Seed Origin and Protection Are Important Factors Affecting Post-Fire Initial Recruitment in Pine Forest Areas
<p>General view of the totally burned area without canopy cover (<b>A</b>) and a sowing point example in the totally burned area at the beginning of the experiment in April 2011 (<b>B</b>).</p> "> Figure 2
<p>Temperature (Temp.) and precipitation (Prep.) values recorded during 2011 and 2012 in comparison with average (Aver.) precipitation and temperature values of the last 10 years for the study area. Shaded area represents the deviation between average values and 2011–2012 values.</p> "> Figure 3
<p>Probability of seed emergence for each seed origin (MA: <span class="html-italic">P. nigra</span> from typical distribution, HA: <span class="html-italic">P. nigra</span> from upland forests distribution, LA: <span class="html-italic">P. nigra</span> from lowland forests distribution, PS: <span class="html-italic">P. sylvestris</span> and PP: <span class="html-italic">P. pinaster</span>) and protection status. The error bars indicate the 95% interval.</p> "> Figure 4
<p>Observed survival pattern of the seedlings. Each line represents an experimental block. Subplots on the same row share the protection status. Subplots on the same column share seed origin (MA: <span class="html-italic">P. nigra</span> from typical distribution, HA: <span class="html-italic">P. nigra</span> from upland forests distribution, LA: <span class="html-italic">P. nigra</span> from lowland forests distribution, PS: <span class="html-italic">P. sylvestris</span> and PP: <span class="html-italic">P. pinaster</span>).</p> "> Figure 5
<p>Scale parameter of the hazard function for each combination of seed origin (MA: <span class="html-italic">P. nigra</span> from typical distribution, HA: <span class="html-italic">P. nigra</span> from upland forests distribution, LA: <span class="html-italic">P. nigra</span> from lowland forests distribution, PS: <span class="html-italic">P. sylvestris</span> and PP: <span class="html-italic">P. pinaster</span>) and protection. The error bars indicate the 95% credible interval.</p> "> Figure 6
<p>Scale parameter of the hazard function for emergence at the greenhouse for each seed origin (MA: <span class="html-italic">P. nigra</span> from typical distribution, HA: <span class="html-italic">P. nigra</span> from upland forests distribution, LA: <span class="html-italic">P. nigra</span> from lowland forests distribution). The error bars indicate the 95% credible interval.</p> "> Figure 7
<p>Scale parameter of the hazard function for seedling survival at the greenhouse for the different seed origins (MA: <span class="html-italic">P. nigra</span> from typical distribution, HA: <span class="html-italic">P. nigra</span> from upland forests distribution, LA: <span class="html-italic">P. nigra</span> from lowland forests distribution). The errorbars indicate the 95% credible interval.</p> "> Figure 8
<p>Modeled seedling diameter and seedling height for each seed origin (MA: <span class="html-italic">P. nigra</span> from typical distribution, HA: <span class="html-italic">P. nigra</span> from upland forests distribution, LA: <span class="html-italic">P. nigra</span> from lowland forests distribution), both in the greenhouse and field experiment. The error bars indicate the 95% credible interval.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Experimental Design
2.3. Statistical Analyses
3. Results
3.1. Climate Records, Seed Emergence and Seedling Survival Rates and Initial Seedling Growth at the Field Experiment
3.2. Seed Emergence and Seedling Survival Rates and Initial Seedling Growth at the Greenhouse Experiment
3.3. Comparison of the Greenhouse and Field Experiment in Relation to Seedling Growth
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lindner, M.; Garcia-Gonzalo, J.; Kolström, M.; Geen, T.; Reguera, R.; Maroschek, M.; Seidl, R.; Lexer, M.J.; Netherer, S.; Schopf, A.; et al. Impacts of Climate Change on European Forests and Options for Adaptation; Report to the European Commission Directorate-General for Agriculture and Rural Development; European Commission, Agriculture and Rural Development: Brussels, Belgium, 2008. [Google Scholar]
