The Short-Term Impact of Logging Intensity on the Stand State of Middle-Aged Masson Pine (Pinus massoniana Lamb.) Plantations
<p>Geographical location of and sample block distribution in the study area.</p> "> Figure 2
<p>Unit circle method stand-state evaluation of <span class="html-italic">Masson pine</span> mid-aged plantations. The differently colored sectors represent various stand state indicators. The area of the sector that is colored in represents the magnitude of each stand state indicator value, with a larger area signifying a better indicator. The symbol ω in the upper right corner represents the value of the comprehensive evaluation of each forest stand state.</p> "> Figure 3
<p>Principal component analysis-based stand-state evaluation of <span class="html-italic">Masson pine</span> mid-aged plantations. (<b>a</b>) Based on the principal component analysis, the load values of stand state indicators; Different colored boxes represent different logging intensity sample areas; (<b>b</b>) based on the principal component analysis, the ranking of stand state indicator weights.</p> "> Figure 4
<p>Correlation analysis of unit circle method versus principal component analysis stand-state evaluation results.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Block Setup and Survey
2.3. Evaluation Index Measuring Forest Stand State
2.4. Comprehensive Evaluation of Stand State
2.5. Statistical Analysis
3. Results
3.1. Impact of Various Logging Intensities on Stand State Indicators in Middle-Aged P. massoniana Plantations
3.2. Comprehensive Evaluation of Stand States in Middle-Aged P. massoniana Plantations Using the Unit Circle Method
3.3. Stand-State Evaluation of Middle-Aged P. massoniana Plantations Using Principal Component Analysis
3.4. Comparative Analysis of Stand-State Evaluations Using the Unit Circle Method Versus Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Lin, X.; Bettinger, P.; Liu, Z. The contributions of stand characteristics on carbon sequestration potential are triple that of climate variables for Larix spp. plantations in northeast China. Sci. Total Environ. 2024, 911, 168726. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.S.; Wagner, M.R. Forest Plantations and Biodiversity: A Fresh Perspective. J. For. 2007, 105, 307–313. [Google Scholar] [CrossRef]
- Pawson, S.M.; Brockerhoff, E.G.; Meenken, E.D.; Didham, R.K. Non-native plantation forests as alternative habitat for native forest beetles in a heavily modified landscape. Biodivers. Conserv. 2008, 17, 1127–1148. [Google Scholar] [CrossRef]
- Coote, L.; French, L.J.; Moore, K.M.; Mitchell, F.J.G.; Kelly, D.L. Can plantation forests support plant species and communities of semi-natural woodland? For. Ecol. Manag. 2012, 283, 86–95. [Google Scholar] [CrossRef]
- Pawson, S.M.; Brin, A.; Brockerhoff, E.G.; Lamb, D.; Payn, T.W.; Paquette, A.; Parrotta, J.A. Plantation forests, climate change and biodiversity. Biodivers. Conserv. 2013, 22, 1203–1227. [Google Scholar] [CrossRef]
- Jiménez, M.N.; Spotswood, E.N.; Cañadas, E.M.; Navarro, F.B. Stand management to reduce fire risk promotes understorey plant diversity and biomass in a semi-arid Pinus halepensis plantation. Appl. Veg. Sci. 2015, 18, 467–480. [Google Scholar] [CrossRef]
- Muñoz Flores, H.J.; Sáenz Reyes, J.T.; García Sánchez, J.J.; Hernández Máximo, E.; Anguiano Contreras, J. Áreas Potenciales Para Establecer Plantaciones Forestales Comerciales de Pinus pseudostrobus Lindl. y Pinus greggii Engelm. en Michoacán. Rev. Mex. Cienc. For. 2011, 2, 29–44. [Google Scholar]
