Retention of Fine Woody Debris Reduces Stability of Soil Organic Carbon Pool by Changing Soil Organic Carbon Fractions and Enzyme Activities in Urban Picea koraiensis Plantations
<p>Location of the Forestry Demonstration Base and <span class="html-italic">P. koraiensis</span> plantations (<b>a</b>) and layout of the randomized block design with four FWD retention treatments (<b>b</b>).</p> "> Figure 2
<p>Dissolved organic carbon (<b>a</b>), microbial carbon concentration (<b>b</b>), easily oxidizable organic carbon concentration (<b>c</b>), and particulate organic carbon (<b>d</b>) in urban <span class="html-italic">P. koraiensis</span> plantations with retained FWD. Note: Data are presented as mean ± standard error (<span class="html-italic">n</span> = 3). Different letters mean that there are significant differences between different treatments in the same soil layer (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Cellobiohydrolases enzyme activity (CBHs, (<b>a</b>)), β-1,4-glucosidases enzyme activity (βGs, (<b>b</b>)), β-xylosidase enzyme activity (βX, (<b>c</b>)), leucine aminopeptidase enzyme activity (LAP, (<b>d</b>)), and polyphenol oxidase enzyme activity (PPO, (<b>e</b>)) in urban <span class="html-italic">P. koraiensis</span> plantations with retained FWD. Note: Data are presented as mean ± standard error (<span class="html-italic">n</span> = 3). Different letters mean that there are significant differences between different treatments in the same soil layer (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>The stability of soil organic carbon pool (<b>a</b>) and random forest analysis of environmental factors affecting the stability of soil organic carbon pool (<b>b</b>) in urban <span class="html-italic">P. koraiensis</span> plantations with retained FWD. Note: Data are presented as mean ± standard error (<span class="html-italic">n</span> = 3). Different letters mean that there are significant differences between different treatments in the same soil layer (<span class="html-italic">p</span> < 0.05). The asterisk (*) indicates statistical significance (* <span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Mantel test between soil enzyme and soil factors, as well as Pearson correlation coefficients within soil variables in urban <span class="html-italic">P. koraiensis</span> plantations with retained FWD. Note: The asterisk (*) indicates statistical significance (* <span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Plot Overview and Experimental Design
2.2. Sampling and Analysis
2.3. Statistical Analyses
3. Results
3.1. Physicochemical Properties of Soil
3.2. Active Soil Organic Carbon Fractions
3.3. Soil Enzyme Activities
3.4. The Stability of Soil Organic Carbon Pool
4. Discussion
4.1. Changes in Active SOC Fractions Caused by Retained FWD
4.2. Changes in Soil Enzyme Activities Caused by Retained FWD
4.3. The Stability of Soil Organic Carbon Pool Was Changed After Retaining FWD
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WD | Woody Debris |
FWD | Fine Woody Debris |
CWD | Coarse Woody Debris |
SOC | Soil Organic Carbon |
MBC | Microbial Carbon |
EOC | Easily Oxidizable Organic Carbon |
