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Abstract: Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes life-
long infection in ~5–10 million individuals globally. It is endemic to certain First Nations populations
of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean
region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription,
often being asymptomatic in the beginning of infection, with symptoms developing later in life.
HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and
HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preven-
tive or curative interventions, infected individuals have limited treatment options, most of which
manage symptoms. The clinical burden and lack of treatment options directs the need for alternative
treatment strategies for HTLV-1 infection. Recent advances have been made in the development of
RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous
retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing
efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for
gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models
that may help the advancement of novel antiviral and anticancer interventions.

Keywords: retrovirus; HTLV-1; antiviral therapeutics; ATL; HAM

1. Introduction

Detected in 1980 [1,2] through the isolation of T-lymphoblastoid cell lines, human
T cell leukaemia virus type-1 (HTLV-1) became the first discovered oncogenic retrovirus,
following the characterisation of reverse transcriptase in 1970 [3,4]. HTLV-1 is a type
of Deltaretrovirus, belonging to the Orthoretrovirinae subfamily, and causes life-long
infection [5] in an estimated 10 million individuals worldwide across a vast geographical
area, with endemic hotspots vastly limited to Indigenous populations [6–9]. HTLV-1 was
first identified as the aetiologic agent of adult T cell lymphoma/leukaemia (ATL) [10], with
the prevalence of 5% amongst carriers [11,12]. Since its discovery, further characterisation
has suggested that HTLV-1 carries a much broader burden of disease globally, being
implicated in a range of immune-associated diseases and systemic inflammation, amongst
other comorbidities [13–17].
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1.1. Epidemiology

There are many obstacles facing the accurate estimation of HTLV-1 global infections
and seroprevalence due to the absence of population-based studies and inconsistencies
in global diagnostic strategies. The global prevalence of HTLV-1 has been estimated
to be anywhere between 3 and 30 million cases [18,19], with estimates based primarily
on the serological screening of blood donors, pregnant women, and at-risk population
groups [9,20–22]. Whilst HTLV-1 infection has been documented in every continent, its
endemicity clusters at focal points in regions where the virus is nearly absent. In these focal
points, the seroprevalence of HTLV-1 in adults ranges from 0.1% to up to 40%, increasing
with age and in people assigned female at birth [23–26].

Due to its low sequence variation, phylogenetic studies can be used to trace the origins
of HTLV-1 to Central Africa, with Africa being the only continent where all different forms
of the Primate T-Lymphotropic Virus (PTLV) can be found [21,27]. PTLV consists of three
genotypes of Human T cell Leukaemic retroviruses (HTLV-1, 2, and 4) and four non-human
primate Simian T cell Leukaemic retroviruses (STLV-1, 2, 3, and 4); however, only HTLV-
1 has been linked to disease [28]. The molecular genotypes of HTLV-1 can be grouped
into seven subtypes, which are determined by the few nucleotide substitutions within the
proviral genome of each strain. The remarkable genetic stability of HTLV-1 can be attributed
to its preferred mode of amplification, clonal expansion, thus bypassing the nucleotide
mutations frequently introduced by the error-prone reverse transcriptase. These subtypes
are as follows: cosmopolitan (subtype A), Central Africa (Subtype B), Australo-Melanesian
(Subtype C), Central African Republic (Subtype D), and a limited number of strains in
Central Africa (Subtypes E, F, G) [26]. Cosmopolitan subtype A is present across multiple
endemic clusters, including southern Japan, the Middle East, South America, and South
Africa (Figure 1).
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1.2. HTLV-1 Genome

While HTLV-1 is a genetically complex and robust retrovirus, it has a relatively small
9 kB single-stranded(+) RNA genome. The genome itself contains structural and regulatory
genes, flanked by two identical long terminal repeats (LTRs) at the 5′ and 3′ region. The
LTR is further subdivided into three regions (U3, R, U5), which contain the cis-acting
elements required for the expression of viral genes (Table 1). Following infection, HTLV-1
is integrated into the host cell chromatin, and the LTRs act as promoters for both the sense
and anti-sense strand directions [29], expressing multiple gene products detailed in Table 1.
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Table 1. A summary of HTLV-1 genes, protein products, and functions.

Gene Protein Function Localisation

Gag MA Matrix [30] Virion [31]
CA Capsid [30] Virion [31]
NC Nucleocapsid [30] Virion [31]

Pro PR Protease; cleavage of Gag and Pol [32] Virion [32]
Pol RT Reverse Transcriptase; reverse transcription of HTLV-1 RNA into DNA [30] Virion [33]

RH RT-RNase H; mediates RNA cleavage during replication and repair [30] Virion [33]
IN Integrase; DNA provirus integration [30] Virion [33]

Env SU Surface subunits bind to host cell surface receptors to facilitate fusion of
viral and host cell membranes [30] Plasma membrane [34]

TM Transmembrane proteins [30] Plasma membrane [34]

Rex Rex (p27) RNA-binding post-transcriptional regulator; promotes export of spliced
viral RNA from the nucleus to the cytoplasm [35]

Primarily in the
nucleoli/nucleus exported to

the cytoplasm [35]

Tax Tax (p40) Activates viral transcription by interacting with enhancer elements in the
5′LTR and activating CREB/ATF, NF-κB and AP1 pathways [36]

Primarily in the
nucleoli/nucleus exported to

the cytoplasm [37]

HBZ HBZ Negative regulator of TAX-mediated transcription. Expression of HBZ
mRNA stimulates lymphocyte proliferation [38] Nucleus/cytoplasm [39,40]

p12 p12 Multiple functions to promote escape of immune surveillance and T cell
proliferation [41] Endoplasmic Reticulum [42]

p13 p13 A truncated form of p30 which alters the membrane potential and reactive
oxygen species (ROS) production [43] Mitochondria [42]

p30 p30 Inhibits viral expression and promotes repression by regulating tax/rex
mRNA [44] Nucleus [45]

Table 2. Transcriptional activators of HTLV-1.

Name Sequence

NF-κB/NFAT [46] AA. . .GGGGCTCCT. . .CA
NF-YB/CBEPβ [47] GG. . .CCAAT. . .GT

Sp1/Sp3 [48] AA. . .CCACCC. . .AT
TRE-1 repeat I (vCRE-1) [49] AGGC. . .TGACGTCT. . .CCCC
TRE-1 repeat II (vCRE-2) [49] AGGC. . .TGACGTGT. . .CCCC
TRE-1 repeat III (vCRE-3) [49] AGGC. . .TGACGACA. . .CCCC

TF-IIA/TF-II D [50] TC. . .TATAA. . .AA
Elk-1/SRF [51] CCGGGAA. . .CCGGGAA. . .CCATGTTTGT

AP-1 [52] CA. . .TGAG. . .CC
Transcription factor binding sites have been underlined. Tax is a major transcriptional activator of HTLV-1. Tax1
mediates majority of transcriptional activation via interactions with transcription factors, including the basal
transcription factors TF-IIA/D, as well as AP-1, Sp-1/Sp3, and SRF/Elk-1. Additionally, Tax activates nuclear
factors NF-κB and NF-YB and forms a complex with ATF/CREB members on vCREs (1–3) by binding to the A
and C domains to mediate transactivation.

The genome encodes for essential retroviral structural proteins and enzymes includ-
ing Gag, Pro, Pol, and Env, as well as regulatory and accessory proteins at the 3′ region
(Figure 2). Before the 3′LTR lies the pX region, where alternatively spliced mRNAs from
positive and negative RNA strands encode for functional proteins [53,54], many of which
act as transcriptional activators and are critical for disease pathogenesis by facilitating a
balance between the proliferation and persistence of infected cells [55,56]. Table 2 present
here are also two regulatory proteins, Tax and Rex, which are trans-activators of transcrip-
tion, the inhibition of which by the HTLV-1 p30II viral protein inhibits virus expression
and suppresses Tax/HBZ-induced oxidative and metabolic toxicity [57,58]. Recently dis-
covered within the pX region lies the HTLV-1 basic domain/leucine zipper factor (HBZ),
an oncoprotein that modulates cellular pathways to negatively regulate Tax-dependent
proviral gene transcription [57–60].
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1.3. HTLV-1 Transmission and Life Cycle
1.3.1. Transmission

HTLV-1 mostly requires cell-to-cell contact for effective transmission [61], with de
novo cell-to-cell transmission and contact with bodily fluids containing infected cells be-
ing the most common. There are three modes of transmission between hosts: parenteral
transmission (blood and blood products), vertical transmission (during breastfeeding or
parturition), and sexual transmission [62]. The most common mode of transmission is
breastfeeding [63], with a high proviral load (PVL) in breast milk [64] and high serum
HTLV-1 antibody titres. However, the precise mechanisms of HTLV-1 transmission through
breastfeeding and sexual contact remain unclear, given that the virus is primarily trans-
mitted through cell-to-cell contact of T cells, and further investigation into this process is
warranted. By nature, retroviruses are more genetically unstable due to sequence varia-
tions introduced by reverse transcriptase. However, the genetic stability of HTLV-1 can
be attributed towards its preferred method of viral amplification: the clonal expansion of
infected cells. Cell-to-cell propagation is favoured above cell-free de novo infection and
is facilitated by three mechanisms [65]: viral synaptic transfer, extracellular biofilms [66],
and mitosis of cells containing integrated provirus. Cell polarisation occurs upon contact
with a target cell to facilitate a viral synaptic transfer. Gag, Env, and genomic RNA proteins
localise towards the viral synapse [67] to cause a rapid onset of transmission through bud-
ding and fusion of the HTLV-1 virion [68–70]. In addition to transmission through the viral
synapse, HTLV-1-infected cells can form extracellular biofilm-like structures composed
of carbohydrates and linker proteins [66], which increases the likelihood of infection of a
permissive target cell [71].

