Correlating Fire Incidents with Meteorological Variables in Dry Temperate Forest
<p>Map of Diamer District, Gilgit-Baltistan.</p> "> Figure 2
<p>(<b>a</b>) Digital elevation model value, (<b>b</b>) hill shade value, (<b>c</b>) aspect value, and (<b>d</b>) slope value.</p> "> Figure 3
<p>(<b>a</b>) Diamer district’s annual burned area of forest fires, 1998–2023; (<b>b</b>) Diamer District’s annual forest fire occurrence of different causes from 1998 to 2023.</p> "> Figure 4
<p>(<b>a</b>) Diamer District, Julian dates of fires from 1998 to 2023; (<b>b</b>) Diamer District, Julian dates of huge fires from 1998 to 2023.</p> "> Figure 5
<p>Julian dates of the earliest and latest forest fires in the Diamer District from 1998 to 2023. blue bullets and line signifies early fire events and its regression, red bullets and line shows later fire events and its regression.</p> "> Figure 6
<p>Diamer District, annual climate conditions in May, June, and July from 1998 to 2023. (<b>a</b>) temperature; (<b>b</b>) relative humidity; (<b>c</b>) annual rainfall; (<b>d</b>) wind speed.</p> "> Figure 7
<p>Climate–fire relationships in the Diamer District from 1998 to 2023. (<b>a</b>) temperature; (<b>b</b>) relative humidity; (<b>c</b>) rainfall; (<b>d</b>) wind speed. bullets, lines, and shadows represents fire events, regression and correlation, respectively.</p> "> Figure 8
<p>Climate–fire relationships in the Diamer District in May from 1998 to 2023. (<b>a</b>) temperature; (<b>b</b>) relative humidity; (<b>c</b>) rainfall; (<b>d</b>) wind speed.</p> "> Figure 9
<p>Squared error loss across iterations for random forest and GBM models. The black curve is training set loss and the green and red curves represent validation loss for the Random Forest and Gradient Boosting Machine models, respectively. The blue dashed line represents the optimal point of iteration for the Gradient Boosting Machine model. The figure represents the model’s learning dynamics: Random Forest depicts a relatively low overall error with more stable convergence compared to Gradient Boosting Machine, showing a growing error from overfitting at the later iterations.</p> "> Figure 10
<p>Feature importance plot for Random Forest.</p> "> Figure 11
<p>Variable importance in the Gradient Boosting Model (GBM). The x-axis is the relative influence of each variable on a scale from 0 to 100%. The higher the value, the more significantly the variable contributes to the model’s predictions. In this figure, ‘forest_fire_alarms’ is the most important variable, contributing almost entirely to the prediction, while ‘MEAN_ELEVATION’ shows negligible influence.</p> "> Figure 12
<p>Residuals (predicted—actual burned area) for the Random Forest Model, illustrating that the x-axis shows the actual burned area (in hectares), while the y-axis indicates the residuals. The point that is closer to the red dashed line at 0 indicates better predictions. Negative residuals suggest the model tends to underestimate, especially for larger burned areas. Additional analysis suggests potential bias in the model’s handling of larger fire events.</p> "> Figure 13
<p>Residuals (predicted—actual burned area) for the Gradient Boosting Model (GBM), showing the actual burned area (in hectares) on the x-axis, while residuals are on the y-axis. Points closer to the red dashed line suggest better predictions. Larger residuals, particularly for larger burned areas, suggest the model underestimates burn areas, similar to the Random Forest model. This pattern reflects the challenges of accurately predicting extreme fire events using the GBM.</p> "> Figure 14
<p>Partial Dependence Plot (PDP) for the Log of Burned Area in the Random Forest Model, showing the log-transformed burned area (in hectares) on the x-axis, while indicating the predicted burned area on the y-axis. The plot suggests that for low log burned area values (below 3), the predicted area remains stable at around 3000 hectares. However, predictions increase sharply when the log burned area exceeds, highlighting that the model predicts significantly higher burned areas for larger fires, suggesting the model’s sensitivity to extreme fire events.</p> "> Figure 15
<p>Partial Dependence Plot (PDP) for the Log of Burned Area in the Gradient Boosting Model (GBM).</p> "> Figure 16
<p>Correlation heatmap of fire metrics, including meteorological and environmental factors. It shows the interrelation between different fire metrics and the environmental parameters of precipitation, temperature, and relative humidity.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Meteorological Data
2.2.2. The DEM, Hill Shape, Aspect Value, and Slope Value
2.3. Forest Fires and Climate Data
2.4. Data Limitations and Contextual Variables
2.5. Modeling Approach
2.5.1. Dataset Preparation
2.5.2. Random Forest Model
- indicates the prediction of the Random Forest for input x,
- n represents the number of trees in the forest
- indicates the i-th tree for the input x.
- represents observed value
- represents predicted value
- represent the number of observations.
2.5.3. Model Validation for Random Forest
2.5.4. Gradient Boosting Machine Model (GBM)
- is the prediction function at the mmm-th iteration
- is the learning rate,
- is the prediction of the weak learner (often a decision tree) at iteration mmm.