DOC | Dissolved Organic Carbon |
POC | Particulate Organic Carbon |
SBD | Soil Bulk Density |
SMC | Soil Moisture Content |
CBH | Cellobiohydrolases |
βG | β-1,4-glucosidases |
βX | β-xylosidase |
LAP | Leucine aminopeptidase |
PPO | Polyphenol oxidase |
References
- Shen, G. Three decades of urban forestry in China. Urban For. Urban Green. 2023, 82, 127877. [Google Scholar] [CrossRef]
- Dobbs, C.; Eleuterio, A.A.; Vásquez, A.; Cifuentes-Ibarra, M.; da Silva, D.; Devisscher, T.; Baptista, M.D.; Hernández-Moreno, A.; Meléndez-Ackerman, E.; Navarro, N.M. Are we promoting green cities in Latin America and the Caribbean? Exploring the patterns and drivers of change for urban vegetation. Land Use Policy 2023, 134, 106912. [Google Scholar] [CrossRef]
- Magnusson, R.I.; Tietema, A.; Cornelissen, J.H.C.; Hefting, M.M.; Kalbitz, K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils. For. Ecol. Manag. 2016, 377, 1–15. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Liu, J.; Chen, Q.; Li, C.; Shu, C.; Zhang, Y.; Liu, Y. Changes in soil microbial communities induced by warming and N deposition accelerate the CO2 emissions of coarse woody debris. J. For. Res. 2023, 34, 1051–1063. [Google Scholar] [CrossRef]
- Buezo, J.; Medina, N.G.; Heres, A.M.; Petritan, I.C.; Cornelissen, J.H.C.; Petritan, A.M.; Esteban, R.; Ilinca, E.; Stoian, R.; Curiel Yuste, J. Downed woody debris carbon emissions in a European temperate virgin forest as driven by species, decay classes, diameter and microclimate. Sci. Total Environ. 2023, 912, 169133. [Google Scholar] [CrossRef]
- Krueger, I.; Schulz, C.; Borken, W. Stocks and dynamics of soil organic carbon and coarse woody debris in three managed and unmanaged temperate forests. Eur. J. For. Res. 2017, 136, 123–137. [Google Scholar] [CrossRef]
- Zalamea, M.; González, G.; Lodge, D.J. Physical, Chemical, and Biological Properties of Soil under Decaying Wood in a Tropical Wet Forest in Puerto Rico. Forests 2016, 7, 168. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, W.Q.; Penuelas, J.; Sardans, J.; Chen, X.X.; Fang, Y.Y.; Alrefaei, A.F.; Zeng, F.J.; Tariq, A. Effects of nitrogen-enriched biochar on subtropical paddy soil organic carbon pool dynamics. Sci. Total Environ. 2022, 851, 158322. [Google Scholar] [CrossRef]
- Peng, X.; Huang, Y.; Duan, X.; Yang, H.; Liu, J. Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China. Catena 2023, 220, 106721. [Google Scholar] [CrossRef]
- Chen, Z.H.; Shen, Y.; Tan, B.; Li, H.; You, C.M.; Xu, Z.F.; Wei, X.Y.; Ni, X.Y.; Yang, Y.L.; Zhang, L. Decreased Soil Organic Carbon under Litter Input in Three Subalpine Forests. Forests 2021, 12, 1479. [Google Scholar] [CrossRef]
- Lin, Z.W.; Li, Y.F.; Tang, C.X.; Luo, Y.; Fu, W.J.; Cai, X.Q.; Li, Y.C.; Yue, T.; Jiang, P.L.; Hu, S.D.; et al. Converting natural evergreen broadleaf forests to intensively managed moso bamboo plantations affects the pool size and stability of soil organic carbon and enzyme activities. Biol. Fertil. Soils 2018, 54, 467–480. [Google Scholar] [CrossRef]
- Noll, L.; Leonhardt, S.; Arnstadt, T.; Hoppe, B.; Poll, C.; Matzner, E.; Hofrichter, M.; Kellner, H. Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition. For. Ecol. Manag. 2016, 378, 181–192. [Google Scholar] [CrossRef]
