Multicomponent Lipid Nanoparticles for RNA Transfection
<p>Structural formulas of the LNP and cLNP components. Cationic lipids: <b>1</b>, dioleoyltrimethylaminopropane (DOTAP); <b>2</b>, oleoylcholine (Ol-Ch). Structural lipids: <b>3</b>, dioleoylphosphatidylethanolamine (DOPE); <b>4</b>, dioleoylphosphatidylcholine (DOPC); <b>5</b>, cholesterol (Ch). Additional components: <b>6</b>, stearoylmonosorbitan (SPAN60); <b>7</b>, polyethylene glycol sorbitan monooleate (polysorbate 80 (PS80)), w + x + y = 20. Core lipids: <b>8</b>, coconut oil triglycerides (COTs); <b>9</b>, squalene (Sq); <b>10</b>, cholesterol acetate (ChA). Functional lipids: <b>11</b>, GM3 ganglioside (GM3).</p> "> Figure 2
<p>AFM images of LNPs and lipoplexes with mRNA formed in water. Experimental conditions: mi-ca, scanning area of 4 × 4 µm (512 × 512 pixels). (<b>a</b>) LNP sample S1 diluted to 1:20 with water; (<b>b</b>,<b>c</b>) LNP lipoplex (sample S1) and mRNA (N/P = 15) diluted to 1:20 with water. (<b>a</b>), the cross-sections from top to bottom, half-height: 16, 10.5 and 4.6 nm, half-width at half maximum: 115, 90 and 50 nm, (<b>b</b>), half-height 3.3 nm, half-width at half maximum 59 nm, (<b>c</b>), half-height 1.8, half-width at half maximum 180 nm. Representative samples from multiple scan fields are shown.</p> "> Figure 3
<p>Electropherogram and kinetics of mRNA hydrolysis and mRNA–LNP lipoplex by RNase A. (<b>a</b>) Electropherogram of LNP (sample S1b) lipoplex sample: 1—markers; 2—mRNA; 3—LNP S1b and mRNA. (<b>b</b>) Kinetics of mRNA and lipoplex with LNP (sample S1b) hydrolysis. Values are given as percentages relative to the starting point of each sample. Tris–borate–EDTA buffer, 8.0 pH, 200 ng of mRNA, and 0.05 units of RNase A (Thermo). LNP sample S1 composition is given in <a href="#pharmaceutics-15-01289-t002" class="html-table">Table 2</a>, <span class="html-italic">n</span> = 3.</p> "> Figure 4
<p>Quantity of RNA (relative to free RNA control, %) calculated from the average fluorescence intensity of SYBR Green I during the incubation of lipoplex samples for 30 min. Incubation of samples with RNase (index r) and without enzyme (no index); all samples were prepared in water. See <a href="#pharmaceutics-15-01289-t001" class="html-table">Table 1</a> for LNP composition, mean ± SE. **, A statistically significant difference, <span class="html-italic">p</span> < 0.001; ****, a statistically significant difference, <span class="html-italic">p</span> < 0.0001; ns, not significant.</p> "> Figure 5
<p>Viability assessment of HEK 293T cells. Microscopy of lipoplexes prepared from LNP (sample S1), labelled with BODIPY-C3 dye (S1Flu + mRNA, (<b>a</b>)) and BODIPY-C3 labelled LNPs (S1Flu, (<b>b</b>)); incubation time of 24 h and scale bar of 100 nm. Light, brightfield channel, Flu + Light, pseudocolor combined image, gray, brightfield channel; green, green fluorescence, (<b>c</b>) MTT test of HEK 293T cells after incubation with lipoplexes prepared from LNP samples for 24 h. See <a href="#pharmaceutics-15-01289-t001" class="html-table">Table 1</a> for LNP composition; control—HEK 293T cells without particles, <span class="html-italic">n</span> = 3.</p> "> Figure 6
<p>Transfection efficiency of HEK 293T cells with mRNA–LNP (sample S1) lipoplexes depending on various counterions of DOTAP: chloride (Cl), iodide (I) or mesylate (Mes). *, A statistically significant difference from samples with Cl and I counterions, <span class="html-italic">p</span> ≤ 0.05. Incubation time was 24 h, <span class="html-italic">n</span> = 3.</p> "> Figure 7