1.3.2. Life Cycle

HTLV-1 primarily infects CD4+ T cells, although it has the capacity to infect a wide
variety of cells due to its widely distributed cell surface receptors—glucose transporter
(GLUT-1), heparin sulphate proteoglycan (HSPG), and the vascular endothelial growth
factor-165 receptor neuropilin-1 (NRP-1) [72]. This includes the infection of CD8+ T cells,
endothelial cells, myeloid cells, fibroblasts, and other mammalian cells [73].

The HTLV-1 envelope protein is first synthesised as a precursor gp61 protein, be-
fore cleavage into its gp46 (the surface subunit, SU) and gp21 (the transmembrane, TM)
counterparts. Similar to HIV-1, SU and TM are theorised to be crucial to viral entry. SU
then interacts with HSPG and then NRP-1 to form the HSPG/NRP-1 complex, which then
associates with GLUT-1 to initiate the fusion process [74]. The fusion itself is receptor
mediated, through interactions with the HTLV-1 Env TM proteins. This allows the HTLV-1
capsid core, which contains the viral genomic RNA and enzymes such as reverse transcrip-
tase, integrase, and viral protease, to be released into the cytoplasm of the target cell [75]
(Figure 3 (A)). Upon entry, single-stranded RNA undergoes reverse transcription by reverse
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transcriptase (RT) to convert the genome into double-stranded DNA (Figure 3 (B,C)). The
double-stranded viral DNA is then transported into the nucleus and incorporated into
the host genome to form the integrated provirus via integrase (IN) (Figure 3 (D,E)). The
provirus, acting as the template for viral RNA production, is then transcribed by RNA
polymerase II, post transcriptionally modified, and exported from the nucleus into the
cytoplasm (Figure 3 (F,G)). In the cytoplasm, they are translated by the host cell to form
an RNA genome. This is assembled along with Gag, Gag-pol, and Env proteins along the
plasma membrane to a virus budding site to form an immature virus particle (Figure 3 (H)).
The particles are released from the cell surface to undergo maturation by cleavage through
the viral protease, forming an infectious and mature viral particle (Figure 3 (I,J)).
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Figure 3. The HTLV-1 life cycle in a cell. The virus fuses into the host cell, CD4+/CD8+ T cells,
through interaction with cell surface receptors. The viral core is transported into the cytoplasm where
it is reverse transcribed into a double-stranded DNA. This is then transported into the nucleus and
integrated into the host genome. The viral proteins are transcribed and translated by the host cell
machinery and become infectious after undergoing viral budding. Created in BioRender.

1.4. HTLV-1 Persistence

HTLV-1 infection expands in the host largely through the proliferation of infected
cells undergoing mitosis. Existing primarily as a stable provirus in vivo, HTLV-1 can
theoretically persist indefinitely without the need for transcription. The majority of infected
cells exist as memory CD4+ T cells, allowing for long-term persistence [76–79], and the
subsequent transcriptional silence serves as a potent mechanism evasion of immune system
detection. The retrovirus maintains a robust system of regulating re-expression using the
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two genes tax and hbz, primarily for host-to-host transmission, cellular immortalisation,
proliferation, and pathogenesis. Transcriptional activity is regulated at the epigenetic
level through changes in the 5′ viral promoter in the LTR, namely via DNA methylation
or at the genetic level by deletion. DNA methylation of the 5′LTR silences transcription
from the sense strand and is highly selective and potent in nature [80,81]. The deletion
of the 5′LTR is observed in malignant clones of ATL in 30% of cases, approximately
half of which was deleted during clinical latency [82,83]. Tax mRNA was found to be
expressed in only 40% of ATL patients, whereas hbz is uniformly expressed in ATL and
HAM cells [39,84–86], suggesting that it plays an indispensable role in the maintenance
of leukaemia and other HTLV-1-associated diseases [87]. Despite the increasingly better
characterisation of the pathogenesis of these diseases, the long period of clinical latency
remains poorly understood. Many comparisons can be drawn between the latency of
HTLV-1 and that of HIV-1, primarily as the two viremias persist asymptomatically by
residing silently in memory CD4+ T cells of the periphery [88,89]. When untreated, HIV-1
persists through infected CD4+ T cells undergoing active replication, rarely presenting
in forms of true transcriptional latency [90]. By contrast, HTLV-1-infected CD4+ T cells
survive and proliferate indefinitely through clonal expansion, with low levels of ongoing
transcription and bursts of transcriptional activity (Table 3).

Table 3. Comparison of HTLV-1 and HIV-1 infection.

Property HTLV-1 HIV-1

Infectious Duration Lifelong Lifelong
Primary Immune Targets CD4+/CD8+ T cells CD4+ T cells

Transmission Cell-to-Cell Virus particles
Viral Expression Low High

Immune consequences Overactive inflammation Immune deficiency
Treatment Few targeting symptoms ART targeting virus

Tumorigenesis Direct Indirect
The differences in viral propagation and survival inherit to HTLV-1 and HIV-1 necessitates different approaches in
their treatment. This is discussed in further detail below in Section 2.

1.5. HTLV-1-Associated Diseases

HTLV-1 is primarily associated with the aggressive haematological malignancy ATL [1,2]
and a chronic inflammatory disease called HTLV-1-associated myelopathies (HAM). The
lifetime risk of developing ATL is estimated to be anywhere between 1 and 5% in car-
riers [91], and risks of HAM are estimated at a further 3% [92] (Figure 4). As the virus
predominately affects host immune cells causing subclinical immune suppression, HTLV-1
infection is also linked with an elevated rate of opportunistic infections. This includes
uveitis [93], Sjögren’s syndrome [94], infective dermatitis [95], bronchiectasis [96], and
inflammatory disorders such as arthritis [97], amongst others [11,97–99]. Among HTLV-1
carriers, the risk of developing early neurological disorders can be as high as 24% [100,101].
Studies have shown that elevated PVL is the main risk factor for developing disease;
however, more research is still required to illuminate the mechanisms governing disease
development. There is an urgent need for expanded screening for HTLV-1 infection in
asymptomatic carriers who can benefit from clinical monitoring. Clinically vulnerable pa-
tient populations in endemic areas who present with associated diseases such as Sjogren’s
syndrome, thyroiditis, pulmonary disease, and opportunistic infections will benefit from
anti-HTLV-1 antibody testing, and screening should be recommended in clinics for sexually
transmitted infections.
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2. In Vivo Assessment of Therapeutics
2.1. Cell Models

HTLV-1 was first isolated from ATL patient T cell lines and can infect a multitude
of different cell types in vitro and in vivo. Since then, more ATL-derived cell lines have
been isolated and cultured. As HTLV-1 has an affinity for cell-to-cell transmission, many
HTLV-1-transformed cell lines have been developed, deriving from healthy leukocytes co-
cultivated with leukaemic cells of ATL patients. HTLV-1 chronically infected cell lines have
also been isolated from PBMCs of patients. HTLV-1 cell models have been an instrumental
tool in understanding the key elements that play a role HTLV-1 pathogenesis and the
testing of novel therapeutics. Importantly, many HTLV-1-infected cell models show an
increase in spontaneous IL-2, which was later discovered to be constitutively expressed and
induced by the tax and hbz genes [102]. Leukaemic cells in the majority of ATL patients
were unresponsive to IL-2, suggesting that overtime proliferation outgrows its dependency
of IL-2 in ATL patients. Generally, the relative mRNA expression of tax is reported to be
higher than hbz in HTLV-1 chronically infected cell lines. However, the heterogeneity of
HTLV-1 cell lines is highlighted in the absence of key viral genes, such as tax, which is not
expressed by ATL-derived cell lines. Further characterisation of such expressions would
provide an invaluable resource for in vitro antiviral screening. Commonly used HTLV-1
cell lines are listed in Table 4.
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Table 4. Commonly used HTLV-1 cell lines.

Cell Line Cell Type IL-2 Dependency Antigen Expression

HTLV-1-transformed
cell lines

MJ [103] Lymphoblast Independent CD2+; CD3+; CD4+

MT-2 [104] Lymphoblast Independent CD4+; CD25+; FoxP3+

MT-4 [105] Lymphoblast Independent CD4+

HuT-102 [1] Cutaneous T Lymphocyte Dependent CD4+

C81-66 [106] Lymphoblast Independent CD4+

HTLV-1 chronically
infected cell lines

C91/PL [103,107] Umbilical cord-blood T cells Independent CD4+

MS-9 [108] Cord-blood T cells Dependent CD4+

ATL cell lines

MT-1 [109] Lymphoblast Independent CD4+; Tax−

MT-3 [110] Lymphoblast Independent CD4+; Tax−

ATL-2 [111] Lymphoblast Independent CD4+; CD3−

TL-Om1 [112] Lymphoblast Independent CD4+; Tax−

F6T [113] Lymphoblast Independent CD4+; CD25+

K3T [113] Lymphoblast Independent CD4+; CD25+

S1T [113] Lymphoblast Independent CD4+; CD25+

ATL-T [114] Lymphoblast Independent CD4+

ATL-35T [115] Lymphoblast Independent CD4+

ATL-55T [116] Lymphoblast Dependent CD4+

Su9T01 [113] Lymphoblast Independent CD4+

An ongoing issue of HTLV-1-infected cell lines is the underrepresentation of more
divergent subtypes, with recent studies suggesting that different HTLV-1 subtypes exert
significantly different influences over the host immune system compared to the dominant
cosmopolitan subtype [19]. The HTLV-1c subtype is prevalent in Australo-Melanesian re-
gions and is the most sequence divergent of subtypes compared to the HTLV-1a cosmopoli-
tan strain [117], with previous studies suggesting a distinct pathogenesis [96,118–120]. This
highlights the need to develop therapeutics that have cross-subtype efficacy aided by HTLV-
1c specific in vitro and in vivo models. To address this, a HTLV-1c chronically infected
Jurkat T-cell line was created by co-culturing ex vivo HTLV-1c splenocytes harvested from
the humanised mouse model developed at WEHI, with uninfected Jurkats. This T cell
line expresses Tax, p19, env, and HBZ and is the first in vitro model of HTLV-1c infection.
As most of our understanding and research in HTLV-1 is derived from the cosmopolitan
subtype A, the development of a type C in vitro model will greatly help inform novel
therapeutic approaches.

