Characterization of the First Marine Pestivirus, Phocoena Pestivirus (PhoPeV)
<p>Infection of different mammalian cell lines with PhoPeV, BuPV, and CSFV Alfort-T. Swine kidney-6 (SK6), Madin–Darby bovine kidney (MDBK), sheep fetal thymus (SFTR), Crandel–Rees feline kidney (CRFK), and seal kidney cells (SEK-2B) were infected with PhoPeV, BuPV, and CSFV Alfort-T at an MOI of 0.5. Viral antigens were detected by immunofluorescence analysis at 72 hpi. Cell nuclei were stained with DAPI (blue). All mock controls (bottom) tested negative.</p> "> Figure 2
<p>Viral growth kinetics and viral RNA synthesis in porcine, bovine, ovine, and feline cell lines infected with PhoPeV. Porcine SK6, PK-15, and 38A<sub>1</sub>D cells, bovine MDBK cells, ovine SFTR cells, and feline CRFK cells were infected with PhoPeV at an MOI of 0.1. Supernatants and cell lysates of infected cells were collected over a period of 96 hpi or 168 hpi (SK6). (<b>A</b>) Virus titers were determined as 50% tissue culture infectious doses (TCID<sub>50</sub>) per mL. (<b>B</b>) After extraction of total cellular RNA from the collected cell lysates, the viral RNA copy numbers were determined by RT-qPCR and expressed as log 10 copies per 50 ng of RNA. Each time point was evaluated in triplicates. Mean values and standard deviations were calculated by GraphPad Prism software version 9.0.0.</p> "> Figure 3
<p>Expression of IRF3 and the Mx1 protein in porcine cells at 24 h (<b>A</b>, left) and 48 h (<b>B</b>, right) after infection with PhoPeV, BuPV, and CSFV Alfort-T. Porcine PK-15 cells were infected with PhoPeV, BuPV, and CSFV Alfort-T at an MOI of 0.5. Cell lysates were collected at 24 hpi and 48 hpi, and protein levels were quantified. For each lysate, 50 µg of total protein were used for immunoblot analysis, as witnessed by comparable beta-actin content in each lane (bottom panels). As a negative control, PK-15 cells were inoculated with cell culture medium (Mock). Degradation of IRF3 was detected after infection with BuPV and CSFV Alfort-T (<b>A</b>,<b>B</b>). PhoPeV-infected cells show no degradation of IRF3 (<b>A</b>,<b>B</b>) and induction of Mx1 expression (<b>B</b>).</p> "> Figure 4
<p>Relevance of the cellular protein DNAJC14 for viral RNA replication of PhoPeV. Cells were infected with PhoPeV, BuPV, and CSFV Alfort-T using an MOI of 1 and with APPV at an MOI of 0.1. Viral antigen was detected by immunofluorescence at 72 hpi. Virus infection of all selected viruses, in the presence of DNAJC14, was detected in the swine kidney 6 wild-type cell line (SK6 WT) and in the DNAJC14-KO rescue cells (SK6 DNAJC14-KO GST-Jiv90-WT). Similar to BuPV and CSFV, no replication of PhoPeV was detected in the DNAJC14 knock out cell line SK6 DNAJC14-KO. Only APPV infection could be detected in this knockout cell line. Viral antigens were stained with Cy3-conjugated secondary antibodies (red), and cell nuclei were stained with DAPI (blue; lower left corner). All mock controls tested negative.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Antibodies and Antisera
2.3. Cell Tropism Analysis of PhoPeV
2.4. Virus Growth in Cell Lines Susceptible to PhoPeV
2.4.1. Virus Titration
2.4.2. RNA Preparation and Real-Time Reverse Transcriptase PCR
2.5. PhoPeV Replication in the Presence or Absence of DNAJC14 After Cellular Infection