<p>Transfection efficiency of HEK 293T cells with lipoplexes with various cationic lipids. Sample S1 contained 100% DOTAP, S3 contained 100% oleoylcholine, and samples S15–S13 contained a mixture of DOTAP and oleoylcholine in amounts of 11, 22, and 44%, respectively, of the total amount of cationic lipids (see LNP composition in <a href="#pharmaceutics-15-01289-t001" class="html-table">Table 1</a>). The untreated controls did not differ from the background signal (700 counts per 10 s). Incubation time was 24 h, <span class="html-italic">n</span> = 3.</p> "> Figure 8
<p>Transfection efficiency of HEK 293T cells with lipoplexes with different N/P ratios. *, A statistically significant difference from samples with N/P ratios of 7.5 and 30, <span class="html-italic">p</span> < 0.05. Incubation time was 24 h, <span class="html-italic">n</span> = 3.</p> "> Figure 9
<p>The efficiency of cell transfection with lipoplexes prepared from LNPs with different structural lipids. Phospholipid composition: 100% DOPE (sample S1), 100% DOPC (sample S4), and 50:50 DOPE/DOPC (sample S5). Incubation time was 24 h. (<b>a</b>) HEK 293T cells, (<b>b</b>) MDA-MB-231 cells, (<b>c</b>) SW 620 cells. The untreated controls did not differ from the background signal (700 counts per 10 s) and are not displayed. ****, A statistically significant difference, <span class="html-italic">p</span> < 0.0001, <span class="html-italic">n</span> = 3. ns, not significant.</p> "> Figure 10
<p>The efficiency of the transfection of HEK 293T cells with lipoplexes prepared from nanoparticles of the base composition (sample S1) stored at +4–8 °C. Incubation time was 24 h. ns. not significant, <span class="html-italic">n</span> = 3.</p> "> Figure 11
<p>The efficiency of the transfection of HEK 293T cells with lipoplexes formed from LNPs with hydrophobic cores of various compositions. (<b>a</b>), Comparison of lipoplexes with different cLNP compositions. Samples S11 and S12 contained cholesterol acetate and coconut oil triglycerides in ratios of 7:7 and 4:4 mole %, respectively; samples S9 and S10 contained squalene and coconut oil triglycerides in ratios of 7:7 and 4:4 mole %, respectively (<a href="#pharmaceutics-15-01289-t001" class="html-table">Table 1</a>). (<b>b</b>) Comparison of the efficacy of lipoplexes prepared from LNPs (sample S1) and cLNPs (samples S11 and S12). The untreated controls did not differ from the background signal (700 counts per 10 s). Incubation time was 24 h. ns—not significant. ns. not significant, n = 3.</p> "> Figure 12
<p>The efficiency of cell transfection with lipoplexes prepared from LNPs with GM3 gangliosides. Ganglioside content: 0.5% (sample S6), 1% (sample S7), and 1.7% (sample S8); control—sample S1 (<a href="#pharmaceutics-15-01289-t001" class="html-table">Table 1</a>). Incubation time was 24 h. (<b>a</b>) HEK 293T cells, (<b>b</b>) MDA-MB-231 cells, (<b>c</b>) SW 620 cells. ns—not significant. ns. not significant, <span class="html-italic">n</span> = 3.</p> "> Figure 13
<p>Cell transfection efficiency with lipoplexes prepared from LNPs with GM3 gangliosides and siRNA against the GPR55 receptor gene. Control, native MDA-MB-231 cells; LF, siRNA transfection with lipofectamine; S8, siRNA–LNPs S8 lipoplex transfection (1.7% GM3; see <a href="#pharmaceutics-15-01289-t001" class="html-table">Table 1</a>). Genes: rpii, POLR2A housekeeping gene; gpr55, GPR55 receptor gene. Incubation time was 72 h. RT-qPCR data and expression results are presented as values of 2 to the degree minus the number of the quantification cycle, <span class="html-italic">n</span> = 2.</p> ">
Abstract
:1. Introduction
- 1.
- To elucidate the possibility of using acylcholines as cationic lipids, either alone or in combination with DOTAP, for the formation of LNPs and lipoplexes with RNA.
- 2.
- To compare the efficiency of the mRNA cell transfection of model LNPs with and without a core of non-polar lipids.
- 3.
- To study the transfection activity of LNPs containing GM3 gangliosides.