2.5.5. Statistical Validation for Models
2.5.6. Statistical Analysis
3. Results
3.1. Burned Area Trends over Time
3.2. Periodic Analysis of Forest Fire Events
3.3. Correlation of Forest Fires with Climate Variables
3.4. Modeling Results
3.4.1. Performance Evaluation and Model Comparison
3.4.2. Feature Importance Analysis
3.4.3. Residual Analysis
3.4.4. The Partial Dependence Plots (PDPs)
3.4.5. Correlation Matrix
3.4.6. Model Selection
3.5. Statistical Analysis Outcomes
3.6. Practical and Theoretical Implications
4. Discussion
4.1. Correlation Between Forest Fires and Time
4.2. Burned Area and Forest Fire Occurrence Patterns
4.3. Climate Factors and Forest Fires: Analyzing Trends and Implications
5. Limitations and Future Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, E.; Azhar, M.F.; Alam, E.; Rehman, Z.; Ullah, S.; Ahmad, A.; Towfiqul Islam, A.R.M.; Zaman, W.; Javed, M.; Mittal, P. Deforestation perspectives of dry temperate forests: Main drivers and possible strategies. Front. Environ. Sci. 2023, 11, 1151320. [Google Scholar] [CrossRef]
- Lin, B.; Ullah, S. Evaluating forest depletion and structural change effects on environmental sustainability in Pakistan: Through the lens of the load capacity factor. J. Environ. Manag. 2024, 353, 120174. [Google Scholar] [CrossRef]
- Jodhani, K.H.; Patel, H.; Soni, U.; Patel, R.; Valodara, B.; Gupta, N.; Patel, A.; Omar, P.j. Assessment of forest fire severity and land surface temperature using Google Earth Engine: A case study of Gujarat State, India. Fire Ecol. 2024, 20, 23. [Google Scholar] [CrossRef]
- Abbas, A.; Mubeen, M.; Younus, W.; Shakeel, Q.; Iftikhar, Y.; Bashir, S.; Zeshan, M.A.; Hussain, A. Plant Diseases and Pests, Growing Threats to Food Security of Gilgit-Baltistan, Pakistan. Sarhad J. Agric. 2023, 39, 510–520. [Google Scholar] [CrossRef]
- Nafees, M.; Rashid, W.; Sultan, H.; Khan, N.H.; Khurshid, M.; Ali, W.; Bohnett, E. Occurrence, probable causes, and management of forest wildfires in the Northern Highlands of Pakistan. Environ. Chall. 2024, 15, 100930. [Google Scholar] [CrossRef]
- Liu, M.; Jia, D. Application of remote sensing technology in forest fire fighting. City Disaster Reduct 2018, 6, 66–70. [Google Scholar]
- Santoro, A.; Venturi, M.; Piras, F.; Fiore, B.; Corrieri, F.; Agnoletti, M. Forest area changes in Cinque Terre National Park in the last 80 years. Consequences on landslides and forest fire risks. Land 2021, 10, 293. [Google Scholar] [CrossRef]
- Liang, H.; Zheng, C.; Liu, X.; Tian, Y.; Zhang, J.; Cui, W. Super-resolution reconstruction of remote sensing data based on multiple satellite sources for forest fire smoke segmentation. Remote Sens. 2023, 15, 4180. [Google Scholar] [CrossRef]
- Ying, L.; Han, J.; Du, Y.; Shen, Z. Forest fire characteristics in China: Spatial patterns and determinants with thresholds. For. Ecol. Manag. 2018, 424, 345–354. [Google Scholar] [CrossRef]
- Yang, X.; Hua, Z.; Zhang, L.; Fan, X.; Zhang, F.; Ye, Q.; Fu, L. Preferred vector machine for forest fire detection. Pattern Recognit. 2023, 143, 109722. [Google Scholar] [CrossRef]
- Gong, A.; Huang, Z.; Liu, L.; Yang, Y.; Ba, W.; Wang, H. Development of an Index for Forest Fire Risk Assessment Considering Hazard Factors and the Hazard-Formative Environment. Remote Sens. 2023, 15, 5077. [Google Scholar] [CrossRef]
- Bowman, D.M.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A. The human dimension of fire regimes on earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef]
- Israr, A.; Khan, S.M.; Abdullah, A.; Ejaz, U.; Jehangir, S.; Ahmad, Z.; Hashem, A.; Avila-Quezada, G.D.; Abd_Allah, E.F. Fire-Induced Vegetation Dynamics: An In-Depth Discourse on Revealing Ecological Transformations of the Mahaban and Surrounding Forests. Fire 2024, 7, 27. [Google Scholar] [CrossRef]
- Rafaqat, W.; Iqbal, M.; Kanwal, R.; Song, W. Study of driving factors using machine learning to determine the effect of topography, climate, and fuel on wildfire in pakistan. Remote Sens. 2022, 14, 1918. [Google Scholar] [CrossRef]
- Wasserman, T.N.; Mueller, S.E. Climate influences on future fire severity: A synthesis of climate-fire interactions and impacts on fire regimes, high-severity fire, and forests in the western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Qamer, F.M.; Shehzad, K.; Abbas, S.; Murthy, M.; Xi, C.; Gilani, H.; Bajracharya, B. Mapping deforestation and forest degradation patterns in western Himalaya, Pakistan. Remote Sens. 2016, 8, 385. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, F.; Lin, H.; Xu, S. A forest fire susceptibility modeling approach based on Light Gradient Boosting Machine algorithm. Remote Sens. 2022, 14, 4362. [Google Scholar] [CrossRef]