- Haughian, S.R.; Frego, K.A. Short-term effects of three commercial thinning treatments on diversity of understory vascular plants in white spruce plantations of northern New Brunswick. For. Ecol. Manag. 2016, 370, 45–55. [Google Scholar] [CrossRef]
- Ming, A.; Jia, H.; Zhao, J.; Tao, Y.; Li, Y. Above- and Below-Ground Carbon Stocks in an Indigenous Tree (Mytilaria laosensis) Plantation Chronosequence in Subtropical China. PLoS ONE 2014, 9, e109730. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Q.; Xu, M.; Chi, Y.; Shen, R.; Li, P.; Dai, H. Responses of Pinus massoniana and Pinus taeda to freezing in temperate forests in central China. Scand. J. For. Res. 2012, 27, 520–531. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Zhou, Y. Factors influencing the evolution of human-driven rocky desertification in karst areas. Land Degrad. Dev. 2021, 32, 817–829. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, J.; Zhang, C.; Zhang, Z. Effects of Cadmium Stress on Seed Germination and Physiology and Biochemistry during Early Seedling Growth of Masson Pine (Pinus massoniana Lamb.). For. Sci. 2024, 70, 242–249. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, H.; Tan, J.; Feng, Y.; Huang, Y. Selection of superior families of Pinus massoniana in southern China for large-diameter construction timber. J. For. Res. 2020, 31, 475–484. [Google Scholar] [CrossRef]
- Fu, L.; Lei, X.; Hu, Z.; Zeng, W.; Tang, S.; Marshall, P.; Cao, L.; Song, X.; Yu, L.; Liang, J. Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China. Ann. For. Sci. 2017, 74, 42. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Li, X.; Zhang, J. Contribution of soil fauna to the degradation of recalcitrant components in Cinnamomum camphora foliar litter in different-sized gaps in Pinus massoniana plantations. J. For. Res. 2019, 30, 931–941. [Google Scholar] [CrossRef]
- Li, M.; Du, M.; Nie, C. Research Advances in Soil Improvement of Pinus massoniana Plantation. World For. Res. 2014, 27, 31–36. [Google Scholar]
- You, Y.; Huang, X.; Zhu, H.; Liu, S.; Liang, H.; Wen, Y.; Wang, H.; Cai, D.; Ye, D. Positive interactions between Pinus massoniana and Castanopsis hystrix species in the uneven-aged mixed plantations can produce more ecosystem carbon in subtropical China. For. Ecol. Manag. 2018, 410, 193–200. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Wang, H. Development strategy and management countermeasures of planted forests in China: Transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services. Acta Ecol. Sin. 2018, 38, 1–10. [Google Scholar]
- Zeng, J.; Lei, Y.; Jia, H.; Cai, D.; Tang, J. Dynamic Growth Response of Pinus massoniana Plantation on Intensive Thinning in Southwestern Guangxi, China. For. Res. 2017, 30, 335–341. [Google Scholar]
- Olajuyigbe, S.; Tobin, B.; Saunders, M.; Nieuwenhuis, M. Forest thinning and soil respiration in a Sitka spruce forest in Ireland. Agric. For. Meteorol. 2012, 157, 86–95. [Google Scholar] [CrossRef]
- Wic Baena, C.; Andrés-Abellán, M.; Lucas-Borja, M.E.; Martínez-García, E.; García-Morote, F.A.; Rubio, E.; López-Serrano, F.R. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). For. Ecol. Manag. 2013, 308, 223–230. [Google Scholar] [CrossRef]