2. Materials and Methods
2.1. Reagents
2.1.1. GM3 Ganglioside
2.1.2. Cationic Lipids
2.2. mRNA Preparation
2.3. LNP Preparation
2.4. DLS Measurements
2.5. AFM Experiments
2.6. Electrophoresis
2.7. Endoribonuclease Hydrolysis
2.8. Cell Experiments
2.8.1. Cell Culture
2.8.2. Cell Viability Assay
2.8.3. mRNA Transfection and Luciferase Assay
2.8.4. siRNA Transfection and PCR Analysis
2.9. Microscopy
2.10. Statistics
3. Results
3.1. Preparation and Characterization of LNPs
3.2. Completeness of mRNA Incorporation into Lipoplex and Protection of mRNA from Hydrolysis by Endonuclease
3.3. Influence of Lipoplex Formation Conditions on Transfection Efficiency
3.4. Viability of the Transfected Cells
3.5. Optimization of the Composition of Lipid Nanoparticles
3.5.1. Effect of Cationic Lipid Counterion Type on Transfection Efficiency
3.5.2. Type of Cationic Lipid in LNPs
3.5.3. N/P Ratio
3.5.4. Effect of Structural Phospholipids on Transfection Efficiency
3.6. Storage Functional Stability of Nanoparticles
3.7. Lipid Nanoparticles with a Hydrophobic Core
3.8. Lipid Nanoparticles with Functional Lipid
3.9. Lipoplex Transfection of siRNA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faneca, H. Non-Viral Gene Delivery Systems. Pharmaceutics 2021, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Zhou, J.; Hossain, N.; Chau, Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv. Drug Deliv. Rev. 2016, 106, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Liu, X.-Y.; Lu, A.; Wang, X.-Y.; Jiang, L.-X.; Wang, J.-C. Non-viral vectors for RNA delivery. J. Control. Release 2022, 342, 241–279. [Google Scholar] [CrossRef]
- Eygeris, Y.; Gupta, M.; Kim, J.; Sahay, G. Chemistry of Lipid Nanoparticles for RNA Delivery. Acc. Chem. Res. 2022, 55, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Hadinoto, K.; Sundaresan, A.; Cheow, W.S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm. 2013, 85, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Hogan, M.J.; Pardi, N. mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annu. Rev. Med. 2022, 73, 17–39. [Google Scholar] [CrossRef]
- Verbeke, R.; Lentacker, I.; De Smedt, S.C.; Dewitte, H. The dawn of mRNA vaccines: The COVID-19 case. J. Control. Release Off. J. Control. Release Soc. 2021, 333, 511–520. [Google Scholar] [CrossRef]
- Ramachandran, S.; Satapathy, S.R.; Dutta, T. Delivery Strategies for mRNA Vaccines. Pharm. Med. 2022, 36, 11–20. [Google Scholar] [CrossRef]
- Maeki, M.; Uno, S.; Niwa, A.; Okada, Y.; Tokeshi, M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J. Control. Release 2022, 344, 80–96. [Google Scholar] [CrossRef]
- Zhi, D.; Bai, Y.; Yang, J.; Cui, S.; Zhao, Y.; Chen, H.; Zhang, S. A review on cationic lipids with different linkers for gene delivery. Adv. Colloid Interface Sci. 2018, 253, 117–140. [Google Scholar] [CrossRef]
- Haseda, Y.; Munakata, L.; Meng, J.; Suzuki, R.; Aoshi, T. Microfluidic-prepared DOTAP nanoparticles induce strong T-cell responses in mice. PLoS ONE 2020, 15, e0227891. [Google Scholar] [CrossRef] [PubMed]
- Aldosari, B.N.; Alfagih, I.M.; Almurshedi, A.S. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Szabó, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther. J. Am. Soc. Gene Ther. 2022, 30, 1850–1868. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Elia, U.; Peer, D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr. Opin. Biotechnol. 2022, 73, 329–336. [Google Scholar] [CrossRef]
- Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 1987, 84, 7413–7417. [Google Scholar] [CrossRef]
- Behr, J.-P. Gene Transfer with Synthetic Cationic Amphiphiles: Prospects for Gene Therapy. Bioconjug. Chem. 1994, 5, 382–389. [Google Scholar] [CrossRef]
