemermann, C.; Flower, R.J.; Vane, J.R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA 1993, 90, 11693–11697. [Google Scholar] [CrossRef]
- Patrignani, P.; Panara, M.R.; Sciulli, M.G.; Santini, G.; Renda, G.; Patrono, C. Differential inhibition of human prostaglandin endoperoxide synthase-1 and -2 by nonsteroidal anti-inflammatory drugs. J. Physiol. Pharmacol. 1997, 48, 623–631. [Google Scholar]
- Giuliano, F.; Warner, T.D. Ex vivo assay to determine the cyclooxygenase selectivity of non-steroidal anti-inflammatory drugs. Br. J. Pharmacol. 1999, 126, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Warner, T.D.; Giuliano, F.; Vojnovic, I.; Bukasa, A.; Mitchell, J.A.; Vane, J.R. Nonsteroid drug selectivities for cyclooxygenase-1 rather than cyclooxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis. Proc. Natl. Acad. Sci. USA 1999, 96, 7563–7568. [Google Scholar] [CrossRef]
- Mitchell, J.A.; Saunders, M.; Barnes, P.J.; Newton, R.; Belvisi, M.G. Sodium salicylate inhibits cyclooxygenase-2 activity independently of transcription factor (Nuclear Factor κB) activation: Role of arachidonic acid. Mol. Pharmacol. 1997, 51, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Madlener, S.; Illmer, C.; Horvath, Z.; Saiko, P.; Losert, A.; Herbacek, I.; Grusch, M.; Elford, H.L.; Krupitza, G.; Bernhaus, A.; et al. Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett. 2007, 245, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Reddy, T.C.; Aparoy, P.; Babu, N.K.; Kumar, K.A.; Kalangi, S.K.; Reddanna, P. Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits. Protein Pept. Lett. 2010, 17, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Piazza, S.; Fumagalli, M.; Martinelli, G.; Pozzoli, C.; Maranta, N.; Angarano, M.; Sangiovanni, E.; Dell′ Agli, M. Hydrolyzable tannins in the management of Th1, Th2 and Th17 inflammatory-related diseases. Molecules 2022, 27, 7593. [Google Scholar] [CrossRef]
F. ulmaria Extract | IC50 (µg/mL) | 95% C.I. |
---|---|---|
COX-1 | 7.45 | 5.46 to 9.83 |
COX-2 | 90.26 | 60.95 to 135.70 |
Digested F. ulmaria Extract | COX Isoform | IC50 (µg/mL) | 95% C.I. |
---|---|---|---|
FEX (72 h) | COX-1 | 27.77 | 18.39 to 38.51 |
Methanol FEX | 29.07 | 19.14 to 44.14 | |
Ethyl acetate FEX | 26.48 | 19.33 to 36.30 | |
Acetone FEX | 17.48 | 13.09 to 23.34 | |
FEX (72 h) | COX-2 | / | / |
Methanol FEX | 55.17 | 42.04 to 72.38 | |
Ethyl acetate FEX | 41.46 | 21.75 to 79.02 | |
Acetone FEX | 29.62 | 18.85 to 46.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Auwera, A.; Peeters, L.; Foubert, K.; Piazza, S.; Vanden Berghe, W.; Hermans, N.; Pieters, L. In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria. Pharmaceutics 2023, 15, 1291. https://doi.org/10.3390/pharmaceutics15041291
Van der Auwera A, Peeters L, Foubert K, Piazza S, Vanden Berghe W, Hermans N, Pieters L. In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria. Pharmaceutics. 2023; 15(4):1291. https://doi.org/10.3390/pharmaceutics15041291
Chicago/Turabian StyleVan der Auwera, Anastasia, Laura Peeters, Kenn Foubert, Stefano Piazza, Wim Vanden Berghe, Nina Hermans, and Luc Pieters. 2023. "In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria" Pharmaceutics 15, no. 4: 1291. https://doi.org/10.3390/pharmaceutics15041291
APA StyleVan der Auwera, A., Peeters, L., Foubert, K., Piazza, S., Vanden Berghe, W., Hermans, N., & Pieters, L. (2023). In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria. Pharmaceutics, 15(4), 1291. https://doi.org/10.3390/pharmaceutics15041291