- Trentini, C.P.; Campanello, P.I.; Villagra, M.; Ritter, L.; Ares, A.; Goldstein, G. Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. For. Ecol. Manag. 2017, 384, 236–247. [Google Scholar] [CrossRef]
- Zhao, B.; Cao, J.; Geng, Y.; Zhao, X.; von Gadow, K. Inconsistent responses of soil respiration and its components to thinning intensity in a Pinus tabuliformis plantation in northern China. Agric. For. Meteorol. 2019, 265, 370–380. [Google Scholar] [CrossRef]
- Ye, S.; Zheng, Z.; Diao, Z.; Ding, G.; Bao, Y.; Liu, Y.; Gao, G. Effects of Thinning on the Spatial Structure of Larix principis-rupprechtii Plantation. Sustainability 2018, 10, 1250. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, X.; Guan, H.; Meng, Y.; Ruan, J.; Wang, Z. Effect of Thinning on the Spatial Structure of a Larix gmelinii Rupr. Secondary Forest in the Greater Khingan Mountains. Forests 2018, 9, 720. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Yang, L. Impact of Selective Logging of Secondary Forest of Tilia Amurensis on Stand Structure After 20 Years. Pak. J. Agric. Sci. 2021, 58, 411–420. [Google Scholar]
- Yücesan, Z.; Özçelik, S.; Oktan, E. Effects of thinning on stand structure and tree stability in an afforested oriental beech (Fagus orientalis Lipsky) stand in northeast Turkey. J. For. Res. 2015, 26, 123–129. [Google Scholar] [CrossRef]
- Wei, L.X.; Geng, Y.; Cui, K.D.; Qiao, X.T.; Yue, Q.M.; Fan, C.Y.; Zhang, C.Y.; Zhao, X.H. Responses of tree growth to harvesting intensity among forest strata and growth stages in abroadleaved Korean pine forest. Chin. J. Plant Ecol. 2022, 46, 642–655. [Google Scholar] [CrossRef]
- Hui, G.; Zhang, G.; Zhao, Z.; Yang, A. Methods of Forest Structure Research: A Review. For. Manag. 2019, 5, 142–154. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Y.; Dong, L.; Liu, Z.; Chen, Y. Comprehensive evaluation of spatial structure state for the main forest types in Maoershan mountain. J. Cent. South Univ. For. Technol. 2021, 41, 131–139. [Google Scholar]
- Zhao, Z.; Hui, G.; Liu, W.; Hu, Y.; Zhang, G. A Novel Method for Calculating Stand Structural Diversity Based on the Relationship of Adjacent Trees. Forests 2022, 13, 343. [Google Scholar] [CrossRef]
- Zhang, G.; Hui, G.; Zhang, G.; Hu, Y.; Zhao, Z. A Novel Comprehensive Evaluation Method of Forest State Based on Unit Circle. Forests 2019, 10, 5. [Google Scholar] [CrossRef]
- Hui, G.; Zhang, G.; Zhao, Z.; Hu, Y.; Liu, W.; Zhang, S.; Bai, C. A New Rule of π Value of Natural Mixed Forest Optimal Stand State. Sci. Silvae Sin. 2016, 52, 1–8. [Google Scholar]
- Zhao, Z.; Hui, G. Forest Naturalness Evaluation Method Based on Stand State Characters: A Case Study of Gansu Xiaolongshan Forests. Sci. Silvae Sin. 2011, 47, 9–16. [Google Scholar]
- Pukkala, T.; Gadow, K. Continuous Cover Forestry; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Hui, G.; Zhang, L.; Hu, Y.; Wang, H.; Zhang, G. Stand crowding degree and its application. J. Beijing For. Univ. 2016, 38, 1–6. [Google Scholar]
- Zhao, Z.; Hui, G.; Hu, Y.; Li, Y.; Wang, H. Method and application of stand spatial advantage degree based on the neighborhood comparison. J. Beijing For. Univ. 2014, 36, 78–82. [Google Scholar]
- Tang, M.; Tang, S.; Li, X.; Li, Z. Tree Species Composition Index and Its Application. For. Grassl. Resour. Res. 2003, 33–36. [Google Scholar] [CrossRef]