- Simberg, D.; Weisman, S.; Talmon, Y.; Barenholz, Y. DOTAP (and other cationic lipids): Chemistry, biophysics, and transfection. Crit. Rev. Ther. Drug Carr. Syst. 2004, 21, 257–317. [Google Scholar] [CrossRef]
- Zhi, D.; Zhang, S.; Cui, S.; Zhao, Y.; Wang, Y.; Zhao, D. The headgroup evolution of cationic lipids for gene delivery. Bioconj. Chem. 2013, 24, 487–519. [Google Scholar] [CrossRef]
- Tarafdar, P.K.; Reddy, S.T.; Swamy, M.J. Effect of Hofmeister series anions on the thermotropic phase behavior of bioactive O-acylcholines. J. Phys. Chem. B 2013, 117, 9900–9909. [Google Scholar] [CrossRef]
- Akimov, M.G.; Kudryavtsev, D.S.; Kryukova, E.V.; Fomina-Ageeva, E.V.; Zakharov, S.S.; Gretskaya, N.M.; Zinchenko, G.N.; Serkov, I.V.; Makhaeva, G.F.; Boltneva, N.P.; et al. Arachidonoylcholine and Other Unsaturated Long-Chain Acylcholines Are Endogenous Modulators of the Acetylcholine Signaling System. Biomolecules 2020, 10, 283. [Google Scholar] [CrossRef]
- Akimov, M.G.; Dudina, P.V.; Fomina-Ageeva, E.V.; Gretskaya, N.M.; Bosaya, A.A.; Rudakova, E.V.; Makhaeva, G.F.; Kagarlitsky, G.O.; Eremin, S.A.; Tsetlin, V.I.; et al. Neuroprotective and Antioxidant Activity of Arachidonoyl Choline, Its Bis-Quaternized Analogues and Other Acylcholines. Dokl. Biochem. Biophys. 2020, 491, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Bender, H.R.; Kane, S.; Zabel, M.D. Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes. J. Vis. Exp. JoVE 2016, 2016, 54106. [Google Scholar] [CrossRef]
- Zabel, M.D.; Mollnow, L.; Bender, H. Lipopeptide Delivery of siRNA to the Central Nervous System. Methods Mol. Biol. 2019, 1943, 389–403. [Google Scholar] [CrossRef]
- Gerhardt, A.; Voigt, E.; Archer, M.; Reed, S.; Larson, E.; Van Hoeven, N.; Kramer, R.; Fox, C.; Casper, C. A flexible, thermostable nanostructured lipid carrier platform for RNA vaccine delivery. Mol. Ther. Methods Clin. Dev. 2022, 25, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, J.-I.; Inamori, K.-I.; Kabayama, K.; Nagafuku, M.; Uemura, S.; Go, S.; Suzuki, A.; Ohno, I.; Kanoh, H.; Shishido, F. Biology of GM3 Ganglioside. Prog. Mol. Biol. Transl. Sci. 2018, 156, 151–195. [Google Scholar] [CrossRef] [PubMed]
- Prokazova, N.V.; Samovilova, N.N.; Gracheva, E.V.; Golovanova, N.K. Ganglioside GM3 and its biological functions. Biochem. Biokhimiia 2009, 74, 235–249. [Google Scholar] [CrossRef]
- Xu, F.; Reiser, M.; Yu, X.; Gummuluru, S.; Wetzler, L.; Reinhard, B.M. Lipid-Mediated Targeting with Membrane-Wrapped Nanoparticles in the Presence of Corona Formation. ACS Nano 2016, 10, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Bandara, A.; Akiyama, H.; Eshaghi, B.; Stelter, D.; Keyes, T.; Straub, J.E.; Gummuluru, S.; Reinhard, B.M. Membrane-wrapped nanoparticles probe divergent roles of GM3 and phosphatidylserine in lipid-mediated viral entry pathways. Proc. Natl. Acad. Sci. USA 2018, 115, E9041–E9050. [Google Scholar] [CrossRef]
- Zang, H.; Siddiqui, M.; Gummuluru, S.; Wong, W.W.; Reinhard, B.M. Ganglioside-Functionalized Nanoparticles for Chimeric Antigen Receptor T-Cell Activation at the Immunological Synapse. ACS Nano 2022, 16, 18408–18420. [Google Scholar] [CrossRef]
- Svennerholm, L.; Fredman, P. A procedure for the quantitative isolation of brain gangliosides. Biochim. Biophys. Acta 1980, 617, 97–109. [Google Scholar] [CrossRef]
- Massing, U.; Kley, J.T.; Gürtesch, L.; Fankhaenel, S. A simple approach to DOTAP and its analogs bearing different fatty acids. Chem. Phys. Lipids 2000, 105, 189–191. [Google Scholar] [CrossRef]
- Lorenz, R.; Bernhart, S.H.; Höner Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. AMB 2011, 6, 26. [Google Scholar] [CrossRef]