Early therapeutic screens can be performed in in vitro assays. For example, infection
assays are often used to assess the capacity to inhibit HTLV-1 cell-to-cell transmission
by the cocultivation of irradiated HTLV-1-donor cell lines to PBMCs from healthy indi-
viduals [121]. Enzymatic assays, such as the Amp-RT assay, were often used to assess
HTLV-1 susceptibility to antiretrovirals such as reverse transcriptase, protease, or integrase
inhibitors [122].

2.2. Animal Models

Over the past three decades, a variety of animal models have been developed to
help elucidate the events of HTLV-1 pathogenesis and evaluate novel therapeutics. Multi-
ple animal models are available, including mice, rats, rabbits, and non-human primates
(NHPs). Other deltaretroviridae include the simian T-lymphotropic virus (STLV-1) and
bovine leukaemia virus (BLV), both with large bodies of work useful for modelling HTLV-1
infection. A vaccine was recently developed for BLV, a disease which naturally infects cattle
and shares common structural and functional genes with HTLV-1. The consequences of
BLV vaccination will be explored further in its latter section.
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2.2.1. Mice Models

HTLV-1 does not productively infect murine cells and must be first inoculated to
establish persistent infection. The first HTLV-1 carrier mouse model was established in
1997 by intraperitoneal injection of MT-2 into C3H/HeJ and Balb/c strains of immunocom-
petent neonatal mice [123]. Three months post infection, HTLV-1 provirus was detected
in PBMCs and lymphoid organs. Antibody responses against the Gag antigen was only
observed in some Balb/c mice, with further studies confirming HTLV-1 persistence but
the absence of antibody responses [124]. Since then, many immunocompetent HTLV-1
carrier mouse models have been developed. A broad spectrum of infected cell types can
be observed in infected mice, including T cells and B cells, mimicking human infection.
A caveat, however, is that immunocompetent HTLV-1 carrier mouse models demonstrate
very little in vivo spread of infection with no evidence of disease, except for one report of
tumorigenesis [125,126].

Xenograft Mouse Models for ATL

Xenografting involves the transplantation of human cancer cells into immunodeficient
animals. Severe combined immunodeficiency (SCID) mice possess a mutation for the
protein kinase, DNA-activated, catalytic polypeptide (PRKDC) gene, disabling VDJ recom-
bination of B and T cell receptors and allowing them to be engrafted with human immune
cells [127,128]. In 1992, SCID mice were used to successfully model ATL in mice [129], after
treatment with anti-asialo GM-1 antibody to eliminate NK activity and inoculation with
MT-2 cells. As SCID mouse models have been refined, successful engraftments in non-obese
diabetic (NOD)/SCID mice with HTLV-1-transformed cell lines, ATL cells, and patient
PBMCs have also been performed. In particular, engraftments with patient ATL cells have
been shown to more accurately replicate disease [130,131]. NOD/SCID mice have been
used as in vivo models for HTLV-1 induced ATL through engraftment with ATL-derived
cell lines [132]. A proposed pre-clinical in vivo murine model of NOD/SCID mice injected
ATL-patient-derived MET-1 cells was used to assess ATL therapies daclizumab, a mAb
against IL-2Ra (CD25), combined with depsipeptide, an HDAV inhibitor. The study reports
potent inhibition of tumour growth and prolonged mice survival, reflecting its efficacy in
the treatment of ATL [133]. To further improve human cell transplant efficiency in SCID
mice, the immune-deficient NOD/SCID mouse model was refined, generating NOD/Shi-
scid IL2rγ−/−) mice (NOG). These mice carry the interleukin (IL)-2Rγ gene mutation and
lack B- and T-cell development and NK cell function [134]. NOG mice inoculated with
leukaemia cell lines and primary ATL cells expressing the tumour suppressor lung cancer 1
(TSLC1) gene experienced significantly higher tumour formation and aggressive infiltration
in multiple organs.

Transgenic Mouse Models

Transgenic expression of Tax and HBZ proteins have been extensively used to model
tumorigenesis facilitated by these two key players in various stages of HTLV-1 infection.
Tax is a major oncoprotein in HTLV-1, being a transactivator of the HTLV-1 LTR but
also playing roles in activating critical transcription factors [135], interference with cell
cycle checkpoint control [136], and cellular transformation [137]. The first HTLV-1 Tax
transgenic mice were developed in 1987, originally called HTLV-1 Tat, controlled by the LTR
promoter [138]. These mice did not develop leukaemia/lymphoma but rather multicentric
mesenchymal tumours, establishing Tax as an oncoprotein and HTLV-1 as a transformative
virus. Since then, many Tax transgenic mice have been generated [139–143]. Tax expression
in all transgenic mice leads to oncogenesis and other less typical manifestations of HTLV-1
infection; however, leukaemia/lymphoma induction is rare and does not fully capture
the disease environment, but it has been useful to elucidate the role that tax plays in the
disruption of T cell function and establish its role as an oncogene [138,144]. The traditional
role assigned to Tax as a key player in leukaemia/lymphoma has also been challenged, as
many studies report an absence of tax expression in ATL cells [87]. In 2006, an additional
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protein encoded by the antisense ORF was discovered. Hbz has been suggested to have
a key role in leukaemogenesis and its maintenance, as it is constitutively expressed in
all cases of HTLV-1-induced ATL. Transgenic expression of HBZ in CD4+ T cells induced
leukaemia and lymphoma following a long latent period [145].

Humanised Mouse Models

ATL xenograft and transgenic mouse models have provided invaluable insight into im-
mune response; however, they do not accurately capture the pathogenesis and persistence
in HTLV-1 infection. Sub-lethally irradiated neonate mice are injected with human CD34+

umbilical cord stem cells (HUSCs) and subsequent reconstitution of a human immune
system follows. The first humanised mice were used to model ATL after infection with
irradiated MT-2 cells [146], the results of which revealed a similar profile to human HTLV-1
carriers. In particular, PVL was observed to increase with time, and HTLV-1 provirus was
detected in primarily CD4+ but also CD8+ T cells. Tax gene suppression was observed
in vivo; however, proliferation commenced upon in vitro culture. A more recent model
details the intra-bone marrow injection (IBMI) of CD133+ cord blood cells into irradiated
adult immunodeficient mice (IBMI-huNSG mice) to model ATL. Upon HTLV-1 infection,
rapid CD4+ proliferation was detected in the periphery and clonal proliferation of CD25+

CD4 T cells [147]. ATL-like features and HTLV-1-specific adaptive immune responses were
also observed in infected mice. HAM disease pathogenesis research has also benefited
from humanised mouse models. A recent study engrafted CD34+ hematopoietic stem cells
to Balb/c-Rag1-hu−/− γc−/− (Rag1) and Bone Marrow Liver Thymic (BLT) mouse mod-
els [148]. Following HTLV-1 infection, PVL was detected in peripheral blood two weeks
post-infection, and at five weeks post-infection Tax was found to be significantly elevated
in the spleen and CNS, peaking at 14 weeks post-infection and overrepresented in CD4+ T
cells. The immune cell infiltration and resultant demyelination suggests humanised models
can be infected with HTLV-1, resulting in viable infection. Whilst they do provide a more
robust recapitulation of the disease microenvironment and immune responses; infection
is short term, and the lack of a functional adaptive immune system does not capture the
persistence of HTLV-1 infection [149].

Mouse models that are tailored to more divergent yet prevalent HTLV-1 subtypes
are required to decipher the different underlying molecular mechanisms of infection, to
understand virus biology, to identify preferred viral integration sites, and to interrogate
which host genes are expressed at early and late stages of infection. Collectively, subtype-
specific HTLV-1 mouse models will allow for more focussed discovery biology—i.e., why
virus subtype HTLV-1c appears to preferentially elicit long-term disease complications that
differ to HTLV-1a, including a higher risk of bronchiectasis—which in turn will also enable
rationale therapeutic testing and design. To address this, we generated humanised mice
by engraftment of CD34+ HUSC into NOD-SCID IL2Rgnull (NSG) that can be infected
by intraperitoneal injection of lethally irradiated primary human PBMC from HTLV-1a or
HTLV-1c-infected donors. These mice developed hallmarks of HTLV-1 disease including
ATL and inflammation and enabled us to perform multi-omics approaches in comparison
with human donor samples, which confirmed known but also identified novel underlying
mechanisms of disease progression. Critically, this in vivo platform enables the testing of
novel direct-acting antiviral treatments, as well as many of the novel therapeutic approaches
outlined above that target HTLV-1 provirus or infection-related disease manifestations.

2.2.2. Non-Human Primate Models

The first NHP infected with HTLV-1, reported in 1984, was established from rabbit
lymphocytes co-cultivated with irradiated MT-2 cells [150]. The resulting Ra-1 cells were
inoculated intravenously into Japanese monkeys. Seroconverted animals expressed HTLV-1
antigens and viral particles. Other NHPs susceptible to HTLV-1 infection include squirrel
monkeys, cynomolgus monkeys, and rhesus macaques. In squirrel monkeys and cynomol-
gus monkeys, inoculation with MT-2 cells showed spontaneous expression of IL2 and
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HTLV-1 proteins in PBMCs [151]. HTLV-1-inoculated rhesus macaques developed arthritis,
uveitis, and steroid-responsive polymyositis [152]. Squirrel monkeys have also been used
to assess the efficacy of early HTLV-1 vaccine development [153]. NHPs indeed recapitulate
most aspects of viral infection, replication, and pathogenesis; however, the high cost of
research and regulations underpin its scarce use in experimental research.