- Cabello-Solorzano, K.; Ortigosa De Araujo, I.; Peña, M.; Correia, L.; Tallón-Ballesteros, A.J. The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis. In Proceedings of the 18th International Conference on Soft Computing Models in Industrial and Environmental Applications, Salamanca, Spain, 5–7 September 2023; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Hui, G.; Zhao, Z.; Zhang, G. Priority of management measures for natural forests based on the stand state. J. Beijing For. Univ. 2016, 38, 1–10. [Google Scholar]
- Mäkinen, H.; Isomäki, A. Thinning intensity and growth of Norway spruce stands in Finland. Forestry 2004, 77, 349–364. [Google Scholar] [CrossRef]
- Štefančík, I. Development of target (crop) trees in beech (Fagus sylvatica L.) stand with delayed initial tending and managed by different thinning methods. J. For. Sci. 2013, 59, 253–259. [Google Scholar] [CrossRef]
- He, H.; Zhang, Z.; Zhang, C.; Hao, M.; Yao, J.; Xie, Z.; Gao, H.; Zhao, X. Short-Term Effects of Thinning Intensity on Stand Growth and Species Diversity of Mixed Coniferous and Broad-Leaved Forest in Northeastern China. Sci. Silvae Sin. 2019, 55, 1–12. [Google Scholar]
- Li, C.; Dong, L.; Liu, Z. Effect of Tending Cutting Intensity on the Stand Structure and Accumulation of Natural Larch Forest. J. Northeast For. Univ. 2021, 49, 1–5. [Google Scholar]
- Ghalandarayeshi, S.; Nord-Larsen, T.; Johannsen, V.K.; Larsen, J.B. Spatial patterns of tree species in Suserup Skov—A semi-natural forest in Denmark. For. Ecol. Manag. 2017, 406, 391–401. [Google Scholar] [CrossRef]
- Hui, G.; Hu, Y.; Liu, R. Methods of Analyzing Stand Spatial Dominance in Forest Observational Studies. J. Temp. For. Res. 2019, 2, 1–6+12. [Google Scholar]
- Chang, C.; Lü, K.; Zhou, M.; Chen, X.; Zhen, T.; Yan, D. Effects of Thinning on the Spatial Structure and Stability of Pinus taiwanensis Plantations. J. Northwest For. Univ. 2022, 37, 138–144. [Google Scholar]
- Yen, T.; Lee, J.; Li, C.; Chen, Y. Aboveground biomass and vertical distribution of crown for Taiwan red cypress 20 years after thinning. Dendrobiology 2013, 70, 109–116. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Meng, Y.; Li, C.; Zhang, Z. Thinning Effects on Stand Structure and Carbon Content of Secondary Forests. Forests 2022, 13, 512. [Google Scholar] [CrossRef]
- Bradford, J.B.; Palik, B.J. A comparison of thinning methods in red pine: Consequences for stand-level growth and tree diameter. Can. J. For. Res. 2009, 39, 489–496. [Google Scholar] [CrossRef]
- Swinfield, T.; Afriandi, R.; Antoni, F.; Harrison, R.D. Accelerating tropical forest restoration through the selective removal of pioneer species. For. Ecol. Manag. 2016, 381, 209–216. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, S.; Lu, Y.; Froese, R.E.; Ming, A.; Li, Q. Thinning Effects on the Tree Height–Diameter Allometry of Masson Pine (Pinus massoniana Lamb.). Forests 2019, 10, 1129. [Google Scholar] [CrossRef]
- Lemire, C.; Bédard, S.; Guillemette, F.; Pothier, D. Changes in growth dominance after partial cuts in even- and uneven-aged northern hardwood stands. For. Ecol. Manag. 2020, 466, 118115. [Google Scholar] [CrossRef]
- Hu, J.; Herbohn, J.; Chazdon, R.L.; Baynes, J.; Vanclay, J.K. Long-term growth responses of three Flindersia species to different thinning intensities after selective logging of a tropical rainforest. For. Ecol. Manag. 2020, 476, 118442. [Google Scholar] [CrossRef]
- Britwum Acquah, S.; Marshall, P.L.; Eskelson, B.N.I.; Moss, I.; Barbeito, I. Changes in size inequality and growth dominance in thinned and unthinned uneven-aged interior Douglas-fir dominated stands. For. Ecol. Manag. 2022, 524, 120517. [Google Scholar] [CrossRef]