- Makineci, E.; Akburak, S.; Özturna, A.G.; Tolunay, D. Carbon Stocks of Fine Woody Debris in Coppice Oak Forests at Different Development Stages. Forests 2017, 8, 199. [Google Scholar] [CrossRef]
- Błońska, E.; Ważny, R.; Górski, A.; Lasota, J. Decomposing benefits: Examining the impact of beech deadwood on soil properties and microbial diversity. Sci. Total Environ. 2024, 930, 172774. [Google Scholar] [CrossRef]
- Lasota, J.; Piaszczyk, W.; Błońska, E. Fine woody debris as a biogen reservoir in forest ecosystems. Acta Oecol. 2022, 115, 103822. [Google Scholar] [CrossRef]
- Bessaad, A.; Bilger, I.; Korboulewsky, N. Assessing Biomass Removal and Woody Debris in Whole-Tree Harvesting System: Are the Recommended Levels of Residues Ensured? Forests 2021, 12, 807. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Setälä, H.; Chen, Q.-L. Labile carbon input substantially increases priming effect in urban greenspace soils. Sci. Total Environ. 2024, 955, 177258. [Google Scholar] [CrossRef]
- Dhar, A.; Forsch, K.B.C.; Naeth, M.A. Effects of Coarse Woody Debris on Soil Temperature and Water Content in Two Reconstructed Soils in Reclaimed Boreal Forest. Soil Syst. 2022, 6, 62. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, W.J.; Wang, H.M.; Sun, Y.F.; Zhong, Z.L.; Wang, S.R. Differences in quantity and composition of leaf particulate matter and morphological structures in three evergreen trees and their association in Harbin, China. Environ. Pollut. 2019, 252, 1772–1790. [Google Scholar] [CrossRef]
- Wang, W.J.; Lu, J.L.; Du, H.J.; Wei, C.H.; Wang, H.M.; Fu, Y.J.; He, X.Y. Ranking thirteen tree species based on their impact on soil physiochemical properties, soil fertility, and carbon sequestration in Northeastern China. For. Ecol. Manag. 2017, 404, 214–229. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- Mendoza, O.; De Neve, S.; Deroo, H.; Li, H.; Sleutel, S. Do interactions between application rate and native soil organic matter content determine the degradation of exogenous organic carbon? Soil Biol. Biochem. 2022, 164, 108473. [Google Scholar] [CrossRef]
- Bradford, M.A.; Fierer, N.; Reynolds, J.F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol. 2008, 22, 964–974. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Jin, Y.; Sun, Z. Impacts of thinning on soil carbon and nutrients and related extracellular enzymes in a larch plantation. For. Ecol. Manag. 2019, 450, 117523. [Google Scholar] [CrossRef]
- Zeng, J.; Li, X.; Jian, J.; Xing, L.; Li, Y.; Wang, X.; Zhang, Q.; Ren, C.; Yang, G.; Han, X. Differences in the regulation of soil carbon pool quality and stability by leaf-litter and root-litter decomposition. Environ. Res. 2024, 263, 120285. [Google Scholar] [CrossRef]
- Huang, M.; Hu, T.; Wang, J.; Ding, Y.; Köster, K.; Sun, L. Effects of biochar on soil carbon pool stability in the Dahurian larch (Larix gmelinii) forest are regulated by the dominant soil microbial ecological strategy. Sci. Total Environ. 2024, 951, 175725. [Google Scholar] [CrossRef]
- Qi, R.M.; Li, J.; Lin, Z.A.; Li, Z.J.; Li, Y.T.; Yang, X.D.; Zhang, J.J.; Zhao, B.Q. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 2016, 102, 36–45. [Google Scholar] [CrossRef]