2.6. Immunofluorescence Staining
2.7. Immunoblot Analysis
3. Results
3.1. Host Cell Tropism of PhoPeV
3.2. Viral Growth and Viral RNA Production of PhoPeV in Different Cell Lines
3.3. Expression of IRF3 and the Mx Protein in Porcine Cells After Infection with PhoPeV
3.4. RNA Replication of PhoPeV Is Dependent on DNAJC14
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postler, T.S.; Beer, M.; Blitvich, B.J.; Bukh, J.; de Lamballerie, X.; Drexler, J.F.; Imrie, A.; Kapoor, A.; Karganova, G.G.; Lemey, P. Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch. Virol. 2023, 168, 224. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, M.; Peterhans, E. Pestiviruses. Annu. Rev. Anim. Biosci. 2014, 2, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; Curtis Hendrickson, R. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Arch. Virol. 2022, 167, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Postel, A.; Smith, D.B.; Becher, P. Proposed update to the taxonomy of pestiviruses: Eight additional species within the genus Pestivirus, family Flaviviridae. Viruses 2021, 13, 1542. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.K.; van Elk, C.; van de Bildt, M.; van Run, P.; Petry, M.; Jesse, S.T.; Jung, K.; Ludlow, M.; Kuiken, T.; Osterhaus, A. An evolutionary divergent pestivirus lacking the Npro gene systemically infects a whale species. Emerg. Microbes Infect. 2019, 8, 1383–1392. [Google Scholar] [CrossRef]
- Stokholm, I.; Fischer, N.; Baechlein, C.; Postel, A.; Galatius, A.; Kyhn, L.A.; Thøstesen, C.B.; Persson, S.; Siebert, U.; Olsen, M.T.; et al. In the search of marine pestiviruses: First case of Phocoena Pestivirus in a belt sea harbour porpoise. Viruses 2022, 14, 161. [Google Scholar] [CrossRef]
- Beck, R.M.; Bininda-Emonds, O.R.; Cardillo, M.; Liu, F.G.; Purvis, A. A higher-level MRP supertree of placental mammals. BMC Evol. Biol. 2006, 6, 93. [Google Scholar] [CrossRef]
- Kirkland, P.D.; Le Potier, M.-F.; Finlaison, D. Pestiviruses. In Diseases of Swine; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 622–640. [Google Scholar]
- McGowan, M.R.; Kirkland, P.D. Early reproductive loss due to bovine pestivirus infection. Br. Vet. J. 1995, 151, 263–270. [Google Scholar] [CrossRef]
- Moennig, V.; Becher, P. Control of bovine viral diarrhea. Pathogens 2018, 7, 29. [Google Scholar] [CrossRef]
- Kiesler, A.; Schwarz, L.; Riedel, C.; Högler, S.; Brunthaler, R.; Dimmel, K.; Auer, A.; Zaruba, M.; Mötz, M.; Seitz, K. New Emergence of the Novel Pestivirus Linda Virus in a Pig Farm in Carinthia, Austria. Viruses 2022, 14, 326. [Google Scholar] [CrossRef]
- Kirkland, P.D.; Read, A.J.; Frost, M.J.; Finlaison, D.S. Bungowannah virus–a probable new species of pestivirus–what have we found in the last 10 years? Anim. Health Res. Rev. 2015, 16, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Lamp, B.; Schwarz, L.; Högler, S.; Riedel, C.; Sinn, L.; Rebel-Bauder, B.; Weissenböck, H.; Ladinig, A.; Rümenapf, T. Novel pestivirus species in pigs, Austria, 2015. Emerg. Infect. Dis. 2017, 23, 1176–1179. [Google Scholar] [CrossRef] [PubMed]