- Thorpe, H.C.; Thomas, S.C.; Caspersen, J.P. Residual-tree growth responses to partial stand harvest in the black spruce (Picea mariana) boreal forest. Can. J. For. Res. 2007, 37, 1563–1571. [Google Scholar] [CrossRef]
- Yue, Q.; He, H.; Zhang, C.; Zhao, X.; Hao, M. Responses of tree growth and stand productivity to harvesting disturbance in Korean pine-broadleaved forests. Acta Ecol. Sin. 2024, 44, 2019–2028. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis and Factor Analysis. In Principal Component Analysis; Springer: New York, NY, USA, 2002; pp. 150–166. [Google Scholar]
- Härdle, W.K.; Simar, L.; Fengler, M.R. Principal Component Analysis. In Applied Multivariate Statistical Analysis; Springer International Publishing: Cham, Switzerland, 2024; pp. 309–345. [Google Scholar]
Item | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
Mean DBH (cm) | 13.5 ± 0.75 | 14.2 ± 0.99 | 13.5 ± 1.80 | 14.3 ± 1.43 | 14.6 ± 1.43 |
Mean Height (m) | 11.5 ± 0.49 | 11.4 ± 0.51 | 10.88 ± 1.49 | 12.1 ± 2.13 | 12.4 ± 2.01 |
Tree density (No. of trees·hm−2) | 1651 ± 216 | 1331 ± 188 | 1319 ± 195 | 1028 ± 184 | 801 ± 159 |
Canopy cover | 0.88 ± 0.025 | 0.84 ± 0.025 | 0.79 ± 0.025 | 0.69 ± 0.025 | 0.57 ± 0.025 |
Basal area (m2·hm−2) | 27.49 ± 3.64 | 23.93 ± 3.65 | 21.50 ± 2.82 | 18.17 ± 1.38 | 15.15 ± 0.93 |
Volume (m3·hm−2) | 186.1 ± 21.2 | 159.1 ± 31.6 | 138.4 ± 26.2 | 126.9 ± 24.3 | 106.5 ± 9.8 |
Item | Stand Characteristics | Indicators | Formula or Definition |
---|---|---|---|
Structure | DBH distribution (H) | q value | The DBH of trees is divided into classes with a width of 2 cm, and is represented by Meyer’s negative exponential distribution, where N is the number of trees; e is the base of the natu-ral logarithm; d is the DBH; a is a negative expo-nential distribution structure constant and k is a constant. , where h indicates that the diameter step is 2 cm. If the q value falls between 1.2 and 1.7, it means that it is in the reasonable distribution range of different age forest diameters [34]. |
Tree height distribution (V) | Gini coefficient | , where n represents the number of individual trees, Wi represents the proportion of the height of the i-th individual tree to the total tree height, and Qi represents the cumulative value of Wi [35]. | |
Stand density (K) | Crowding degree of forest | , where N represents the number of trees per hectare, represents the average crown width. If the value of K falls within the range of 0.6 to 0.8, it indicates a reasonable stand density [36]. | |
Vitality | Stand dominance (U) | Dominant tree species proportion | The proportion of count of dominant canopy trees to count of total trees in a forest. |
Stand growth (B) | Potential density | represents the cross-sectional area of the forest stand and Gmax represents the potential maximum cross-sectional area of the forest stand. Here, Gmax is defined as the product of the average cross-sectional area of the 50% largest individuals in the forest stand and the total tree count [32,37]. | |
Tree health (Q) | Proportion of healthy trees | The proportion of healthy trees (without pests and diseases, and without deformities such as broken branches, bending, hollow trunks, etc.) to the total number of trees in a forest stand [32,33]. | |