- Blakney, A.K.; McKay, P.F.; Yus, B.I.; Aldon, Y.; Shattock, R.J. Inside out: Optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther. 2019, 26, 363–372. [Google Scholar] [CrossRef]
- Gretskaya, N.M.; Gamisonia, A.M.; Dudina, P.V.; Zakharov, S.S.; Sherstyanykh, G.; Akasov, R.; Burov, S.; Serkov, I.V.; Akimov, M.G.; Bezuglov, V.V.; et al. Novel bexarotene derivatives: Synthesis and cytotoxicity evaluation for glioma cells in 2D and 3D in vitro models. Eur. J. Pharmacol. 2020, 883, 173346. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Dragan, A.I.; Pavlovic, R.; McGivney, J.B.; Casas-Finet, J.R.; Bishop, E.S.; Strouse, R.J.; Schenerman, M.A.; Geddes, C.D. SYBR Green I: Fluorescence properties and interaction with DNA. J. Fluoresc. 2012, 22, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-K.; Hwang, G.-B.; Seu, Y.-B.; Choi, J.-S.; Jin, K.S.; Doh, K.-O. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Biochim. Biophys. Acta 2015, 1848, 1996–2001. [Google Scholar] [CrossRef]
- Sun, M.; Dang, U.J.; Yuan, Y.; Psaras, A.M.; Osipitan, O.; Brooks, T.A.; Lu, F.; Di Pasqua, A.J. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery. AAPS PharmSciTech 2022, 23, 135. [Google Scholar] [CrossRef]
- Chen, H.; Ren, X.; Xu, S.; Zhang, D.; Han, T. Optimization of Lipid Nanoformulations for Effective mRNA Delivery. Int. J. Nanomed. 2022, 17, 2893–2905. [Google Scholar] [CrossRef]
- Hald Albertsen, C.; Kulkarni, J.A.; Witzigmann, D.; Lind, M.; Petersson, K.; Simonsen, J.B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 2022, 188, 114416. [Google Scholar] [CrossRef]
- Regelin, A.E.; Fankhaenel, S.; Gürtesch, L.; Prinz, C.; von Kiedrowski, G.; Massing, U. Biophysical and lipofection studies of DOTAP analogs. Biochim. Biophys. Acta BBA-Biomembr. 2000, 1464, 151–164. [Google Scholar] [CrossRef] [PubMed]
- LoPresti, S.T.; Arral, M.L.; Chaudhary, N.; Whitehead, K.A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 2022, 345, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, S.; Ahmad, A.; Perouzel, E.; Heron, A.; Miller, A.D.; Jorgensen, M.R. In vivo studies of dialkynoyl analogues of DOTAP demonstrate improved gene transfer efficiency of cationic liposomes in mouse lung. J. Med. Chem. 2006, 49, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Lechanteur, A.; Sanna, V.; Duchemin, A.; Evrard, B.; Mottet, D.; Piel, G. Cationic Liposomes Carrying siRNA: Impact of Lipid Composition on Physicochemical Properties, Cytotoxicity and Endosomal Escape. Nanomaterials 2018, 8, 270. [Google Scholar] [CrossRef]
- Pungente, M.D.; Jubeli, E.; Øpstad, C.L.; Al-Kawaz, M.; Barakat, N.; Ibrahim, T.; Abdul Khalique, N.; Raju, L.; Jones, R.; Leopold, P.L.; et al. Synthesis and preliminary investigations of the siRNA delivery potential of novel, single-chain rigid cationic carotenoid lipids. Molecules 2012, 17, 3484–3500. [Google Scholar] [CrossRef]
- Gu, X.; Li, C.; He, J.; Li, S.; Bazzano, L.A.; Kinchen, J.M.; Chen, W.; He, H.; Gu, D.; Kelly, T.N. Serum metabolites associate with lipid phenotypes among Bogalusa Heart Study participants. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 777–787. [Google Scholar] [CrossRef]
- Koynova, R.; Wang, L.; MacDonald, R.C. An intracellular lamellar–nonlamellar phase transition rationalizes the superior performance of some cationic lipid transfection agents. Proc. Natl. Acad. Sci. USA 2006, 103, 14373–14378. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, J.M.; Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019, 160, 61–75. [Google Scholar] [CrossRef]
- Cheng, X.; Lee, R.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 2016, 99, 129–137. [Google Scholar] [CrossRef]
