SARS-CoV-2 Infection of the Central Nervous System: A Case Report
<p>Cycle threshold (Ct) values for target genes in nasopharyngeal (NP) swabs and cerebrospinal fluid (CSF) samples at initial presentation and discharge. (<b>A</b>) Initial NP Swab Ct Values: RdRp = 19.910, E gene = 19.168, and N gene = 20.105. (<b>B</b>) Initial CSF Ct Values: RdRp = 29.074, E gene = 28.121, and N gene = 28.449. (<b>C</b>) NP Swab Ct Values at Discharge: E gene = 34.500 and N gene = 31.246. (<b>D</b>) CSF Ct Values at Discharge: RdRp = 31.900, E gene = 31.000, and N gene = 30.949.</p> "> Figure 2
<p>Chest X-ray at initial presentation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Case Presentation
3.1.1. Date of Admission: 14 September 2024
3.1.2. Neurological Deterioration: 16 September 2024
3.1.3. Clinical Course: 20 September 2024
3.1.4. Discharge Summary: 27 September 2024
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Alimohamadi, Y.; Sepandi, M.; Taghdir, M.; Hosamirudsari, H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev. Med. Hyg. 2020, 61, E304–E312. [Google Scholar] [CrossRef]
- Grahlyova, L.; Gotseva, A. Covid-19: Course and prognosis in patients with severe clinical form. World J. Biol. Pharm. Health Sci. 2023, 16, 1–6. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deeks, S.G. Mechanisms of long COVID and the path toward therapeutics. Cell 2024, 187, 5500–5529. [Google Scholar] [CrossRef]
- Kettunen, P.; Lesnikova, A.; Räsänen, N.; Ojha, R.; Palmunen, L.; Laakso, M.; Lehtonen, Š.; Kuusisto, J.; Pietiläinen, O.; Saber, S.H.; et al. SARS-CoV-2 Infection of Human Neurons Is TMPRSS2 Independent, Requires Endosomal Cell Entry, and Can Be Blocked by Inhibitors of Host Phosphoinositol-5 Kinase. J. Virol. 2023, 97, e0014423. [Google Scholar] [CrossRef]
- Crunfli, F.; Carregari, V.C.; Veras, F.P.; Silva, L.S.; Nogueira, M.H.; Antunes, A.; Vendramini, P.H.; Valença, A.G.F.; Brandão-Teles, C.; Zuccoli, G.D.S.; et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc. Natl. Acad. Sci. USA 2022, 119, e2200960119. [Google Scholar] [CrossRef]
- Beckman, D.; Bonillas, A.; Diniz, G.B.; Ott, S.; Roh, J.W.; Elizaldi, S.R.; Schmidt, B.A.; Sammak, R.L.; Van Rompay, K.K.A.; Iyer, S.S.; et al. SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell Rep. 2022, 41, 111573. [Google Scholar] [CrossRef]
- Song, E.; Zhang, C.; Israelow, B.; Lu-Culligan, A.; Prado, A.V.; Skriabine, S.; Lu, P.; Weizman, O.E.; Liu, F.; Dai, Y.; et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 2021, 218, e20202135. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, C.; Goto-Silva, L.; Temerozo, J.R.; Souza, L.R.Q.; Vitória, G.; Ornelas, I.M.; Karmirian, K.; Mendes, M.A.; Gomes, I.C.; Sacramento, C.Q.; et al. Non-permissive SARS-CoV-2 infection in human neurospheres. Stem Cell Res. 2021, 54, 102436. [Google Scholar] [CrossRef]
- Vanderheiden, A.; Klein, R.S. Neuroinflammation and COVID-19. Curr. Opin. Neurobiol. 2022, 76, 102608. [Google Scholar] [CrossRef] [PubMed]
- Pröbstel, A.K.; Schirmer, L. SARS-CoV-2-specific neuropathology: Fact or fiction? Trends Neurosci. 2021, 44, 933–935. [Google Scholar] [CrossRef]