- Boydak, M.; Dirik, H.; Calikoglu, M. Forest stand dynamic, regeneration and fire in Pinus brutia ecosystems. In Biology and Silviculture of Turkish Red Pine (Pinus brutia Ten.), Ogem-Vak, ed.; Istanbul Universitesi Orman Fakultesi: Ankara, Turkey, 2006. [Google Scholar]
- Tavşanoğlu, Ç.; Gürkan, B. Long-term post-fire dynamics of co-occuring woody species in Pinus brutia forests: The role of regeneration mode. Plant Ecol. 2014, 215, 355–365. [Google Scholar] [CrossRef]
- Paula, S.; Ojeda, F. Resistance of three co-occurring resprouter Erica species to highly frequent disturbance. Plant Ecol. 2006, 183, 329–336. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean Basin? A review. Int. J. Wildl. Fire 2008, 17, 713–723. [Google Scholar] [CrossRef]
- Pausas, J.G. Evolutionary fire ecology: Lessons learned from pines. Trends Plant Sci. 2015, 20, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.S.; Beckage, B.; Camill, P.; Cleveland, B.; Hille Ris Lambers, J.; Lichter, J.; McLachlan, J.; Mohan, J.; Wyckoff, P. Interpreting recruitment limitation in forests. Am. J. Bot. 1999, 86, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Silvertown, J.W.; Lovett-Doust, J. Introduction to Plant Population Biology; Wiley-Blackwell: Oxford, UK, 1993. [Google Scholar]
- Moody, J.A.; Smith, J.D.; Ragan, B.W. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Escudero, A.; Sanz, M.V.; Pita, J.M.; Pérez-García, F. Probability of germination after heat treatment of native Spanish pines. Ann. For. Sci. 1999, 56, 511–520. [Google Scholar] [CrossRef]
- Mencuccini, M.; Piussi, P.; Zanzi Sulli, A. Thirty years of seed production in a subalpine Norway spruce forest: Patterns of temporal and spatial variation. For. Ecol. Manag. 1995, 76, 109–125. [Google Scholar] [CrossRef]
- Garrido, J.L.; Rey, P.J.; Herrera, C.M.; Ramírez, J.M. Negative evidence of local adaptation to the establishment conditions in a perennial herb. Plant Ecol. 2012, 213, 1555–1569. [Google Scholar] [CrossRef]
- Larcher, W. Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst. 2000, 134, 279–295. [Google Scholar] [CrossRef]
- Bradshaw, A.D.; McNeilly, T. Evolutionary response to global climate change. Ann. Bot. 1991, 67, 5–14. [Google Scholar] [CrossRef]
- Savolainen, O.; Bokma, F.; Knürr, T.; Kärkkäinen, K.; Pyhäjärvi, T.; Wachowia, K.W. Adaptation of forest trees to climate change. In Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe; Koskela, J., Buck, A., Teissier du Cros, E., Eds.; Biodiversity International: Rome, Italy, 2007; pp. 19–30. [Google Scholar]
- Lloret, F.; Escudero, A.; Iriondo, J.M.; Martínez-Vilalta, J.; Valladares, F. Extreme climatic events and vegetation: The role of stabilizing processes. Glob. Chang. Biol. 2012, 18, 797–805. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Lloret, F. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Glob. Planet. Chang. 2016, 144, 94–108. [Google Scholar] [CrossRef]
- Kawecki, T.J.; Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 2004, 7, 1225–1241. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Candel-Pérez, D.; Tiscar, P.A.; Prevosto, B.; Hedo, J. Pinus nigra Arn. ssp salzmannii early recruitment and initial seedling growth in warmer and drier locations: The role of seed and soil provenance. Plant Ecol. 2017. [Google Scholar] [CrossRef]
- Tiscar, P.A.; Candel-Pérez, D.; Estrany, J.; Balandier, P.; Gómez, R.; Lucas-Borja, M.E. Regeneration of three pine species in a Mediterranean forest: A study to test predictions from species distribution models under changing climates. Sci. Total Environ. 2017. [Google Scholar] [CrossRef] [PubMed]
- Schupp, E.W. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am. J. Bot. 1995, 82, 399–409. [Google Scholar] [CrossRef]