2.2.3. Other Animal Models

Other models for HTLV-1 infection include rabbits and mice. Rabbits are an early
researched model for HTLV-1, and this was first established in 1984 when the inoculation of
rabbits with Ra-1 cells returned HTLV-1 seropositivity [154]. Rabbits inoculated with HTLV-
1 do not develop HTLV-1-associated diseases; however, they present with persistent HTLV-1
infection. The New Zealand White rabbit model was used to determine the transformation
timepoint of HTLV-1 tropism [155]. Here, HTLV-1 was detected in both CD8+ and CD4+

T cells one-week post-infection (wpi); at five wpi, the predominant cell type that was
observed was CD4+ T cells, indicating that preferential tropism arises in the chronic phase
of the disease. HTLV-1 transgenic flies, Drosophila melanogaster, expressing Tax and
Hbz were proposed to study Tax-driven oncogenesis in vivo [156,157]. Tax was shown
to modulate the expression of NF-κB and the enhancer Polycomb Repressive Complex 2
(PRC2), which governs persistence and cellular transformation. Overexpression of Hbz
was observed to prevent Tax-induced NF-κB and PRC2 activation, shedding light on the
co-modulatory interplay of Tax and Hbz [157].

3. Current Treatments

Despite the early discovery and remarkable genetic stability of HTLV-1, specific and
effective anti-HTLV-1 treatments and vaccines have yet to be developed. The advent of
Antiretroviral Therapy(ART) revolutionised retroviral treatment strategies, transforming
the Human Immunodeficiency Virus (HIV) into a manageable, chronic disease [158]. ART
has ushered about a paradigm shift in the approach to retroviral treatment, yet, contrary
to the HIV field, such success has not been imitated in the treatment of HTLV-1 [159–161].
This section discusses current interventions, with a focus on the limitations of ART in the
treatment of HTLV-1 and its associated diseases.

3.1. Antiretroviral Therapies and Limitations for HTLV-1

The mechanisms of ARTs involve targeting distinct stages of the viral life cycle, includ-
ing interference with viral entry, reverse transcriptase inhibitors, DNA integrase inhibitors,
and protease inhibitors. The immediate goal of ART is to reduce the viral load below levels
detectable by assays (50 RNA/mL) and to elicit the eventual normalisation of CD4+ T
cell count (>500 cells/µL) [162,163]. ART targets viral entry, life cycle, and replication but
fail to eliminate HTLV-1 reservoirs due to overlooking their clonal expansion replication.
This differs from HIV’s virion-based replication, leading to lower ART efficacy against
HTLV-1, explored further in this section. The cessation of therapy in HIV is associated with
a strong viral rebound to pre-therapeutic plasma viral loads [164–166] and may be similarly
mimicked in the incidence of successful treatment of HTLV-1 with ART.

3.1.1. HTLV-1 Entry Inhibitors

Whilst HTLV-1 relies on different cell membrane receptors to facilitate entry compared
to HIV, SU and TM subunits of the envelope are common to both viruses. There are no
approved therapeutic agents targeting the HTLV-1 entry process, despite there being many
HIV-1 inhibitors that are FDA approved. However, previous studies have characterised the
potential of synthetic peptides which interfere with conformational changes in TM subunits,
inhibiting env-mediated membrane fusion and HTLV-1 entry. In 2008, Mirsaliotis et al.
reported that leash-like synthetic peptides mimicking the C-terminal α-helical domain of
TM are potent antagonists of membrane fusion and viral entry [167,168]. The inhibitory ef-
fects of heparin against HSPGs are well characterised against several retroviruses [169–173].
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Jinno-Oue et al. reported that chondroitin sulphate type E (CSE) and heparin exhibited
anti-HTLV-1 activity by interacting with env proteins at the C-terminal of SU to inhibit
viral entry to a human T cell line (MOLT-4) [174].

3.1.2. Nucleoside Reverse Transcriptase Inhibitors (NRTIs) and Non-Nucleoside Reverse
Transcriptase Inhibitors (NNRTIs)

The current approach to targeting RT in HTLV-1 is based on the successes of HIV-
1 RT enzymatic inhibitors, being nucleoside RT inhibitors (NRTIs) and non-nucleoside
RT inhibitors (NNRTIs). NRTIs, being nucleoside analogues, are competitive inhibitors
of the RT catalytic site, interfering with endogenous dNTP binding and preventing the
polymerisation process [175]. NNRTIs are non-competitive inhibitors of RT, binding instead
at an allosteric pocket and altering the structural conformation of the binding site [176].
Many NRTIs and NNRTIs are FDA approved for the treatment of HIV-1; however, to date,
there are no HTLV-1 specific inhibitors nor any published crystal structures for HTLV-1 RT
that allow for more precise characterisation. Amino acid sequence alignment of HTLV-1
and HIV-1 RT has shown that the two RTs share ~25% sequence identity and ~45% sequence
similarity [73]. Despite the presence of common conserved retroviral motifs, the residues
of the HIV-1 NNRTI binding pocket differ vastly from HTLV-1, nullifying the potential to
repurpose HIV-1 RT NNRTIs for HTLV-1 treatment.

Few HIV-1 NRTIs inhibit viral replication of HTLV-1 in single and combination therapy,
despite the multitude of those that are FDA approved. The pyrimidine nucleoside analogue
zidovudine AZT, repurposed from successful early HIV therapy [177], was explored as
an early therapy. AZT was shown to inhibit HTLV-1 infection in PBMCs, co-cultured
with HTLV-1-infected MT-2 cells in graduated concentrations, as well as significantly
inhibit cell proliferation [178,179]. The acyclic nucleoside phosphonate tenofovir has also
demonstrated long-term inhibition of HTLV-1 infection in PBMCs in concentrations as low
as 0.1 µM [180]. Both reverse transcriptase inhibitors, AZT and Tenofovir, have been shown
to block primary infection and reduce proviral load in NOD-SCID, Common γ-Chain
Knockout Mice [181]. However, this protection was only no longer conferred one week post
infection due to the dominance of clonal proliferation, and viral titres rapidly bounced to
untreated levels after one week of administration. Similarly, the susceptibility of HTLV-1 to
the potential anti-HIV-1 NRTIs Zdv, zalcitabine (ddC), didanosine (ddI), Lamivudine (3TC),
and stavudine (d4T) for HTLV-1 was assessed by Garcia-Lerma et al. in 2001, showing
resistance to 3TC. HTLV-1 resistance to 3TC was shortly confirmed by multiple in vitro
assays [182], and the antiviral potency was determined to be more than 100 times lower than
AZT, discounting its potential for clinical relevancy. In 2006, a randomised, double blind,
placebo-controlled clinical trial observed the combination therapy potential of zidovudine
(AZT) plus lamivudine (3TC) in the treatment of HAM. After 24 weeks, there was no
significant reduction in PVL in PBMCs or changes in clinical measures [161]. Contrastingly,
other studies have suggested that the use of NRTIs may potentially activate the tumour
suppressor gene p53 in healthy cells, inhibiting telomerase to cause cell death [183–185].

3.1.3. Integrase (IN) Inhibitors

The development and clinical applications of integrase (IN) inhibitors, like the an-
tiretrovirals discussed previously, have been catalysed by the race to attenuate HIV infec-
tion. IN is proposed to be a promising target for anti-HTLV-1 therapeutic development, as
some structural properties of IN are common between HTLV-1 and the already established
HIV-1 [186], and IN has no human orthog. The two main classes of HIV-1 IN inhibitors,
styrylquinolines (SQLs) and diketo acids (DKAs), act at different points of the integra-
tion process. A study in 2008 examined the effects of SQLs and pre-established HIV-1
IN-targeted DKAs in an in vitro strand-transfer assay and ex vivo infection of PBMCs with
lethally irradiated HTLV-1-positive MT2 cells [187]. The compounds which were active
in vitro reduced cell proliferation ex vivo at lower concentrations and resulted in a dramatic
decrease in number of migration events and PVL in early infection. Despite the prospect of
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IN inhibitors as an anti-HTLV-1 treatment option, it may prove futile when addressing the
oversaturated population of people chronically infected with HTLV-1. Nevertheless, initial
HTLV-1 infection is characterised by horizontal viral replication prior to the dominative
onset of clonal expansion of infected cells, so IN inhibitors may assist in attenuating early
infection. The first IN inhibitor approved for HIV-1 clinical use is Raltegravir. Studies
have characterised its effects in treating HTLV-1, with reports of a transient reduction
in PVL in patients [160] and inhibition of transmission and immortalisation in isolated
human PBMCs [188]. Ultimately, neither study observed significant changes in HTLV-1
PVL beyond the course of therapy.

3.1.4. Protease Inhibitors (Ritonavir)

HTLV-1 protease (PR) is critical for the maturation step during viral replication by
processing the viral polyproteins Gag and Gap-Pro-Pol. Several PR inhibitors are FDA
approved and clinically used in the treatment of HIV-1 and acquired immune deficiency
syndrome (AIDS). The crystal structure of HTLV-1 PR was recently characterised [189]
(Protein data bank code 3WSJ) and bore highly similar three-dimensional folding to HIV-1
PR, despite only sharing 26% amino acid sequence identity and 38% amino acid sequence
similarity [73]. The most notable of the FDA-approved PR inhibitors to be applied in the
treatment of HTLV-1 is ritonavir, which did display anti-leukaemic activity against ATL
cells ex vivo; however, this was mostly due to the inhibitory effects exerted on the NF-κB
target rather than PR [190]. This will be discussed further in Section 2.2.

3.2. Treatment of HTLV-1 Associated Diseases

The three primary diseases associated with HTLV-1 are ATL, HAM, and the onset
of inflammatory syndromes. The mechanisms that govern the likelihood of which ail-
ment manifests are poorly understood. Given the absence of approved HTLV-1 antiviral
therapeutics, the majority of readily available drugs only treat the symptoms of disease.