- Pabbaraju, K.; Wong, A.A.; Ma, R.; Zelyas, N.; Tipples, G.A. Development and validation of a multiplex reverse transcriptase-PCR assay for simultaneous testing of influenza A, influenza B and SARS-CoV-2. J. Virol. Methods 2021, 293, 114151. [Google Scholar] [CrossRef]
- Czarniak, N.; Kamińska, J.; Matowicka-Karna, J.; Koper-Lenkiewicz, O.M. Cerebrospinal Fluid–Basic Concepts Review. Biomedicines 2023, 11, 1461. [Google Scholar] [CrossRef]
- Seehusen, F.; Clark, J.J.; Sharma, P.; Bentley, E.G.; Kirby, A.; Subramaniam, K.; Wunderlin-Giuliani, S.; Hughes, G.L.; Patterson, E.I.; Michael, B.D.; et al. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses 2022, 14, 1020. [Google Scholar] [CrossRef]
- Glatzel, M.; Hagel, C.; Matschke, J.; Sperhake, J.; Deigendesch, N.; Tzankov, A.; Frank, S. Neuropathology associated with SARS-CoV-2 infection. Lancet 2021, 397, 276. [Google Scholar] [CrossRef] [PubMed]
- Nakakubo, S. Evolving COVID-19 symptoms and the ongoing course of research. Lancet Infect. Dis. 2024; ahead of print. [Google Scholar] [CrossRef]
- Joyce, J.D.; Moore, G.A.; Goswami, P.; Harrell, T.L.; Taylor, T.M.; Hawks, S.A.; Green, J.C.; Jia, M.; Irwin, M.D.; Leslie, E.; et al. SARS-CoV-2 Rapidly Infects Peripheral Sensory and Autonomic Neurons, Contributing to Central Nervous System Neuroinvasion before Viremia. Int. J. Mol. Sci. 2024, 25, 8245. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, K.; Rai, P.; Gautam, A.; Kaur, H.; Kapoor, S.; Suttee, A.; Jaiswal, P.K.; Sharma, A.; Singh, G.; Barnwal, R.P. Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. Eur. J. Med. Res. 2023, 28, 307. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Veleri, S. Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Exp. Brain Res. 2022, 240, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.I.; Barragán, L.A.; Martínez, J.D.; Montoya, J.P.; Peña, A.; Sobrino, F.E.; Tovar-Spinoza, Z.; Ghotme, K.A. Central and peripheral nervous system involvement by COVID-19: A systematic review of the pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. BMC Infect. Dis. 2021, 21, 515. [Google Scholar] [CrossRef] [PubMed]
- Proust, A.; Queval, C.J.; Harvey, R.; Adams, L.; Bennett, M.; Wilkinson, R.J. Differential effects of SARS-CoV-2 variants on central nervous system cells and blood-brain barrier functions. J. Neuroinflammation 2023, 20, 184. [Google Scholar] [CrossRef] [PubMed]
- Jagst, M.; Pottkämper, L.; Gömer, A.; Pitarokoili, K.; Steinmann, E. Neuroinvasion and neurotropism of severe acute respiratory syndrome coronavirus 2 infection. Curr. Opin. Microbiol. 2024, 79, 102474. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, M.; Singhal, A.; Alizadeh, M.; Sotoudeh, H. Magnetic Resonance Imaging (MRI) Findings in COVID-19 Associated Encephalitis. Neurol. Int. 2023, 15, 55–68. [Google Scholar] [CrossRef]
- Vivisenco, I.C.; Lescaie, A.; Dragomirescu, A.; Ioniță, I.C.; Florescu, I.; Ciocea, B.; Grama, A.R.; Crăciun, M.D.; Chivu, C.D.; Ulmeanu, C.E.; et al. Neurological Manifestations of Acute SARS-CoV-2 Infection in Pediatric Patients: A 3-Year Study on Differences between Pandemic Waves. Viruses 2024, 16, 967. [Google Scholar] [CrossRef] [PubMed]