- Li, N.; Zhang, R.; Zhou, J.P.; Huang, Z.X. Structures, Biochemical Characteristics, and Functions of β-Xylosidases. J. Agric. Food Chem. 2023, 71, 7961–7976. [Google Scholar] [CrossRef]
- Wang, Z.; Li, F.; Hou, J.; Li, X.; Cao, R.; Jiang, Y.; Lu, Y.; Ma, S.; Yang, W. Coarse woody debris and litter layer exert differential roles in nursing soil fungal communities across a subalpine forest successional series. Acta Oecol. 2023, 121, 103948. [Google Scholar] [CrossRef]
- Fekete, I.; Kotroczó, Z.; Varga, C.; Nagy, P.T.; Várbíró, G.; Bowden, R.D.; Tóth, J.A.; Lajtha, K. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biol. Biochem. 2014, 74, 106–114. [Google Scholar] [CrossRef]
- Xing, H.; Zhang, H.; Tang, G.; Yuan, T.; Shen, H.; Yang, L. Adding fine woody debris accelerates the turnover of soil carbon pool in high-latitude urban plantations in China. J. Soils Sediments 2024, 24, 2467–2480. [Google Scholar] [CrossRef]
- Chaves, B.; Redin, M.; Giacomini, S.J.; Schmatz, R.; Leonard, J.; Ferchaud, F.; Recous, S. The combination of residue quality, residue placement and soil mineral N content drives C and N dynamics by modifying N availability to microbial decomposers. Soil Biol. Biochem. 2021, 163, 108434. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kumar, A.; Kuzyakov, Y.; Börjesson, G.; Blagodatskaya, E. Priming effects induced by glucose and decaying plant residues on SOM decomposition: A three-source 13C/14C partitioning study. Soil Biol. Biochem. 2018, 121, 138–146. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Amoakwah, E.; Arthur, E.; Frimpong, K.A.; Islam, K.R. Biochar Amendment Influences Tropical Soil Carbon and Nitrogen Lability. J. Soil Sci. Plant Nutr. 2021, 21, 3567–3579. [Google Scholar] [CrossRef]
- Hollands, C.; Shannon, V.L.; Sawicka, K.; Vanguelova, E.I.; Benham, S.E.; Shaw, L.J.; Clark, J.M. Management impacts on the dissolved organic carbon release from deadwood, ground vegetation and the forest floor in a temperate Oak woodland. Sci. Total Environ. 2022, 805, 150399. [Google Scholar] [CrossRef]
- Nazari, M.; Pausch, J.; Bickel, S.; Bilyera, N.; Rashtbari, M.; Razavi, B.S.; Zamanian, K.; Sharififar, A.; Shi, L.; Dippold, M.A.; et al. Keeping thinning-derived deadwood logs on forest floor improves soil organic carbon, microbial biomass, and enzyme activity in a temperate spruce forest. Eur. J. For. Res. 2023, 142, 287–300. [Google Scholar] [CrossRef]
- Sun, Q.; Yao, D.; Li, X.; Jia, Z.; Liu, R.; Liang, Q. Optimizing the process of logging residue of Larix principis-rupprechtii based on orthogonal experiment. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2019, 48, 633–639. [Google Scholar] [CrossRef]
- Tian, J.; Pausch, J.; Yu, G.; Blagodatskaya, E.; Gao, Y.; Kuzyakov, Y. Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect. Appl. Soil Ecol. 2015, 90, 1–10. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Cao, W.; Yang, Y.; Hu, Y.; He, T.; Li, Z.; Wang, P.; Chen, X.; Chen, J.; et al. Legume cover crops sequester more soil organic carbon than non-legume cover crops by stimulating microbial transformations. Geoderma 2024, 450, 117024. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, M.; Li, F.; Bai, Y.; Hou, J.; Li, X.; Cao, R.; Deng, Y.; Jiang, Y.; Wang, H.; et al. Changes in soil bacterial communities and functional groups beneath coarse woody debris across a subalpine forest successional series. Glob. Ecol. Conserv. 2023, 43, e02436. [Google Scholar] [CrossRef]