- Uchida, E.; Mizuguchi, H.; Ishii-Watabe, A.; Hayakawa, T. Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol. Pharm. Bull. 2002, 25, 891–897. [Google Scholar] [CrossRef]
- Hui, S.W.; Langner, M.; Zhao, Y.L.; Ross, P.; Hurley, E.; Chan, K. The role of helper lipids in cationic liposome-mediated gene transfer. Biophys. J. 1996, 71, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Benedicto, E.; Farbiak, L.; Márquez Ramírez, M.; Wang, X.; Johnson, L.T.; Mian, O.; Guerrero, E.D.; Siegwart, D.J. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 2022, 10, 549–559. [Google Scholar] [CrossRef]
- Pupo, E.; Padrón, A.; Santana, E.; Sotolongo, J.; Quintana, D.; Dueñas, S.; Duarte, C.; de la Rosa, M.C.; Hardy, E. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization-extrusion technique. J. Control. Release 2005, 104, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Anchordoquy, T.J. Cholesterol domains in cationic lipid/DNA complexes improve transfection. Biochim. Biophys. Acta BBA-Biomembr. 2008, 1778, 2177–2181. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Du, C.; Duan, X.; Yao, X.; Wan, J.; Jiang, Z.; Qin, Z.; Li, W.; Pan, L.; Gu, Z.; et al. Inhibiting collagen I production and tumor cell colonization in the lung via miR-29a-3p loading of exosome-/liposome-based nanovesicles. Acta Pharm. Sin. B 2022, 12, 939–951. [Google Scholar] [CrossRef]
- Grace, V.M.B.; Wilson, D.D.; Guruvayoorappan, C.; Danisha, J.P.; Bonati, L. Liposome nano-formulation with cationic polar lipid DOTAP and cholesterol as a suitable pH-responsive carrier for molecular therapeutic drug (all-trans retinoic acid) delivery to lung cancer cells. IET Nanobiotechnol. 2021, 15, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Mao, Y.; Sugimoto, Y.; Zhang, Y.; Kanthamneni, N.; Yu, B.; Brueggemeier, R.W.; Lee, L.J.; Lee, R.J. SPANosomes as delivery vehicles for small interfering RNA (siRNA). Mol. Pharm. 2012, 9, 201–210. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Gao, J.-Q.; Chen, J.-L.; Liang, W.-Q. Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer. Colloids Surf. B Biointerfaces 2006, 49, 158–164. [Google Scholar] [CrossRef]
- Erasmus, J.H.; Khandhar, A.P.; Guderian, J.; Granger, B.; Archer, J.; Archer, M.; Gage, E.; Fuerte-Stone, J.; Larson, E.; Lin, S.; et al. A Nanostructured Lipid Carrier for Delivery of a Replicating Viral RNA Provides Single, Low-Dose Protection against Zika. Mol. Ther. 2018, 26, 2507–2522. [Google Scholar] [CrossRef]
- Villate-Beitia, I.; Gallego, I.; Martínez-Navarrete, G.; Zárate, J.; López-Méndez, T.; Soto-Sánchez, C.; Santos-Vizcaíno, E.; Puras, G.; Fernández, E.; Pedraz, J.L. Polysorbate 20 non-ionic surfactant enhances retinal gene delivery efficiency of cationic niosomes after intravitreal and subretinal administration. Int. J. Pharm. 2018, 550, 388–397. [Google Scholar] [CrossRef]
- Moghtaderi, M.; Sedaghatnia, K.; Bourbour, M.; Fatemizadeh, M.; Salehi Moghaddam, Z.; Hejabi, F.; Heidari, F.; Quazi, S.; Farasati Far, B. Niosomes: A novel targeted drug delivery system for cancer. Med. Oncol. 2022, 39, 240. [Google Scholar] [CrossRef]
- Attia, N.; Mashal, M.; Soto-Sánchez, C.; Martínez-Navarrete, G.; Fernández, E.; Grijalvo, S.; Eritja, R.; Puras, G.; Pedraz, J.L. Gene transfer to rat cerebral cortex mediated by polysorbate 80 and poloxamer 188 nonionic surfactant vesicles. Drug Des. Devel. Ther. 2018, 12, 3937–3949. [Google Scholar] [CrossRef]
- Grijalvo, S.; Alagia, A.; Puras, G.; Zárate, J.; Pedraz, J.L.; Eritja, R. Cationic vesicles based on non-ionic surfactant and synthetic aminolipids mediate delivery of antisense oligonucleotides into mammalian cells. Colloids Surf. B Biointerfaces 2014, 119, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.-E.; Choi, J.-S. Polysorbate 80 blocked a peripheral sodium channel, Nav1.7, and reduced neuronal excitability. Mol. Pain 2022, 19, 17448069221150138. [Google Scholar] [CrossRef] [PubMed]