- Finlaison, D.S.; King, K.R.; Frost, M.J.; Kirkland, P.D. Field and laboratory evidence that Bungowannah virus, a recently recognised pestivirus, is the causative agent of the porcine myocarditis syndrome (PMC). Vet. Microbiol. 2009, 136, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Ruggli, N.; Tratschin, J.-D.; Schweizer, M.; McCullough, K.C.; Hofmann, M.A.; Summerfield, A. Classical swine fever virus interferes with cellular antiviral defense: Evidence for a novel function of Npro. J. Virol. 2003, 77, 7645–7654. [Google Scholar] [CrossRef]
- de Martin, E.; Schweizer, M. Fifty shades of Erns: Innate immune evasion by the viral endonucleases of all pestivirus species. Viruses 2022, 14, 265. [Google Scholar] [CrossRef]
- Fiebach, A.R.; Guzylack-Piriou, L.; Python, S.; Summerfield, A.; Ruggli, N. Classical swine fever virus Npro limits type 1 interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7. J. Virol. 2011, 85, 8002–8011. [Google Scholar] [CrossRef]
- Gottipati, K.; Holthauzen, L.M.F.; Ruggli, N.; Choi, K.H. Pestivirus Npro directly interacts with interferon regulatory factor 3 monomer and dimer. J. Virol. 2016, 90, 7740–7747. [Google Scholar] [CrossRef]
- Schneider, R.; Unger, G.; Stark, R.; Schneider-Scherzer, E.; Thiel, H.-J. Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 1993, 261, 1169–1171. [Google Scholar] [CrossRef]
- Peterhans, E.; Schweizer, M. Pestiviruses: How to outmaneuver your hosts. Vet. Microbiol. 2010, 142, 18–25. [Google Scholar] [CrossRef]
- Windisch, J.M.; Schneider, R.; Stark, R.; Weiland, E.; Meyers, G.; Thiel, H.J. RNase of classical swine fever virus: Biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. J. Virol. 1996, 70, 352–358. [Google Scholar] [CrossRef]
- Meyers, G.; Ege, A.; Fetzer, C.; von Freyburg, M.; Elbers, K.; Carr, V.; Prentice, H.; Charleston, B.; Schürmann, E.-M. Bovine viral diarrhea virus: Prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J. Virol. 2007, 81, 3327–3338. [Google Scholar] [CrossRef]
- Bolin, S.R.; McClurkin, A.W.; Cutlip, R.C.; Coria, M.F. Severe clinical disease induced in cattle persistently infected with noncytopathic bovine viral diarrhea virus by superinfection with cytopathic bovine viral diarrhea virus. Am. J. Vet. Res. 1985, 46, 573–576. [Google Scholar]
- Gillespie, J.H.; Baker, J.A.; McEntee, K. A cytopathogenic strain of virus diarrhoea virus. Cornell Vet. 1960, 50, 73–79. [Google Scholar]
- Lee, K.M.; Gillespie, J.H. Propagation of virus diarrhea virus of cattle in tissue culture. Am. J. Vet. Res. 1957, 18, 952–953. [Google Scholar]
- Brownlie, J. The pathways for bovine virus diarrhoea virus biotypes in the pathogenesis of disease. Rumin. Pestivirus Infect. Virol. Pathog. Perspect. Prophyl. 1991, 3, 79–96. [Google Scholar] [CrossRef]
- Becher, P.; Tautz, N. RNA recombination in pestiviruses: Cellular RNA sequences in viral genomes highlight the role of host factors for viral persistence and lethal disease. RNA Biol. 2011, 8, 216–224. [Google Scholar] [CrossRef]
- Brownlie, J.; Clarke, M.C.; Howard, C.J. Experimental production of fatal mucosal disease in cattle. Vet. Rec. 1984, 114, 535–536. [Google Scholar] [CrossRef]
- Isken, O.; Postel, A.; Bruhn, B.; Lattwein, E.; Becher, P.; Tautz, N. CRISPR/Cas9-mediated knockout of DNAJC14 verifies this chaperone as a pivotal host factor for RNA replication of pestiviruses. J. Virol. 2019, 93, e01714-18. [Google Scholar] [CrossRef]