Diversity | Species composition (Z) | Index of tree species composition | , where Pi represents the volume proportion of the i-th tree species, and S represents the number of tree species in the sample block. Note: The composition of tree species is expressed in decimal notation [38]. |
Species diversity (D) | Simpson index | , where Pi represents the proportion of individuals of the i-th tree species, and S represents the number of tree species present in the block [34]. | |
Species evenness (P) | Pielou index | , where S represents the number of tree species present in the block [34]. |
Indicators | Block | Logging | ||
---|---|---|---|---|
Degree of Freedom | F Ration | Degree of Freedom | F Ration | |
DBH distribution (H) | 3 | 1.534 | 4 | 0.570 |
Tree height distribution (V) | 3 | 1.569 | 4 | 0.854 |
Stand density (K) | 3 | 0.552 | 4 | 1.259 × 1030 *** |
Stand dominance (U) | 3 | 6.690 ** | 4 | 0.794 |
Stand growth (B) | 3 | 1.886 | 4 | 0.173 |
Tree health (Q) | 3 | 1.491 | 4 | 11.187 *** |
Species composition (Z) | 3 | 4.094 * | 4 | 4.539 * |
Species diversity (D) | 3 | 3.138 | 4 | 3.939 * |
Species evenness (P) | 3 | 2.512 | 4 | 3.252 |
Comprehensive evaluation (ω) | 3 | 15.638 | 4 | 44.042 *** |
Indicators | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
DBH distribution (H) | 0.219 ± 0.03 a | 0.201 ± 0.024 a | 0.198 ± 0.009 a | 0.222 ± 0.042 a | 0.206 ± 0.032 a |
Tree height distribution (V) | 0.119 ± 0.037 a | 0.135 ± 0.025 a | 0.117 ± 0.014 a | 0.13 ± 0.04 a | 0.097 ± 0.044 a |
Stand density (K) | 0.55 ± 0 c | 1 ± 0 a | 1 ± 0 a | 1 ± 0 a | 0.85 ± 0 b |
Stand dominance (U) | 0.046 ± 0.048 a | 0.091 ± 0.173 a | 0.028 ± 0.05 a | 0.17 ± 0.333 a | 0.182 ± 0.348 a |
Stand growth (B) | 0.639 ± 0.033 a | 0.658 ± 0.03 a | 0.642 ± 0.023 a | 0.641 ± 0.045 a | 0.648 ± 0.055 a |
Tree health (Q) | 0.788 ± 0.038 d | 0.868 ± 0.07 c | 0.9 ± 0.071 bc | 0.96 ± 0.045 ab | 1 ± 0 a |
Species composition (Z) | 0.187 ± 0.122 b | 0.422 ± 0.128 a | 0.475 ± 0.105 a | 0.494 ± 0.211 a | 0.401 ± 0.144 ab |
Species diversity (D) | 0.214 ± 0.144 b | 0.452 ± 0.147 a | 0.512 ± 0.097 a | 0.537 ± 0.218 a | 0.455 ± 0.143 a |
Species evenness (P) | 0.138 ± 0.079 b | 0.219 ± 0.061 ab | 0.235 ± 0.038 a | 0.269 ± 0.072 a | 0.224 ± 0.043 ab |
Method | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
Unit circle method | 0.170 ± 0.020 c | 0.305 ± 0.026 b | 0.316 ± 0.024 ab | 0.355 ± 0.039 a | 0.308 ± 0.033 b |
Principal component analysis | 0.194 ± 0.149 b | 0.695 ± 0.124 a | 0.749 ± 0.101 a | 0.810 ± 0.184 a | 0.648 ± 0.134 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, J.; Zhao, Z.; Chai, Z. The Short-Term Impact of Logging Intensity on the Stand State of Middle-Aged Masson Pine (Pinus massoniana Lamb.) Plantations. Forests 2025, 16, 183. https://doi.org/10.3390/f16010183
Tu J, Zhao Z, Chai Z. The Short-Term Impact of Logging Intensity on the Stand State of Middle-Aged Masson Pine (Pinus massoniana Lamb.) Plantations. Forests. 2025; 16(1):183. https://doi.org/10.3390/f16010183
Chicago/Turabian StyleTu, Jing, Zhongwen Zhao, and Zongzheng Chai. 2025. "The Short-Term Impact of Logging Intensity on the Stand State of Middle-Aged Masson Pine (Pinus massoniana Lamb.) Plantations" Forests 16, no. 1: 183. https://doi.org/10.3390/f16010183
APA StyleTu, J., Zhao, Z., & Chai, Z. (2025). The Short-Term Impact of Logging Intensity on the Stand State of Middle-Aged Masson Pine (Pinus massoniana Lamb.) Plantations. Forests, 16(1), 183. https://doi.org/10.3390/f16010183