- Filion, M.C.; Phillips, N.C. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta 1997, 1329, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.C.; Hui, S.W. Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther. 1999, 6, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004, 377, 159–169. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, S.; Jiang, H.; Zhao, B.; Lv, H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J. Control. Release Off. J. Control. Release Soc. 2007, 123, 184–194. [Google Scholar] [CrossRef]
- Spyratou, E.; Mourelatou, E.A.; Makropoulou, M.; Demetzos, C. Atomic force microscopy: A tool to study the structure, dynamics and stability of liposomal drug delivery systems. Expert Opin. Drug Deliv. 2009, 6, 305–317. [Google Scholar] [CrossRef]
- Zheng, A.; Luo, M.; Xiang, D.; Xiang, X.; Ji, X.; He, Z. A label-free signal amplification assay for DNA detection based on exonuclease III and nucleic acid dye SYBR Green, I. Talanta 2013, 114, 49–53. [Google Scholar] [CrossRef]
- Rejali, N.A.; Zuiter, A.M.; Quackenbush, J.F.; Wittwer, C.T. Reverse transcriptase kinetics for one-step RT-PCR. Anal. Biochem. 2020, 601, 113768. [Google Scholar] [CrossRef]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef]
- Sjöström, B.; Kaplun, A.; Talmon, Y.; Cabane, B. Structures of nanoparticles prepared from oil-in-water emulsions. Pharm. Res. 1995, 12, 39–48. [Google Scholar] [CrossRef]
- Parra, E.; Hervella, P.; Needham, D. Real-Time Visualization of the Precipitation and Phase Behavior of Octaethylporphyrin in Lipid Microparticles. J. Pharm. Sci. 2017, 106, 1025–1041. [Google Scholar] [CrossRef]
- Liang, F.; Lindgren, G.; Lin, A.; Thompson, E.A.; Ols, S.; Röhss, J.; John, S.; Hassett, K.; Yuzhakov, O.; Bahl, K.; et al. Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Mol. Ther. J. Am. Soc. Gene Ther. 2017, 25, 2635–2647. [Google Scholar] [CrossRef]
- Grabowska, J.; Affandi, A.J.; van Dinther, D.; Nijen Twilhaar, M.K.; Olesek, K.; Hoogterp, L.; Ambrosini, M.; Heijnen, D.A.M.; Klaase, L.; Hidalgo, A.; et al. Liposome induction of CD8+ T cell responses depends on CD169+ macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion. J. Control. Release 2021, 331, 309–320. [Google Scholar] [CrossRef]
- Ono, M.; Handa, K.; Sonnino, S.; Withers, D.A.; Nagai, H.; Hakomori, S. GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: Coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochemistry 2001, 40, 6414–6421. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Y.; He, X.; Chen, Y.; Wei, W.; Yang, X.; Ma, K. Gangliosides and CD82 inhibit the motility of colon cancer by downregulating the phosphorylation of EGFR at different tyrosine sites and signaling pathways. Mol. Med. Rep. 2020, 22, 3994–4002. [Google Scholar] [CrossRef] [PubMed]
- Ngamcherdtrakul, W.; Yantasee, W. siRNA therapeutics for breast cancer: Recent efforts in targeting metastasis, drug resistance, and immune evasion. Transl. Res. J. Lab. Clin. Med. 2019, 214, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Trivedi, P.; Jain, N.K. Advances in siRNA delivery in cancer therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-L.; Guo, X.; Song, Y.-P.; Zhu, C.-Y.; Zou, W. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol. Sin. 2018, 39, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Alhouayek, M.; Masquelier, J.; Muccioli, G.G. Lysophosphatidylinositols, from Cell Membrane Constituents to GPR55 Ligands. Trends Pharmacol. Sci. 2018, 39, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Suga, K.; Tanabe, T.; Umakoshi, H. Heterogeneous cationic liposomes modified with 3β-{N-[(N′,N′-dimethylamino)ethyl]carbamoyl}cholesterol can induce partial conformational changes in messenger RNA and regulate translation in an Escherichia coli cell-free translation system. Langmuir ACS J. Surf. Colloids 2013, 29, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