3.2.1. ATL

Approximately 5% of HTLV-1 patients are at risk of developing ATL, an aggressive ma-
ture T cell malignancy [104,191]. Despite the revolution in molecular anti-cancer therapies
in the 21st century, the prognosis of ATL remains poor [192]. ATL therapeutic strategies
for patients are determined largely by clinical subtype (acute, lymphoma, chronic, and
smouldering) [12,193]. Some countries also adopt differing treatment regimens, as not
all therapeutics of ATL are universally available. Aggressive forms of ATL are treated
with intensive chemotherapy, coupled with concurrent or low-dose azidothymidine, an
NRTI developed for HIV-AIDS, and interferon-alpha (AZT/IFN-α) for maintenance [194].
Where possible, therapeutic providers are encouraged to consider early upfront allogenic
haemopoietic stem cell transplants (allo-HSCT) for all eligible patients [194–196]. AZT/IFN-
α is not currently approved for ATL treatment in Japan, despite being the worldwide
standard for acute, chronic, smouldering symptomatic and PCT-ATL subtypes [194]. This
is possibly due to outcomes of aggressive ATL treated with AZT-IFNa remaining poor
and frequently being associated with opportunistic infections [194]. As a result, several
newer agents have been trailed in Japan, most notably the monoclonal anti-CCR4 anti-
body (mAb) mogamulizumab, which has been approved to treat upfront and refractory
ATL [197]. Mogamulizumab targets CCR4, a chemokine receptor highly expressed by
HTLV-1-infected T cells [198–200], with phase I and II clinical trials resulting in an over-
all response rate (ORR) of 50% [201–203]. In 2015, a subsequent randomised phase II
study was conducted to compare the ORR and complete response rate (%CR) of moga-
mulizumab to mLSG15, a dose-intensified chemotherapy [204]. This study reported a
higher %CR in patients who received combination therapy compared to chemotherapy
alone (52% vs. 33%, respectively); however, opportunistic infections were frequented in
the combination arm, including a cytomegalovirus infection observed in 14% of partici-
pants. Mogamulizumab administered to patients prior to allo-HSCT is associated with an
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increased risk of grade 3 to 4 acute graft-versus-host disease (GVHD)-related mortality,
with poor clinical outcome within 50 days of allo-HSCT [205]. Therefore, a 50-day washout
period is recommended for patients eligible for mogamulizumab and allo-HSCT. Another
potential mAb investigated for HTLV-1 treatment is anti-transferrin receptor antibodies,
notably A24. HTLV-1-infected cells constitutively express high levels of surface transferrin
receptor [206], which A24 is directed against. A pre-clinical study characterised the po-
tential of A24, which induced apoptosis and blocked ex vivo proliferation of malignant T
cells from both chronic and acutely infected patients [207]. Lenalidomide is a thalidomide
analogue approved for the treatment of multiple myeloma, mantle cell lymphoma, and
myelodysplastic syndrome [208]. It is approved in Japan for the treatment of relapsed and
refractory (R/R) ATL with improved ORR [209]. A recent case report outlined promising
clinical results of low-dose lenalidomide, following chemotherapy and mogamulizumab
for maintenance treatment [210], which warrants further investigation in combination
approaches for recently approved therapeutics.

In recent years, the EZH1–EZH2 dual inhibitor valemetostat has been shown to sup-
press HTLV-1-infected cell proliferation, reduce tumour size, and potentially improve
outcomes of R/R ATL in clinical trials. EZH1/2 are two isoforms of the enhancer of zeste
and are alternative subunits of Polycomb Repressive Complex 2 (PRC2), a chromatin-
modifying enzyme causing epigenetic modifications, such as H3K27me3 upregulation,
and linked with oncogenesis [211,212]. In 2022, phase 2 clinical trials assessed the efficacy
of 200 mg oral valemetostat in 25 participants with a median of three prior lines of ther-
apy [213]. Treatment with valemetostat resulted in 48% ORR and manageable adverse
events in over 20% of participants. Valemostat was approved in Japan in 2022 for the
treatment of ATL; however, it also harbours potential for HAM treatment, as it has been
demonstrated to inhibit the proliferation of HTLV-1-infected cell lines derived from patients
with HAM [214]. The clinical potential of treatments targeting epigenetic markers warrants
further exploration.

Tax has been extensively researched in its pathogenic potential and is thus an attractive
therapeutic target. It is associated with T cell transformation, resulting in the activation and
proliferation of infected cells and HTLV-1 leukaemogenesis [46,68,215,216]. Tax-targeted
therapies have been examined to a lesser degree. ST1926 is a synthetic retinoid that was
reported to repress Tax expression and inhibit infected cell proliferation in ATL lines by
inducing apoptosis through upregulation of p53 [217]. Cyclosporin A, an immunosuppres-
sant that inhibits T cell activation and cytokine production, was observed to inhibit Tax
expression in HTLV-1-infected cells and the nuclear expression of tax-related transfer factors
ATF-1/2 [218]. Interestingly, niclosamide, which is an anti-helminthic drug approved for
the treatment of tapeworms, downregulated Tax and pro-survival Bcl-2 proteins to induce
apoptosis of HTLV-1-transformed cells [219]. Notably, the degradation of the Tax protein in
the proteasome was observed and subsequently downregulated 5′ viral gene transcription
of HTLV-1 [219]. As Tax is the main target of cytotoxic lymphocytes [220,221], studies
have suggested that cells with silenced Tax expression are preferentially selected during
disease progression [80,222]. Despite driving initial viral sense transcription from the 5′LTR,
Tax protein is mostly undetectable in chronic infection due to subsequent methylations
and proviral deletions elicited by HTLV-1 immune escape mechanisms [223,224]. Tax is
a desirable therapeutic target at early stages of HTLV-1 infection and oncogenesis and
warrants further investigation into its anti-ATL potential, especially coupled with existing
and approved agents.

Another potential therapeutic target in the treatment of HTLV-1 is NF-κB, as its path-
way is chronically activated in HTLV-1-transformed cell lines, even in the absence of tax
expression [225]. Histone deacetylase inhibitors (HDACIs) are anti-cancer agents that pre-
vent the reactivation of transcriptionally suppressed genes. The anti-leukaemic potential of
HDACIs (including valproic acid, vorinostat, romidepsin, panobinostat, and entinostat) has
been characterised by multiple in vitro studies in HTLV-1-transformed and ATL-derived
cell lines by blocking the Notch pathway to decrease NF-κB and induces apoptosis [226,227].
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Other investigated inhibitors include Bay 11-7082 and indole-3-carbinol [228], both induc-
ing apoptosis in HTLV-1-infected T cell lines, illuminating the potential for NF-κB as an
anti-leukaemic agent.

ATL is a devastating disease. A variety of novel therapeutics have been developed
to trounce this potential consequence of HTLV-1; however, individually, their overall
impact on patient outcomes have proven limited. Learning from the advances in HIV-1
therapeutics, where combination treatment has led to a marked improvement in patient
outcomes, a similar approach may need to be developed. This challenge can be best
surmounted by an international collaborative effort.

3.2.2. HAM

HAM is a chronic neuroinflammatory disease, with most patients presenting with
a slow deterioration in mobility and bladder function [229]. Most patients will require
walking aids within a decade of manifestation, with many becoming wheelchair-dependent
a decade later [230]. Regardless of clinical progression, the PVL of HAM patients remains
high throughout infection [230]. Although the relationship between HTLV-1 and HAM
has been characterised for many decades, little progress has been made in its treatment.
Current approaches that comprise the backbone of clinical management can be classed as
disease-modifying treatments (DMTs) or symptomatic therapy. Symptomatic management
is helpful in improving patient mobility and quality of life; however, they fail to alter the
course and progression of disease [231]. HAM can be categorised into “subtypes” based on
the speed of disease progression. The International Retrovirology Association’s guidelines
for the management of HTLV-1-associated myelopathy/tropical spastic paraparesis (2018)
recommends differing DMT regimens for rapid, slow, or non-progressing subtypes. The
most ideal DMT would be the eradication of HTLV-1-infected cells; however, no effective
antiviral therapeutics have been developed to date. Most DMTs aim to suppress the
immune response, modulate inflammation, and reduce the PVL to modify the course of
disease [231]. The three most characterised classes of DMTs for HAM are antiretrovirals,
corticosteroids, and IFN-a [232].

Antiretrovirals targeting HTLV-1 work to suppress PVL in HAM and were detailed
previously in ATL treatments, the therapeutic potential of which is replicated in HAM
intervention [161,233]. The lack of efficacy of ARTs in treating HAM is a consequence of
the support that clonal proliferation brings to chronic HTLV-1 infections and the absence of
active replication and de novo infection.

Outside of this, corticosteroids are the most common treatment for patients in all stages
of HAM disease, and its effectiveness in improving motor function has been reported in nu-
merous observational studies [234–238]. Patients with a short duration of disease and high
inflammatory activity have been reported to benefit the most from corticosteroids [239–241].
Until recently, no studies have evaluated their clinical efficacy with randomised control
trials. In 2021, Yamauchi et al. conducted the first randomised, double-blinded, placebo-
controlled trial including 8 rapidly and 30 slowly progressing HAM patients [242]. Rapid
progressors were assigned a 3-day course of intravenous methylprednisolone with oral
prednisolone, while slow progressors received oral prednisolone or placebo. The primary
outcomes measured improvements in motor and gait function using the Osame Motor Dis-
ability Score (OMDS) and 10 m walking time (10 mWT) for rapid progressors and 10 mWT
baseline changes for slow progressors. Three out of four rapid progressors achieved the
primary outcome, although no significant difference was recorded for the slow progressing
group. Well-characterised, serious complications of corticosteroids are secondary infections,
including urinary tract infections compounded by neurogenic bladder issues caused by
HAM [243], and these were replicated in both randomised control trial groups. This study
indicates that corticosteroid therapy may be beneficial for rapid progressing HAM, and
larger-scale studies will be necessary to provide more insight into its therapeutic potential.