- Hulme, P.E.; Hunt, M.K. Rodent post-dispersal seed predation in deciduous woodland: Predator response to absolute and relative abundance of prey. J. Anim. Ecol. 1999, 68, 417–428. [Google Scholar] [CrossRef]
- Vander Wall, S.B. Seed fate pathways of antelope bitterbrush: Dispersal by seed-caching yellow pine chipmunks. Ecology 1994, 75, 1911–1926. [Google Scholar] [CrossRef]
- Del Cerro, A.; Lucas-Borja, M.E.; Martínez García, E.; López-Serrano, F.R.; Andrés-Abellán, M.; García-Morote, F.A.; Navarro-López, R. Influence of stand density and soil treatment on the Spanish black pine (Pinus nigra Arn. ssp salzmannii) regeneration in Spain. Sistem. Recur. For. 2009, 18, 167–180. [Google Scholar]
- Lucas-Borja, M.E.; Fonseca Fidalgo, T.; Lousada, J.L.; Silva-Santos, P.; Martínez García, E.; Andrés Abellán, M. Natural regeneration of Spanish black pine (Pinus nigra Arn. ssp. salzmannii (Dunal) Franco) at contrasting altitudes in a Mediterranean mountain area. Ecol. Res. 2012, 27, 913–921. [Google Scholar]
- Lucas-Borja, M.E.; Madrigal, J.; Candel-Pérez, D.; Jimenez, E.; Moya Navarro, D.; De las Heras, J.; Guijarro, M.; Fernandez, C.; Vega, J.A.; Hernando, C. Effects of prescribed burning, soil preparation and seed predation on natural regeneration of Spanish black pine (Pinus nigra Arn. ssp. salzmannii) in pure and mixed forest stands. For. Ecol. Manag. 2016, 378, 24–30. [Google Scholar] [CrossRef]
- Tíscar, P.A.; Linares, J.C. Structure and regeneration patterns of Pinus nigra subsp. salzmannii natural forests: A basic knowledge for adaptive management in a changing climate. Forests 2011, 2, 1013–1030. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Fonseca, T.; Parresol, B.; Silva-Santos, P.; García-Morote, F.A.; Tíscar-Oliver, P.A. Modelling Spanish black pine seedling emergence: Establishing management strategies for endangered forest areas. For. Ecol. Manag. 2011, 262, 195–202. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Soil Atlas of Europe. European Soil Bureau Network; European Commission: Luxembourg, 2005. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org (accessed on 7 January 2017).
- Rue, H.; Martino, S.; Lindgren, F.; Simpson, D.; Riebler, A.; Teixeira, E.; Fuglstad, G.A. INLA: Functions Which Allow to Perform Full Bayesian Analysis of Latent Gaussian Models Using Integrated Nested Laplace Approximations, R Package Version 0.0-1485844051. 2017. Available online: http://www.R-INLA.org (accessed on 7 April 2017).
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014, 24, 997–1016. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Fonseca Fidalgo, T.; Linares, J.C.; García-Morote, F.A.; López-Serrano, F.R. Does the recruitment pattern of Spanish black pine (Pinus nigra Arn ssp. salzmannii) change the regeneration niche over the early life cycle of individuals? For. Ecol. Manag. 2012, 284, 93–99. [Google Scholar] [CrossRef]
- Candel-Pérez, D.; Linares, J.C.; Viñegla, B.; Lucas-Borja, M.E. Assessing climate growth relationships under contrasting stands of co-occurring Iberian pines along an altitudinal gradient. For. Ecol. Manag. 2012, 274, 48–57. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Abrupt climate-independent fire regime changes. Ecosystems 2014, 17, 1109–1120. [Google Scholar] [CrossRef]
- Benito Garzón, M.; Sánchez de Dios, R.; Sainz Ollero, H. Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 2008, 11, 169–178. [Google Scholar] [CrossRef]
- Faivre, N.R.; Jin, Y.; Goulden, M.L.; Randerson, J.T. Spatial patterns and controls on burned area for two contrasting fire regimes in Southern California. Ecosphere 2016, 7, e01210. [Google Scholar] [CrossRef]
- Christopoulou, A.; Fyllas, N.M.; Andriopoulos, P.; Koutsias, N.; Dimitrakopoulos, P.G.; Arianoutsou, M. Post-fire regeneration patterns of Pinus nigra in a recently burned area in Mount Taygetos, Southern Greece: The role of unburned forest patches. For. Ecol. Manag. 2014, 327, 148–156. [Google Scholar] [CrossRef]