- Perron, T.; Kouakou, A.; Simon, C.; Mareschal, L.; Frederic, G.; Soumahoro, M.; Kouassi, D.; Rakotondrazafy, N.; Rapidel, B.; Laclau, J.P.; et al. Logging residues promote rapid restoration of soil health after clear-cutting of rubber plantations at two sites with contrasting soils in Africa. Sci. Total Environ. 2022, 816, 151526. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hao, Y.; Wang, W.; Biederman, J.A.; Zheng, Z.; Wang, Y.; Tudi, M.; Qian, R.; Zhang, B.; Che, R.; et al. Effects of extra-extreme precipitation variability on multi-year cumulative nitrous oxide emission in a semiarid grassland. Agric. For. Meteorol. 2023, 343, 109761. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Zhuang, L.Y.; Yang, J.P.; Yang, F.; Yue, K.; Ni, X.Y.; Xu, Z.F.; Wu, F.Z.; Li, H.; Bol, R. Woody debris dominates the exports of carbon and nitrogen from headwater streams in an alpine forest. Ecohydrology 2023, 16, 807. [Google Scholar] [CrossRef]
- Ai, L.; Wu, F.; Fan, X.; Yang, Y.; Zhang, Y.; Zheng, X.; Zhu, J.; Ni, X. Different effects of litter and root inputs on soil enzyme activities in terrestrial ecosystems. Appl. Soil Ecol. 2023, 183, 104764. [Google Scholar] [CrossRef]
- Lagomarsino, A.; De Meo, I.; Agnelli, A.E.; Paletto, A.; Mazza, G.; Bianchetto, E.; Pastorelli, R. Decomposition of black pine (Pinus nigra J. F. Arnold) deadwood and its impact on forest soil components. Sci. Total Environ. 2021, 754, 142039. [Google Scholar] [CrossRef]
- Pan, Y.-x.; Li, X.-r.; Wang, Z.-r.; Feng, L.; Huang, L.; Wang, B.-y.; Sun, J.-y. Soil extracellular enzymes characteristics and their controlling factors along the elevation gradient in Qinghai-Tibet Plateau, China. Appl. Soil Ecol. 2023, 188, 104862. [Google Scholar] [CrossRef]
- Meena, M.; Yadav, G.; Sonigra, P.; Nagda, A.; Mehta, T.; Swapnil, P.; Harish; Marwal, A.; Kumar, S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. Microb. Ecol. 2023, 86, 49–74. [Google Scholar] [CrossRef]
- Abay, P.; Gong, L.; Luo, Y.; Zhu, H.; Ding, Z. Soil extracellular enzyme stoichiometry reveals the nutrient limitations in soil microbial metabolism under different carbon input manipulations. Sci. Total Environ. 2024, 913, 169793. [Google Scholar] [CrossRef]
- Xu, M.P.; Zhi, R.C.; Jian, J.N.; Feng, Y.Z.; Han, X.H.; Zhang, W. Changes in Soil Organic C Fractions and C Pool Stability Are Mediated by C-Degrading Enzymes in Litter Decomposition of Robinia pseudoacacia Plantations. Microb. Ecol. 2023, 86, 1189–1199. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Sci. Total Environ. 2024, 909, 168627. [Google Scholar] [CrossRef]
- Esiana, B.; Coates, C.; Adderley, W.P.; Bol, R. Phenoloxidase activity and organic carbon dynamics in historic Anthrosols in Scotland, UK. PLoS ONE 2021, 16, e0259205. [Google Scholar] [CrossRef] [PubMed]