IFN-α is an immunosuppressant that has also been studied in a randomised controlled
trial setting. A total of 48 HAM patients were separated into groups and treated with
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different IFN-α concentrations for four weeks, and clinical evaluations measured motor
dysfunction, urinary disturbances, and changes in neurologic signs [244]. The therapeutic
benefits of IFN-α increased with higher concentrations. Despite the favourable clinical
effects, its long-term utility is challenged by a high probability of adverse reactions [245].
Further studies monitoring the long-term benefits of IFN-α and measuring patient response
through cerebrospinal fluid (CSF) and PVL markers may shed light on its potential. IFN-
β1a was also researched in an uncontrolled “proof of concept” trial, although no significant
clinical progression was recorded [246].

The calcineurin inhibitor, cyclosporin A, has been used as a steroid-sparing therapy
and was demonstrated to decrease HTLV-1 PVL and show clinical improvement in HAM
patients. Notably a proof-of-concept study was conducted in 2012, which reported that
cyclosporin A reversed clinical deterioration in early-phase HAM patients [247]. A case
study in 2015 supported these claims, with clinical improvement in motor function and
decreased PVL [248]. However, the safety profile of cyclosporin A remains unclear and
should be further investigated.

mAbs in the treatment of HAM have been researched to a lesser degree. The first
molecular, targeted mAb specific for HAM was against the Humanized IL-2 receptor α-
chain antibody (anti-Tac or daclizumab), which was found to lower PVL in PBMCs with
selective downregulation of HTLV-1-infected CD4+ T cells [249]. However, significant
improvements to patient outcome were not observed in the nine patients treated. Discussed
previously for the treatment of ATL is the humanised anti-CCR4 mAb mogamulizumab. A
phase I/IIa clinical trial involving 21 patients also reported its utility for HAM [203]. Moga-
mulizumab reduced HTLV-1 PVL, cytokine production, and spontaneous proliferation,
improved motor ability in 32% of patients, and reduced spasticity in 79% of patients. The
most notable side effects were rashes, with the serious adverse events lymphopenia and
leukopenia reported in 33% of patients each. Recently, a multicentre, randomised phase III
study of mogamulizumab was completed to verify its efficacy in a larger population [250].
Participants received 0.3 mg/kg intravenous mogamulizumab over a 24-week double-
blind period, a placebo-controlled period, a 24-week open-label period, and an extension
treatment period. At the end of the double-blinded period, no significant difference was
observed in the primary (OMDS) or secondary endpoints assessing motor function (10 WT).
However, a significant decrease was observed in PVL, CSF CXCL10/neopterin, the signifi-
cance of which is discussed in Section 3.4. A higher incidence of rash was reported (69.2%);
otherwise, the safety profile was unchanged, as with clinical benefit. Despite this, the
significant decrease in inflammatory markers proves that mogamulizumab is a promising
therapeutic to pursue.

Other therapeutics investigated in the treatment of HAM include danazol, valproic
acid, ascorbic acid, and plasmapheresis. Danazol is an anabolic steroid with a safer toxicity
profile than prednisone. Limited studies have evaluated its therapeutic potential, with
reports of improvement in patient mobility and decreases in spasticity [251,252]. Mild liver
toxicities were reported in higher danazol dosages. An open-label trial was conducted in
2011 examining the effects of valproic acid, a lysine deacetylase inhibitor that modulates
gene expression [253]. PVL and lymphoproliferation were not significantly altered by
therapeutic intervention, and only three out of nineteen participants reported a significant
increase in motor function. In addition, the consistent advent of adverse effects including
drowsiness and tremor may be poorly tolerated. An open-label trial investigated the efficacy
of vitamin C therapy (ascorbic acid) in seven HAM patients [254]. Participants were given
a daily oral dose (35–40 mg/kg) for three to five successive days, followed by a two-day
withdrawal period. Patients demonstrated significant improvements in motor function
but reduced with treatment cessation. CSF HTLV-1 antibody titre remained unchanged
throughout treatment. This study suggests a favourable immunomodulatory action of
high-dosage ascorbic acid in HAM patients, and its antiproliferative effects have been
corroborated in a recent in vitro study [255]. The effects of ascorbic acid can be confirmed
with further research involving a larger and more varied cohort and the inclusions of
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PVL measurements and modern clinical biomarkers. Plasmapheresis was demonstrated to
improve gait and reduce sensory and sphincter disturbances in 11 out of 18 patients with
4–6 sessions in a two-week period [256]. Furthermore, a lower serum HTLV-1 antibody
titre was observed, suggesting that plasmapheresis may offer a temporary improvement in
HAM patients.

A currently active trial in HAM therapeutics examines the therapeutic potential of
teriflunomide, a drug used to treat multiple sclerosis. Teriflunomide was demonstrated
to inhibit abnormal CD4+/CD8+ T cell proliferation associated with HTLV-1 infection,
coupled with a significant decrease in PVL without affecting cell viability [257]. In 2021,
phase I/II clinical trials were initiated examining the therapeutic potential of teriflunomide
in HAM patients (ID: NCT04799288). Patients will receive 14 mg oral dosage daily for nine
months with a subsequent three-month follow-up period. The primary outcome measure
is ex vivo spontaneous lymphoproliferation, with secondary outcomes measuring immune
activation patterns and PVL of PBMCs and CSF.

HAM is a complex disease with enormous gaps in available therapeutics that halt or
reverse patient deterioration. The management of pathological consequences is a temporary
and unviable solution to a chronic and persisting disease, and the diversity of current
HAM interventions reflects the absence of effective pharmaceutics. Other interventions
not discussed in this section include clinical trials on the efficacy of green tea [258] and
fermented milk [259]. The primary challenges in HAM treatment are current gaps in the
understanding of disease pathogenesis and patient enrolment for clinical trials. Addressing
this gap involves the standardisation of disease categorisation and methods to evaluate
improvement, including clinical indicators that correlate with disease progression.

3.2.3. Other Inflammatory Diseases

HTLV-1 infection is also associated with a range of other inflammatory diseases and
infections. Previous sections have outlined the lack of specific and targeted treatments for
HTLV-1 inflammatory and immune related conditions, which is mirrored in the treatment of
other associated inflammatory diseases and secondary infections. Well-characterised HTLV-
1-associated diseases and infections include, but are not limited to, uveitis [93], Hashimoto’s
thyroiditis and Grave’s disease [98], pulmonary diseases [17], inflective dermatitis [95],
inflammatory myositis [260], and allergy inflammatory disorders [261]. The percentage
or likelihood of infected patients developing additional HTLV-1-associated diseases is
not well understood. Data are scarce on the prevalence of secondary infections, with
previously conducted studies being observational in nature and limited by their small
cohorts and geographic restraints. Table 5 summarises HTLV-1-associated diseases and
their treatments. Lesser-known medical burdens of HTLV-1 infection extend beyond
this list, as patients report experiencing non-specific neuropathic/non-neuropathic pain
alongside infection [262].

Table 5. Treatments for HTLV-1-associated diseases and infection.

Disease Treatment

HTLV-1-associated uveitis Topical or systemic corticosteroids and mydriatics [263]

HTLV-1-associated Sjögren’s Syndrome
Artificial lubricants such as saliva/tears replacement solutions

coupled with systemic pharmacotherapy with pilocarpine
hydrochloride [264]

HTLV-1-associated Hashimoto’s thyroiditis and Graves’
disease

Partial or complete thyroidectomy and hormone replacement
therapy [264]

HTLV-1-associated infective dermatitis Antibiotics and corticosteroids [264]
HTLV-1-associated pulmonary disease Long-term corticosteroid therapy [265]

HTLV-1-associated inflammatory myositis
Currently no available therapeutic; myositis is resistant to
corticosteroids and immunomodulatory therapies such as

cyclosporin [266,267]
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Table 5. Cont.

Disease Treatment

HTLV-1-associated arthritis Immunomodulatory therapies such as TNF-α [268]
HTLV-1-associated conjunctivitis sicca syndrome and

interstitial keratitis Artificial lubricants such as tears, cyclosporine eye drops [264]

Relapse is common when treatment is halted. Other less-common inflammatory conditions reported with HTLV-1
carrier status include tubulointerstitial nephritis, mixed connective tissue disease, and idiopathic autoimmune
hepatitis. Also reported are non-communicable diseases like CKD and diabetes.

3.3. HTLV-1 Pre-Exposure Prophylaxis (PrEP)

HIV Pre-Exposure Prophylaxis (HIV-PrEP) is effective in reducing the likelihood of
HIV acquisition in non-HIV-infected people at a high risk of exposure. The current FDA-
approved PrEP is an oral combination of the NRTIs emtricitabine (FTC) and tenofovir or
intramuscular injections of long-acting integrase strand transfer inhibitor (INSTI) [269]. As
detailed in previous sections, these antiretrovirals may be of little benefit to chronically
infected HTLV-1 patients. However, as HIV-PrEP acts through early inhibition of replication,
similar therapeutic strategies may be repurposed to prevent early HTLV-1 transmission.
Despite this, there are currently no studies that have evaluated the plausibility of HTLV-
PrEP [270].