Sample No | Cationic Lipid * (%) | Phospholipid (%) | Core and Functional Lipid(s) (%) |
---|---|---|---|
S1 1 | DOTAP (46) | DOPE (16) | |
S2 1 | DOTAP (Cl) (46) | DOPE (16) | |
S3 1 | Ol-Ch (I) (46) | DOPE (16) | |
S4 1 | DOTAP (46) | DOPC (16) | |
S5 1 | DOTAP (46) | DOPE (8)/DOPC (8) | |
S6 2 | DOTAP (45) | DOPE (16) | GM3 (0.5) |
S7 1 | DOTAP (45) | DOPE (16) | GM3 (1) |
S8 1 | DOTAP (44) | DOPE (16) | GM3 (1.7) |
S9 3 | DOTAP (40) | DOPE (13) | Sq (7)/COT (7) |
S10 4 | DOTAP (43) | DOPE (14) | Sq (3.5)/COT (3.5) |
S11 3 | DOTAP (40) | DOPE (13) | ChA (7)/COT (7) |
S12 4 | DOTAP (43) | DOPE (14) | ChA (3.5)/COT (3.5) |
S13 1 | DOTAP (25.8)/ Ol-Ch (20.2) | DOPE (16) | |
S14 1 | DOTAP (35.9)/ Ol-Ch (10.1) | DOPE (16) | |
S15 1 | DOTAP (40.9)/ Ol-Ch (5.1) | DOPE (16) |
Sample No | Size, nm * | Hydrodynamic Diameter, nm | PDI * | Zeta Potential, mV |
---|---|---|---|---|
S1 a | 205.3 ± 46.1 | 191.4 | 0.12 ± 0.015 | 3.0 ± 1.0 |
S1 b | 207.6 ± 48.2 | 213.3 | 0.09 ± 0.011 | 3.3 ± 1 |
S1 c | 184.0 ± 39.4 | 193.3 | 0.1 ± 0.009 | 3.0 ± 0.8 |
S1 d | 147.4 ± 44.4 | 143.9 | 0.19 ± 0.012 | 11.3 ± 0.4 |
S2 a | 195.0 ± 74.9 | 181.3 | 0.23 ± 0.018 | 2.0 ± 0.6 |
S3 a | 166.8 ± 53.2 | 169.4 | 0.14 ± 0.009 | 4.3 ± 0.6 |
S4 a | 140.5 ± 44.3 | 138.2 | 0.17 ± 0.014 | 4.0 ± 0.8 |
S5 a | 159.3 ± 61.8 | 166.1 | 0.18 ± 0.024 | 0.4 ± 1 |
S6 a | 168.0 ± 51.8 | 172.4 | 0.17 ± 0.01 | −0.8 ± 0.5 |
S7 a | 177.8 ± 56.2 | 181.5 | 0.15 ± 0.026 | 1.2 ± 0.6 |
S8 a | 177.8 ± 55.1 | 180.0 | 0.16 ± 0.007 | 0.7 ± 0.8 |
S9 a | 148.8 ± 71.1 | 154.0 | 0.19 ± 0.014 | 2.1 ± 0.7 |
S10 a | 143.4 ± 56.8 | 147.7 | 0.22 ± 0.014 | 0.2 ± 1 |
S11 a | 162.83 ± 59.2 | 158.7 | 0.18 ± 0.014 | 4.0 ± 0.4 |
S12 a | 171.5 ± 57.2 | 166.3 | 0.17 ± 0.017 | 3.6 ± 0.6 |
S13 a | 160.9 ± 60.7 | 152.2 | 0.20 ± 0.006 | 12.4 ± 0.8 |
S13 d | 118.3 ± 38.7 | 114.1 | 0.15 ± 0.024 | 42.5 ± 1.6 |
S14 a | 196.0 ± 89.8 | 169.4 | 0.19 ± 0.006 | 10.9 ± 0.6 |
S15 a | 190.7 ± 71.3 | 177.2 | 0.18 ± 0.005 | 10.4 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gretskaya, N.; Akimov, M.; Andreev, D.; Zalygin, A.; Belitskaya, E.; Zinchenko, G.; Fomina-Ageeva, E.; Mikhalyov, I.; Vodovozova, E.; Bezuglov, V. Multicomponent Lipid Nanoparticles for RNA Transfection. Pharmaceutics 2023, 15, 1289. https://doi.org/10.3390/pharmaceutics15041289
Gretskaya N, Akimov M, Andreev D, Zalygin A, Belitskaya E, Zinchenko G, Fomina-Ageeva E, Mikhalyov I, Vodovozova E, Bezuglov V. Multicomponent Lipid Nanoparticles for RNA Transfection. Pharmaceutics. 2023; 15(4):1289. https://doi.org/10.3390/pharmaceutics15041289
Chicago/Turabian StyleGretskaya, Nataliya, Mikhail Akimov, Dmitry Andreev, Anton Zalygin, Ekaterina Belitskaya, Galina Zinchenko, Elena Fomina-Ageeva, Ilya Mikhalyov, Elena Vodovozova, and Vladimir Bezuglov. 2023. "Multicomponent Lipid Nanoparticles for RNA Transfection" Pharmaceutics 15, no. 4: 1289. https://doi.org/10.3390/pharmaceutics15041289
APA StyleGretskaya, N., Akimov, M., Andreev, D., Zalygin, A., Belitskaya, E., Zinchenko, G., Fomina-Ageeva, E., Mikhalyov, I., Vodovozova, E., & Bezuglov, V. (2023). Multicomponent Lipid Nanoparticles for RNA Transfection. Pharmaceutics, 15(4), 1289. https://doi.org/10.3390/pharmaceutics15041289