- Blonska, E.; Piaszczyk, W.; Staszel, K.; Lasota, J. Enzymatic activity of soils and soil organic matter stabilization as an effect of components released from the decomposition of litter. Appl. Soil Ecol. 2021, 157, 103723. [Google Scholar] [CrossRef]
- Giannetta, B.; Plaza, C.; Galluzzi, G.; Benavente-Ferraces, I.; García-Gil, J.C.; Panettieri, M.; Gascó, G.; Zaccone, C. Distribution of soil organic carbon between particulate and mineral-associated fractions as affected by biochar and its co-application with other amendments. Agric. Ecosyst. Environ. 2024, 360, 108777. [Google Scholar] [CrossRef]
Layer (cm) | Treatment | SBD (g·cm−3) | SMC (%) | pH | SOC (g·kg−1) | TN (g·kg−1) | TP (mg·kg−1) | TK (mg·kg−1) | NH4+-N (mg·kg−1) | NO3−-N (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
0–10 | CK | 0.93 ± 0.10 A | 28.24 ± 4.36 A | 5.70 ± 0.10 A | 40.97 ± 4.15 A | 3.12 ± 0.26 A | 733.47 ± 100.11 A | 5.59 ± 0.25 AB | 1.04 ± 0.38 A | 45.26 ± 1.85 A |
LR | 0.9 A ± 0.02 A | 26.06 ± 1.35 A | 5.53 ± 0.07 A | 42.41 ± 2.20 A | 3.22 ± 0.66 A | 767.86 ± 58.97 A | 5.85 ± 0.18 A | 1.26 ± 0.02 A | 21.68 ± 2.28 C | |
MR | 1.08 ± 0.03 A | 25.39 ± 2.43 A | 5.70 ± 0.21 A | 37.30 ± 3.75 A | 2.19 ± 0.20 B | 707.53 ± 35.54 A | 5.12 ± 0.18 BC | 0.92 ± 0.17 A | 15.03 ± 0.26 D | |
HR | 0.94 ± 0.11 A | 26.93 ± 5.83 A | 5.83 ± 0.15 A | 44.94 ± 2.92 A | 3.71 ± 0.53 A | 809.91 ± 81.83 A | 4.69 ± 0.10 C | 0.97 ± 0.33 A | 27.85 ± 0.68 B | |
10–20 | CK | 1.29 ± 0.11 A | 21.82 ± 0.34 A | 5.93 ± 0.03 A | 28.81 ± 1.09 A | 1.83 ± 0.37 A | 546.54 ± 31.83 A | 5.58 ± 0.14 A | 0.59 ± 0.05 A | 29.05 ± 8.10 A |
LR | 1.10 ± 0.06 A | 22.68 ± 1.32 A | 5.73 ± 0.17 A | 29.12 ± 1.01 A | 1.92 ± 0.13 A | 645.49 ± 99.13 A | 5.86 ± 0.08 A | 1.32 ± 0.65 A | 14.51 ± 3.37 A | |
MR | 1.09 ± 0.03 A | 21.90 ± 1.07 A | 5.63 ± 0.09 A | 28.78 ± 2.83 A | 1.97 ± 0.38 A | 570.46 ± 30.95 A | 5.27 ± 0.47 AB | 0.67 ± 0.05 A | 14.90 ± 1.87 A | |
HR | 1.16 ± 0.14 A | 21.6 ± 1.18 AA | 5.80 ± 0.15 A | 27.24 ± 1.74 A | 1.86 ± 0.46 A | 577.90 ± 81.56 A | 4.49 ± 0.14 B | 0.70 ± 0.06 A | 22.13 ± 2.73 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, H.; Zhang, H.; Yang, L. Retention of Fine Woody Debris Reduces Stability of Soil Organic Carbon Pool by Changing Soil Organic Carbon Fractions and Enzyme Activities in Urban Picea koraiensis Plantations. Forests 2025, 16, 434. https://doi.org/10.3390/f16030434
Xing H, Zhang H, Yang L. Retention of Fine Woody Debris Reduces Stability of Soil Organic Carbon Pool by Changing Soil Organic Carbon Fractions and Enzyme Activities in Urban Picea koraiensis Plantations. Forests. 2025; 16(3):434. https://doi.org/10.3390/f16030434
Chicago/Turabian StyleXing, Honglin, Hao Zhang, and Ling Yang. 2025. "Retention of Fine Woody Debris Reduces Stability of Soil Organic Carbon Pool by Changing Soil Organic Carbon Fractions and Enzyme Activities in Urban Picea koraiensis Plantations" Forests 16, no. 3: 434. https://doi.org/10.3390/f16030434
APA StyleXing, H., Zhang, H., & Yang, L. (2025). Retention of Fine Woody Debris Reduces Stability of Soil Organic Carbon Pool by Changing Soil Organic Carbon Fractions and Enzyme Activities in Urban Picea koraiensis Plantations. Forests, 16(3), 434. https://doi.org/10.3390/f16030434