3.4. Biomarkers for Disease

As detailed in previous sections, the absence of predictors for disease progression in
HTLV-1 infection is an unaddressed gap in the current literature. Establishing clinically
useful biomarkers will prove instrumental in revolutionising patient care and clinical re-
search. Current studies suggest that the risk of developing ATL or HAM is not random.
The manifestation of disease may be sequence-independent in HTLV-1; thus, the host
response to the virus is a more reliable indicator for disease prediction. There is strong
evidence suggesting that increased HTLV-1 PVL in PBMCs is a potent risk factor for dis-
ease progression [216,271–273]. Previous studies have reported that symptomatic patients
have significantly higher HTLV-1 PVL compared to asymptomatic controls [120,273–275].
However, measuring PVL in PBMCs is both costly and time-consuming. To enable wider
testing, the simpler and more accessible and cost-effective whole-blood PVL measurement
can be explored to facilitate broader testing and early detection of HTLV-1. Other poten-
tial biomarkers for HAM are CSF inflammatory markers, which examine the levels of
CXCL10 [241] and neopterin [239]. Current biomarker candidates are mostly immuno-
genetic in nature, summarised in Table 6. The human leukocyte antigen (HLA) is crucial
in immune response induction, as well as the PVL of HTLV-1. HTLV-1 viral protein p12
inhibits HLA-1 molecules on infected cell surfaces to mediate immune escape. Specific
HLA alleles have been reported as determinants of HAM and ATL development and
disease severity [276,277], but allele determinants present in one population may not be
reflected in another. Specific polymorphisms in cytokine genes have also been reported
as a potential determinant for disease [278]. The HTLV-1 functional genes tax and hbz
are also associated with the development of disease, as outlined previously. Studies have
previously reported that elevated expression of tax mRNA in PBMCs washigher in patients
presenting with HAM compared to asymptomatic controls [279]. These findings have
also been compared to hbz mRNA expression [85], where hbz mRNA expression levels
were decreased after IFN-α treatment and clinical improvement, suggesting its utility as a
treatment response biomarker.
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Table 6. Gene polymorphisms associated with HTLV-1 disease.

Gene Allele/Genotype/Haplotype Disease Indication

HLA

DRB1*DQB1* 0101, 1502, 0803 [280] HAM Increased risk
DRB1*DQB1* 1501, 0901, 1401 [280] ATL Increased risk

A*24 and Cw*01 [280] ATL Protective
Cw*7, B*7 and DR1 [280] HAM Increased risk

A*02 [281] HAM
ATL

Protective
Increased risk

HLA-B*5401 [276] HAM Increased risk
A*03 and DQB1*0501 [282] ATL Protective

B*15 and B*53 [282] ATL Increased risk

IFN-γ IFNG+874A/T [283] - High PVL

IL-18
−607CC [284] - Protective
−607AC [284] - Increased risk

TNF-α TNFA−857C/T [285] ATL Increased risk

IL-10
IL10−592A/C [286] HAM Increased risk

High PVL
IL10−819*C/T and −592*C/A [287] - Increased risk

Factors that determine the increased risk of HTLV-1 infection and genesis of HAM and ATL are poorly understood.
The complicated relationship between genetic factors and HTLV-1 susceptibility, whilst recognised, would
undoubtedly benefit from further research.

4. Future of HTLV-1 Treatments

Many treatments thus far for HTLV-1 have been repurposed from other diseases, so
the current state of therapeutics will benefit from novel approaches. Addressing the biggest
roadblock in treatment, the provirus, which governs viral persistence and reactivation, is
critical when developing an anti-HTLV-1 therapeutic. Novel therapeutic approaches, specif-
ically targeted genetic and molecular therapies, have been widely explored in the treatment
of HIV-1, and similar therapeutic approaches can be adapted for HTLV-1, a virus compa-
rable in its genealogy and aetiology. These therapeutic approaches that can be paralleled
between HIV-1 and HTLV-1 include Zinc Finger Nucleases (ZFNs), Crispr/Cas9/12/13
gene editing, and RNA interference (RNAi). HTLV-1 is a perfect candidate for gene therapy
with its limited sequence diversity, high conservation across subtypes, and its two identical
LTRs, which act as two possibly highly potent target sites. The focus of this review will be
on the advances and limitations in small interfering RNA (siRNA)-directed RNAi and its
potential as an anti-HTLV-1 therapeutic. This follows precedent set by the success of the
mRNA COVID-19 vaccines and the five FDA-approved siRNA therapeutics and further
highlights the potential for antiviral RNA-based therapeutics.

4.1. Gene Editing

ZFNs act as a pair of synthetic endonucleases, introducing a double-stranded break
(DSB) onto a cognate DNA site, with the resulting cleavage set to be repaired through
nonhomologous end joining (NHEJ). The NHEJ pathway is often inaccurate, and resulting
localised insertions and deletions act as a sufficient method of inactivating the gene [288].
ZFNs are highly specific to the target site and have been widely adapted in the treatment
of HIV [289–292], with several ongoing studies (NCT03617198, 02500849). In 2013, Tanaka
et al. developed ZFNs that targeted the HTLV-1 LTR regions and examined their potential
in HTLV-1-transformed and ATL cell lines [293]. These studies demonstrated potent
disruption of the HTLV-1 LTR promoter and subsequent proviral gene expression, anti-
tumour effects in vivo, and, most importantly, apoptosis of HTLV-1-infected cells triggered
by DSBs in the LTR. Despite the inhibition of infected cell proliferation, there remains
a subset of infected memory cells in chronic patients that do not actively express viral
mRNA. ZFN technology is potent and specific; however, surface markers specific to HTLV-
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1-transformed and -untransformed cells remain the missing link necessary for translating
gene editing to a viable therapeutic.

CRISPR (clustered regularly interspersed short palindromic repeat) is a genome-
editing technique mediated by endonucleases, most commonly Cas9, and guides RNAs
(gRNAs) to introduce DSBs into the gene target [294]. The CRISPR/Cas9 editing approach
has demonstrated some success in targeting HIV-1 in vitro and in vivo [295,296], the most
promising of which is a proof-of-concept study observing effective elimination of proviral
DNA in infected mice [297], but this result has yet to be replicated in HTLV-1. Recent
research has speculated on the success of CRISPR editing of HTLV-1, with some propos-
ing that HTLV-1 is an excellent model for gene editing [298]. The majority of discourse
surrounds the introduction of breaks along the tax and hbz viral genes, interrupting im-
mortalisation and suppressing infected cell growth and survival. As HTLV-1 is highly
genetically conserved within hosts and among isolates, it serves as a powerful candidate
for focused gRNA targeting and generalised gene manipulation approaches. The successful
recognition and disruption of the promoter via ZFNs provides additional support for the
feasibility of CRISPR editing. Common in many gene-editing approaches, however, is the
potential for off-target mutagenesis and issues with delivery. A persisting probability in
CRISPR/Cas9 systems is the introduction of changes in unrelated genes due to the rela-
tively high mismatch tolerance of gRNAs [299]. Cas9 is also a large effector nuclease, being
160 kDa in size, and effective delivery poses a challenge [300]. Smaller effector nucleases
have been researched as an alternative to Cas9, including Cas9, Cas12a (Cpf1), Cas13, and
Cas14 (a/b/c) [301]. CRISPR-directed gene editing can potentially be a powerful method
of targeting HTLV-1 genes, with tax and hbz being genetically conserved across subtypes
A and C (93% for tax and 85% for hbz, respectively); however, there are many hurdles to
overcome before it can be considered a clinically viable alternative.

4.2. Gene Silencing by RNA Interference (RNAi)

Gene silencing induced by RNA interference (RNAi) has been successfully adapted to
silence the HIV-1 proviral genome and similarly has potential in the treatment of HTLV-1.
RNAi uses short, complementary RNA sequences (19–23 nucleotides) to mediate sequence-
specific silencing of a target promoter region. The molecules needed to induce RNAi-
silencing pathways include short interfering RNA (siRNA), short hairpin RNA (shRNA),
or microRNA (miRNA) [302]. All three molecules share a common mode of action—the
specificity of base pairing interactions with a gene target—although the focus of this review
will be on the therapeutic potential of siRNAs.

4.2.1. RNAi Pathways

RNAi-silencing pathways can be largely grouped into two categories: the classic RNAi
pathway, otherwise known as post-transcriptional gene silencing (PTGS), and the novel
RNAi pathway, termed transcriptional gene silencing (TGS) or epigenetic silencing. The
PTGS pathway is initiated via a siRNA complementary to a cytoplasmic mRNA target. The
siRNA binds to an Argonaute protein (Ago2), forming the RNA-induced silencing complex
(RISC), which degrades the complementary mRNA. The novel gene-silencing pathway
is localised to the nucleus and drives silencing via transcriptional repression at the gene
promoter. Argonaute 1 (Ago1) protein ushers the promoter–complementary siRNA to enter
the nucleus and forms the RNA-induced transcriptional silencing (RITS) complex, which
induces heritable, epigenetic modifications that repress transcription, thereby silencing
gene expression [303] (Figure 5). Idiosyncratically, the classic pathway has been researched
to a far greater extent than the novel pathway; however, its noninheritable nature poses a
drawback, as a continuous supply of siRNA is required to maintain a therapeutic effect. This
was addressed using viral delivery methods to provide long-term siRNA expression, but
this solution does not come without its caveats, as the oversaturation of cellular machinery
may pose risks of toxicity and off-target effects [304–306]. The LTR promoters of HTLV-1
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are primary regions of interest for silencing. As HTLV-1 has an exceptionally conserved
genome, it is a promising candidate for the sequence-specific and highly potent RNAi.
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4.2.2. Controlling Chronic Viral Infections

Gene therapy approaches to controlling chronic viral infections such as HIV-1 aim
to suppress latency in retroviral infections as opposed to transient viral repression. Core
therapeutics for HIV-1 are more advanced than HTLV-1 and can help inform an approach for
functional therapeutic development. An eradication approach in the treatment of latently
infected HIV-1 cells is known as the “shock and kill” technique, which aims to reactivate
infected cells by “shocking” them using latency-reversing agents (LRAs), although this
strategy is accompanied by significant challenges. LRAs are commonly investigated for
the treatment of HIV-1 and exert their action by activating viral transcription for infected
cells and then “kill” reservoir cells through cytopathic mechanisms, the host immune
response, or other targeted means. There are several caveats intrinsic to directing LRAs
against HIV-1, as it acts through the reversal of epigenetic silencing signatures present
in the HIV-1 promoter in latent phases. This can result in the global activation of any
promoter carrying the targeted epigenetic marks and is not always specific to the HIV-1
promoter [307]. Another challenge in the “shock and kill approach” with LRAs is the
lack of reproducibility across different cell models, a result that has also been observed
clinically [308]. The successful reactivation and subsequent suppression in vitro have failed
to produce impacts on the latent reservoir for patients in vivo [308].