- Retana, J.; Espelta, J.M.; Habrouk, A.; Ordóñez, J.L.; de Solà-Morales, F. Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience 2002, 9, 89–97. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Retana, J.; Espelta, J.M. Effects of tree size, crown damage, and tree location on post-fire survival and cone production of Pinus nigra trees. For. Ecol. Manag. 2005, 206, 109–117. [Google Scholar] [CrossRef]
- Sánchez-Gómez, D.; Valladares, F.; Zavala, M.A. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. Tree Physiol. 2006, 26, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Ruano, I.; Pando, V.; Bravo, F. How do light and water influence Pinus pinaster Ait. germination and early seedling development. For. Ecol. Manag. 2009, 258, 2647–2653. [Google Scholar] [CrossRef]
- Rodríguez-García, E.; Bravo, F.; Spies, T.A. Effects of overstorey canopy, plant–plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For. Ecol. Manag. 2011, 262, 244–251. [Google Scholar] [CrossRef]
- Simard, M.J.; Bergeron, Y.; Sirois, L. Conifer seedling recruitment in a southeastern Canadian boreal forest: The importance of substrate. J. Veg. Sci. 1998, 9, 575–582. [Google Scholar] [CrossRef]
- Lee, C.S.; Kim, J.H.; Hoonbok, Y.; Young, H. Seedling establishment and regeneration of Korean red pine (Pinus densiflora S. et Z.) forests in Korea in relation to soil moisture. For. Ecol. Manag. 2004, 199, 423–432. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L.; Valladares, F.; Zamora, R. Differential light responses of Mediterranean tree saplings: Linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiol. 2006, 26, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Borja, M.E.; Candel-Pérez, D.; García-Morote, F.A.; Onkelinx, T.; Tíscar, P.A.; Balandier, P. Pinus nigra Arn. ssp salzmannii seedling recruitment is affected by stand basal area, shrub cover, and climate interactions. Ann. For. Sci. 2016. [Google Scholar] [CrossRef]
- Adili, B.; El Aouni, M.H.; Balandier, P. Unravelling the influence of light, litter and understorey vegetation on Pinus pinea natural regeneration. Forestry 2013, 86, 297–304. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Franco, S.; Retana, J. Limitation of the recruitment of Pinus nigra in a gradient of post-fire environmental conditions. Ecoscience 2004, 11, 296–304. [Google Scholar] [CrossRef]
- Padilla, F.M.; Pugnaire, F.I. Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct. Ecol. 2007, 21, 489–495. [Google Scholar] [CrossRef]
Protection | P. nigra Lowland (LA) | P. nigra Midland (MA) | P. nigra Upland (HA) | P. pinaster (PP) | P. sylvestris (PS) | |
---|---|---|---|---|---|---|
Emerged seeds | No | 114 | 135 | 126 | 90 | 126 |
Yes | 117 | 111 | 114 | 106 | 120 | |
Seedling survival | No | 0 | 0 | 2 | 0 | 0 |
Yes | 12 | 17 | 21 | 12 | 9 |
P. nigra Lowland (LA) | P. nigra Midland (MA) | P. nigra Upland (HA) | |
---|---|---|---|
Emerged seeds | 16 | 20 | 24 |
Seedling survival | 14 | 13 | 21 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas-Borja, M.E.; Candel-Pérez, D.; Onkelinx, T.; Fule, P.Z.; Moya, D.; De las Heras, J.; Tíscar, P.A. Seed Origin and Protection Are Important Factors Affecting Post-Fire Initial Recruitment in Pine Forest Areas. Forests 2017, 8, 185. https://doi.org/10.3390/f8060185
Lucas-Borja ME, Candel-Pérez D, Onkelinx T, Fule PZ, Moya D, De las Heras J, Tíscar PA. Seed Origin and Protection Are Important Factors Affecting Post-Fire Initial Recruitment in Pine Forest Areas. Forests. 2017; 8(6):185. https://doi.org/10.3390/f8060185
Chicago/Turabian StyleLucas-Borja, Manuel E., David Candel-Pérez, Thierry Onkelinx, Peter Z. Fule, Daniel Moya, Jorge De las Heras, and Pedro A. Tíscar. 2017. "Seed Origin and Protection Are Important Factors Affecting Post-Fire Initial Recruitment in Pine Forest Areas" Forests 8, no. 6: 185. https://doi.org/10.3390/f8060185
APA StyleLucas-Borja, M. E., Candel-Pérez, D., Onkelinx, T., Fule, P. Z., Moya, D., De las Heras, J., & Tíscar, P. A. (2017). Seed Origin and Protection Are Important Factors Affecting Post-Fire Initial Recruitment in Pine Forest Areas. Forests, 8(6), 185. https://doi.org/10.3390/f8060185