- Casoli, T. SARS-CoV-2 Morbidity in the CNS and the Aged Brain Specific Vulnerability. Int. J. Mol. Sci. 2022, 23, 3782. [Google Scholar] [CrossRef]
- Gotseva, A.; Naseva, E. Age-related disparities in the severity course of COVID-19. World J. Biol. Pharm. Health Sci. 2024, 17, 96–100. [Google Scholar] [CrossRef]
- Dimitrov, G.; Valkov, T.; Batselova, H.; Kounchev, O.; Momekov, G.; Argirova, R. Nationwide analysis of the impact of COVID-19 in patients with a cardiovascular, oncological or chronic pulmonary disease in the context of an Eastern European country with a low vaccination rate, Bulgaria: March 2020–April 2022. BMJ Open 2023, 13, e068431. [Google Scholar] [CrossRef]
- Valenzuela, C.; Nigro, M.; Chalmers, J.D.; Wagers, S.; Aujayeb, A.; Hellemons, M.E.; Löffler-Ragg, J.; Brightling, C.E.; Aliberti, S. COVID-19 follow-up programmes across Europe: An ERS END-COVID CRC survey. Eur. Respir. J. 2022, 60, 2200923. [Google Scholar] [CrossRef] [PubMed]
- Kamenarova, K.; Kachakova-Yordanova, D.; Baymakova, M.; Georgiev, M.; Mihova, K.; Petkova, V.; Beltcheva, O.; Argirova, R.; Atanasov, P.; Kunchev, M.; et al. Rare host variants in ciliary expressed genes contribute to COVID-19 severity in Bulgarian patients. Sci. Rep. 2024, 14, 19487. [Google Scholar] [CrossRef] [PubMed]
Specimen Type | qRT-PCR Cycle Threshold (Ct) Value | Assay Target (s) |
---|---|---|
NP Swab initial ** | RdRp = 19.910 | E gene = 19.168; N gene = 20.105 |
NP Swab discharge ** | ND | E gene = 34.500; N gene = 31.246 |
CSF initial * | RdRp = 29.074 | E gene = 28.121; N gene = 28.449 |
CSF discharge * | RdRp = 31.900 | E gene = 31.000; N gene = 30.949 |
Category | Findings |
---|---|
Patient Demographics | 92-year-old female with moderate COVID-19 symptoms |
Imaging | No pathological findings on chest X-ray |
Neurological Symptoms | Lethargy, poor coordination, impaired communication on day 3 post submission—without signs of meningism |
Blood Tests | Initial laboratory findings revealed hypoxemia (O2 saturation 79.8%), acidosis (pH 7.3), an elevated CRP level of 14.8 mg/L, and a high D-dimer level (2.15 µg/mL) |
CSF Analysis | SARS-CoV-2 RNA detected by qRT-PCR on day 3 (Ct = 29) after hospitalization and at discharge (day 13 with Ct = 31); negative microbiological culture |
Clinical Course | Persistent neurological deficit despite standard COVID-19 treatment, even after discharge |
Key Implications | Evidence of CNS viral RNA persistence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valkov, T.; Argirova, R.; Dimitrov, G. SARS-CoV-2 Infection of the Central Nervous System: A Case Report. Viruses 2024, 16, 1962. https://doi.org/10.3390/v16121962
Valkov T, Argirova R, Dimitrov G. SARS-CoV-2 Infection of the Central Nervous System: A Case Report. Viruses. 2024; 16(12):1962. https://doi.org/10.3390/v16121962
Chicago/Turabian StyleValkov, Trifon, Radka Argirova, and George Dimitrov. 2024. "SARS-CoV-2 Infection of the Central Nervous System: A Case Report" Viruses 16, no. 12: 1962. https://doi.org/10.3390/v16121962
APA StyleValkov, T., Argirova, R., & Dimitrov, G. (2024). SARS-CoV-2 Infection of the Central Nervous System: A Case Report. Viruses, 16(12), 1962. https://doi.org/10.3390/v16121962