- Reuscher, C.M.; Seitz, K.; Schwarz, L.; Geranio, F.; Isken, O.; Raigel, M.; Huber, T.; Barth, S.; Riedel, C.; Netsch, A. DNAJC14-independent replication of the atypical porcine pestivirus. J. Virol. 2022, 96, e01980-21. [Google Scholar] [CrossRef]
- Richter, M.; Reimann, I.; Schirrmeier, H.; Kirkland, P.D.; Beer, M. The viral envelope is not sufficient to transfer the unique broad cell tropism of Bungowannah virus to a related pestivirus. J. Gen. Virol. 2014, 95, 2216–2222. [Google Scholar] [CrossRef]
- Cagatay, G.N.; Meyer, D.; Wendt, M.; Becher, P.; Postel, A. Characterization of the humoral immune response induced after infection with atypical porcine pestivirus (APPV). Viruses 2019, 11, 880. [Google Scholar] [CrossRef]
- Paton, D.J.; Sands, J.J.; Roehe, P.M. BVD monoclonal antibodies: Relationship between viral protein specificity and viral strain specificity. Arch. Virology. Suppl. 1991, 3, 47–54. [Google Scholar] [CrossRef]
- Greiser-Wilke, I.; Dittmar, K.E.; Liess, B.; Moennig, V. Heterogeneous expression of the non-structural protein p80/p125 in cells infected with different pestiviruses. J. Gen. Virol. 1992, 73, 47–52. [Google Scholar] [CrossRef]
- Cagatay, G.N.; Antos, A.; Suckstorff, O.; Isken, O.; Tautz, N.; Becher, P.; Postel, A. Porcine complement regulatory protein CD46 is a major receptor for atypical porcine pestivirus but not for classical swine fever virus. J. Virol. 2021, 95, e02186-20. [Google Scholar] [CrossRef]
- Flohr, F.; Schneider-Schaulies, S.; Haller, O.; Kochs, G. The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures. FEBS Lett. 1999, 463, 24–28. [Google Scholar] [CrossRef]
- Bauhofer, O.; Summerfield, A.; Sakoda, Y.; Tratschin, J.-D.; Hofmann, M.A.; Ruggli, N. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J. Virol. 2007, 81, 3087–3096. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Für Exp. Pathol. Und Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Spearman, C. The method of right and wrong cases (constant stimuli) without Gauss’s formulae. Br. J. Psychol. 1908, 2, 227. [Google Scholar] [CrossRef]
- Maurer, K.; Krey, T.; Moennig, V.; Thiel, H.-J.; Rümenapf, T. CD46 is a cellular receptor for bovine viral diarrhea virus. J. Virol. 2004, 78, 1792–1799. [Google Scholar] [CrossRef]
- Ruggli, N.; Summerfield, A.; Fiebach, A.R.; Guzylack-Piriou, L.; Bauhofer, O.; Lamm, C.G.; Waltersperger, S.; Matsuno, K.; Liu, L.; Gerber, M. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J. Virol. 2009, 83, 817–829. [Google Scholar] [CrossRef]
- Gallei, A.; Blome, S.; Gilgenbach, S.; Tautz, N.; Moennig, V.; Becher, P. Cytopathogenicity of classical swine fever virus correlates with attenuation in the natural host. J. Virol. 2008, 82, 9717–9729. [Google Scholar] [CrossRef]
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Scott Muerhoff, A.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef]
- Leveringhaus, E.; Cagatay, G.N.; Hardt, J.; Becher, P.; Postel, A. Different impact of bovine complement regulatory protein 46 (CD46bov) as a cellular receptor for members of the species Pestivirus H and Pestivirus G. Emerg. Microbes Infect. 2022, 11, 60–72. [Google Scholar] [CrossRef]
- Richter, M.; König, P.; Reimann, I.; Beer, M. Npro of Bungowannah virus exhibits the same antagonistic function in the IFN induction pathway than that of other classical pestiviruses. Vet. Microbiol. 2014, 168, 340–347. [Google Scholar] [CrossRef]