Another approach to the treatment of the latent reservoir is the “block and lock”
strategy, which specifically induces TGS in the viral promoter to incite targeted suppression
of replication, thereby blocking transcription to lock the promoter in a state of latency.
The first anti-HIV-1, siPromA, was first identified in 2005 [309], and targeted the unique



Viruses 2024, 16, 1616 22 of 40

and highly conserved NK-κB transcription factor sites in the HIV-1 promoter to induce
potent epigenetic silencing [70,310–312]. Due to the highly conserved nature of the NK-
κB binding sequence, there are no shared commonalities with the human genome, and
targeting of this site has not revealed any identifiable off-target effects [313]. Recently, the
efficacy of siPromA in the treatment of HIV-1 has been characterised by in vivo humanised
mouse models, demonstrating robust protection against infection by lowering the HIV-
1 cell-associated RNA levels in siPromA-expressing CD4+ T cells isolated from blood
and lymphoid tissue [70,314]. siRNAs can also be multiplex to provide more robust
antiviral protection by broad-spectrum coverage across multiple subtypes [315,316]. Further
advances in this field harbour considerable implications for the future of developing a
functional cure for similar viruses, such as HTLV-1.

Amongst the diverse family of nucleic-acid-based therapeutics considered for antiviral
treatment are antisense oligonucleotides (ASOs). ASOs are single-stranded DNA oligonu-
cleotides around 12–25 bp in length [317]. Like siRNAs, ASOs act through complementary
base pair binding, targeting disease transcripts to cause mRNA degradation or sterically
prevent binding with effector proteins. There are eight ASOs that have been FDA approved
for clinical use. The first FDA-approved ASO, vitravene (Fomiversen), in 1998, treated CMV
retinitis in immunocompromised AIDS patients [318]. By 2006, Fomiversen was revoked in
the United States and the European Union (EMA). The second ASO to be FDA approved in
2013 was Mipomersen for the treatment of familial hypercholesterolemia. Mipomerson was
not approved by the EMA due to hepatic safety concerns [319]. Following its approval, a
further six ASO therapies were approved for various treatments, four of which were for the
treatment of Duchenne muscular dystrophy (DMD), a rapidly progressing neuromuscular
disorder [320]. Despite the extensive research and development of ASOs that have led to
the numerous clinically approved therapies, there are still many limitations to its technol-
ogy. The biggest challenge is delivery and cellular uptake, like most nucleic-acid-based
therapeutics (discussed in more depth in the following section). There are no approved
antiviral ASOs; however, the COVID-19 pandemic has instigated exploring its potential for
the treatment of SARS-CoV-2 [321]. Due to successful early studies on the development of
siRNA therapeutics targeting HIV-1, ASOs have also been explored as a new therapeutic
modality, albeit with limited capacity. Early studies have chemically modified an ASO
(g-ASs) that can inhibit reverse transcription on a variety of RNA sequences, including
HIV-1 [322]. Recent advancements in chemical modification have seen the development of
an anti-HIV-1 ASO (FANA ASO), which suppresses replication in human PBMCs [323].

4.2.3. Challenges in RNAi for HTLV-1

The ambitious strategy proposed by novel siRNA therapies does not come without
its controversies, with efficient delivery and off-target effects being a common hurdle for
any type of gene therapy. With various in silico programmes available to define siRNA
sequences, there is a distinct lack of in vitro and in vivo studies conducted in HTLV-1.
Addressing the challenges surrounding the epigenetic silencing of HIV-1 may provide a
model for those of HTLV-1 due to their genetic similarity. Delivering genetic modifications
through siRNAs presents a major technical challenge in this field; the most common routes
of delivery include the systemic delivery of naked siRNA, lentiviral vectors, and alterna-
tive non-viral methods based on nanotechnology [302]. Each of these methods presents
their own caveats, including systemic delivery being vulnerable to enzymatic degrada-
tion, hepatic elimination, and rapid renal filtration [324,325]. Whilst lentivirus vectors are
most commonly used, safety and potential deleterious effects due to the integration site
are widely contended. An alternate delivery method is utilising nanocarriers; however,
challenges include correct biodistribution, cell entry, and endosomal escape. Bypassing
each of these issues could possibly be achieved through chemical modification of siR-
NAs, including conjugation with macromolecules and nanoparticle formulations [326,327]
(Figure 6).
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A precedent for nanocarriers was set by the first FDA-approved siRNA therapeutic,
Partisiran, which is formulated with a lipid nanoparticle encasing [328]. The advantage of-
fered by a nanoparticle formulation is the ease of cell entry and endosomal escape, thereby
leading to more efficacious gene silencing. Despite this, nanoparticle delivery methods
still do not address the issue that comes with clearance, as even with intravenously ad-
ministered siRNAs, typical hepatic accumulation limits access to target sites [325,329,330].
Another possible mode of delivery is macromolecule conjugation, utilised by Givosiran,
whereby the therapeutic siRNA was conjugated to N-acetyl-d-galactosamine tris domains
(GalNAc) [331]. However, some reports have documented that these formulations show
cytotoxicity and the activation of innate immune responses with limited metabolic sta-
bility [332]. Other siRNAs orchestrating hepatic degradation include Lumasiran [333],
another GalNAc–ligand conjugated siRNA; Inclisiran [334]; and, recently, Vutrisitan [335].
Excitingly, preclinical studies for an siRNA developed with a biomimetic nanoparticle
formulation against Chronic Hepatitis B is currently underway [336]. If successful, this
would be the first antiviral siRNA to reach FDA approval, setting the precedent for other
viral-targeted siRNAs. Being one of the biggest roadblocks to the clinical implementa-
tion of RNAi therapeutics, effective delivery must be prioritised in the early stages of
drug development.

Another innovative strategy lies in the possibility of extracellular vesicles (EVs), specif-
ically exosomes, as a delivery platform. Exosomes are small nanoparticles (50–100 nM),
released from actively replicating cells that are taken up by neighbouring cells. Exosomes
have been used as both a therapeutic delivery vehicle [337] and diagnostic tool for a range
of applications, including MS, HD, and cancers [338,339]. Recently, anti-HIV-1 therapeutic
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exosomes were engineered to package and deliver promoter-targeted zinc finger proteins
(ZPAMt) to induce the “block and lock” of HIV-1-infected cells, including cells in the
brain [340]. Effective silencing of HIV-1 was also observed with repeated doses of exosomes
(100 × 109) in 25 g mice with no observed hepatotoxicity. After cessation of ZPAMt expres-
sion, long-term epigenetic silencing was observed. Recently, a similar anti-HBZ ZFP was
developed and observed to reduce the proliferation and viability of patient-derived ATL
cell line TL-Om1 [341]. Notably, similar to ZPAMt, this anti-HBZ ZFP can also be packaged
into exosomes for systemic delivery [342]. Lastly, exosomes can be generated to target
cells in a receptor directed manner, and when targeted to the Spike protein also inhibit
SARS-CoV2 infection [343]. Exploring exosomes as next-generation delivery platform for
the epigenetic modulation of HTLV-1 may prove a safe, highly innovative approach to
treating infection and ameliorating disease.

4.3. The BLV Vaccine: A Model for HTLV-1 Immunisation and Vaccination

Bovine leukaemia virus (BLV) is a deltaretrovirus that causes a common neoplastic
disease in cattle called enzootic bovine leukosis (EBL), characterised by B-cell leukaemia/
lymphoma. The disease is responsible for significant economic losses in the dairy in-
dustry, estimated to exceed USD 525 million annually in the United States alone [344].
BLV shares common retroviral structural proteins Gag, Pol, and Env, as well as Tax and
Rex in HTLV-1. Tax is a common viral oncoprotein to both viruses, and it is thought
to induce malignant progression following infection with BLV [345]. Upon integration,
BLV also displays low levels of transcription, with 5% of animals infected developing
leukaemia/lymphoma [346–348]. Similarly, the 5′LTR transcriptional promoter selectively
represses and activates upon viral expression to facilitate immune escape, demonstrated by
a decrease in PVL upon increasing promoter efficiency [349]. By defining the epigenetic
factors involved in viral repression and expression, BLV offers a valuable model for the
assessment and genesis of novel antiviral gene target therapies. Recently, an attenuated
BLV vaccine was developed that harbours a mutation in the env gene and deletions of sense
and anti-sense accessory genes (AS1-S, AS1-L, R3 and G4) [350]. The vaccine was delivered
in a dairy herd in Argentina and conferred immunity in 28 out of 29 cows over a 4-year
period. The vaccine was shown to be safe and effective, with low PVL and no pathogenic
events recorded after administration. The success of the BLV vaccine was attributed to
its high genomic stability and administration around the expiry of protection offered by
the maternal colostrum. Following previous failed attempts, including DNA vaccines that
did not prevent later infection due to transient activation, including recombinant vaccinia
virus (RVV) and inactivated BLV, the attenuated BLV succeeded with deletions in genes
that regulate infectivity and replication [351]. The BLV vaccine may provide a model for
HTLV-1 vaccination, with the need for the stimulation of humoral and cytotoxic immune
responses. Both tax and hbz should be considered important gene targets, as they are
increasingly implicated in persistence and disease induction. Such a vaccine for HTLV-1
could be distributed to at-risk populations in endemic regions.

5. Conclusions

With no therapeutic strategy or standardised patient care addressing HTLV-1 infection,
there is an urgent need for antiviral treatments and vaccines. The genetically conserved 5′

and 3′LTR regions of HTLV-1 offer promising candidates for epigenetic silencing. Along
with the novelty of siRNA therapeutics, there are still many challenges posed for the
literature to address, including efficient and targeted delivery and clinical translation.
The recent development of the BLV vaccine also provides a useful model for potential
HTLV-1 vaccination. Despite these challenges, the development of RNAi therapeutics has
illuminated an exciting new modality of therapy and could have considerable implications
for the future of treating HTLV-1.
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