- Zürcher, C.; Sauter, K.-S.; Mathys, V.; Wyss, F.; Schweizer, M. Prolonged activity of the pestiviral RNase Erns as an interferon antagonist after uptake by clathrin-mediated endocytosis. J. Virol. 2014, 88, 7235–7243. [Google Scholar] [CrossRef]
- Braun, B.A.; Marcovitz, A.; Camp, J.G.; Jia, R.; Bejerano, G. Mx1 and Mx2 key antiviral proteins are surprisingly lost in toothed whales. Proc. Natl. Acad. Sci. USA 2015, 112, 8036–8040. [Google Scholar] [CrossRef]
Cell Line | Species | Organ | Medium | Source/Reference |
---|---|---|---|---|
SK6 | Domestic pig | Kidney | MEM * + 10% FBS *1 | Institute of Virology, Mittelhäusern, Switzerland |
SK6 DNAJC14-KO | Domestic pig | Kidney | MEM + 10% FBS | Institute of Virology and Cell Biology, University of Lübeck, Germany |
SK6 DNAJC14-KO GST-Jiv90-WT | Domestic pig | Kidney | MEM + 10% FBS | Institute of Virology and Cell Biology, University of Lübeck, Germany |
PK-15 | Domestic pig | Kidney | MEM + 5% FBS | Institute of Virology, Hannover, Germany |
38A1D | Domestic pig | Lymphoma | MEM + 10% FBS | Institute of Virology, Hannover, Germany |
MDBK | Cattle | Kidney | EDulb *2 + 10% HS *3 | Rockville, MD, USA |
SFTR (CCLV-RIE 43) | Domestic sheep | Thymus | EDulb + 10% FBS | CCLV, Friedrich-Loeffler-Institute, Island Riems, Greifswald, Germany |
SEK-2B | Seal | Kidney | EDulb + 10% FBS | Institute of Virology, Gießen, Germany |
CRFK | Cat | Kidney | EDulb + 10% FBS | Institute of Virology, Hannover, Germany |
Vero | Vervet monkey | Kidney | EDulb + 10% FBS | Institute of Virology, Hannover, Germany |
BHK-21 | Golden hamster | Kidney | EDulb + 10% FBS | Institute of Virology, Hannover, Germany |
Balb3T3 | Mouse | Embryo | EDulb + 10% FBS | Institute of Virology, Hannover, Germany |
HEK-293T (ACC-635) | Human | Embryonic Kidney | EDulb + 10% FBS | DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany |
HeLa | Human | Cervix carcinoma | EDulb + 10% FBS | Institute of Virology, Hannover, Germany |
Cell Lines | Viruses | ||
---|---|---|---|
BuPV | PhoPeV | CSFV Alfort-T | |
SK6 | + | + | + |
PK-15 | + | + | + |
38A1D | + | + | + |
MDBK | + | + | + |
SFTR | + | +* | + |
CRFK | + | + | +* |
SEK-2B | + | - | - |
BHK-21 | - | - | - |
Vero | + | - | - |
HeLa | + | - | - |
HEK-293T | + | - | - |
Balb3T3 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Söder, L.; Meyer, D.; Isken, O.; Tautz, N.; König, M.; Postel, A.; Becher, P. Characterization of the First Marine Pestivirus, Phocoena Pestivirus (PhoPeV). Viruses 2025, 17, 107. https://doi.org/10.3390/v17010107
Söder L, Meyer D, Isken O, Tautz N, König M, Postel A, Becher P. Characterization of the First Marine Pestivirus, Phocoena Pestivirus (PhoPeV). Viruses. 2025; 17(1):107. https://doi.org/10.3390/v17010107
Chicago/Turabian StyleSöder, Lars, Denise Meyer, Olaf Isken, Norbert Tautz, Matthias König, Alexander Postel, and Paul Becher. 2025. "Characterization of the First Marine Pestivirus, Phocoena Pestivirus (PhoPeV)" Viruses 17, no. 1: 107. https://doi.org/10.3390/v17010107
APA StyleSöder, L., Meyer, D., Isken, O., Tautz, N., König, M., Postel, A., & Becher, P. (2025). Characterization of the First Marine Pestivirus, Phocoena Pestivirus (PhoPeV). Viruses, 17(1), 107. https://doi.org/10.3390/v17010107