- Li, X.; Jia, H.; Wang, L. Remote Sensing Monitoring of Drought in Southwest China Using Random Forest and eXtreme Gradient Boosting Methods. Remote Sens. 2023, 15, 4840. [Google Scholar] [CrossRef]
- Raqeeb, A.; Nizami, S.M.; Saleem, A.; Hanif, M. Characteristics and growing stocks volume of forest stand in dry temperate forest of Chilas Gilgit-Baltistan. Open J. For. 2014, 2014, 44948. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, F.A. Impact of Karakoram highway on land use and agricultural development of Gilgit-Baltistan, Pakistan. Sarhad J. Agric. 2019, 35, 417–431. [Google Scholar] [CrossRef]
- Joshi, S.; Jasra, W.; Ismail, M.; Shrestha, R.; Yi, S.; Wu, N. Herders’ perceptions of and responses to climate change in Northern Pakistan. Environ. Manag. 2013, 52, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Meteorological Department. Meteorological Department: Government of Pakistan. Available online: https://www.pmd.gov.pk (accessed on 19 November 2024).
- Shivhare, N.; Omar, P.J.; Gupta, N.; Dikshit, P.S. Runoff estimation of Banaras Hindu University South Campus using ArcGIS and HecGeo-HMS. In Proceedings of the 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 3–5 March 2016; pp. 607–612. [Google Scholar]
- Jodhani, K.; Bansal, P.; Jain, P. Shoreline change and rate analysis of Gulf of Khambhat using Satellite images. In Advances in Water Resources and Transportation Engineering: Select Proceedings of TRACE 2020; Springer: Singapore, 2021; pp. 151–170. [Google Scholar]
- Shu, Z.; Di, X.Y.; Huang, H. Effects to forest fire occurrence of climate change in Ta He Forestry Bureau in Great Xing’an Mountain. Adv. Mater. Res. 2011, 183, 135–139. [Google Scholar] [CrossRef]
- Muhammad, S.; Mehmood, K.; Anees, S.; Tayyab, M.; Rabbi, F.; Hussain, K.; Rahman, H.; Hayat, M.; Khan, U. Assessment of regeneration response of silver fir (abies pindrow) to slope, aspect, and altitude in miandam area in district swat, Khyber-Pakhtunkhwa, Pakistan. Int. J. For. Sci. 2023, 3, 246–252. [Google Scholar]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M. Ubiquitous GIS-based forest fire susceptibility mapping using artificial intelligence methods. Remote Sens. 2020, 12, 1689. [Google Scholar] [CrossRef]
- Souane, A.A.; Khurram, A.; Huang, H.; Shu, Z.; Feng, S.; Belgherbi, B.; Wu, Z. Utilizing Machine Learning and Geospatial Techniques to Evaluate Post-Fire Vegetation Recovery in Mediterranean Forest Ecosystem: Tenira, Algeria. Forests 2025, 16, 53. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Su, Z.; Liang, H.; Wang, W.; Lin, F.; Liu, A. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. Int. J. Wildland Fire 2016, 25, 505–519. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, S.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.; Scheel Monteiro, P.M. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Lecina-Diaz, J.; Martínez-Vilalta, J.; Alvarez, A.; Banqué, M.; Birkmann, J.; Feldmeyer, D.; Vayreda, J.; Retana, J. Characterizing forest vulnerability and risk to climate-change hazards. Front. Ecol. Environ. 2021, 19, 126–133. [Google Scholar] [CrossRef]
- McWethy, D.B.; Pauchard, A.; García, R.A.; Holz, A.; González, M.E.; Veblen, T.T.; Stahl, J.; Currey, B. Landscape drivers of recent fire activity (2001–2017) in south-central Chile. PLoS ONE 2018, 13, e0201195. [Google Scholar] [CrossRef]
- Urrutia-Jalabert, R.; González, M.E.; González-Reyes, Á.; Lara, A.; Garreaud, R. Climate variability and forest fires in central and south-central Chile. Ecosphere 2018, 9, e02171. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Wu, Z.; Hasham, A.; Zhang, T.; Gu, Y.; Lu, B.; Sun, H.; Shu, Z. Analysis of PM2.5 Concentration Released from Forest Combustion in Liangshui National Natural Reserve, China. Fire 2024, 7, 311. [Google Scholar] [CrossRef]
- Barik, A.; Baidya Roy, S. Climate change strongly affects future fire weather danger in Indian forests. Commun. Earth Environ. 2023, 4, 452. [Google Scholar] [CrossRef]
- Omar, P.J.; Rai, S.P.; Tiwari, H. Study of morphological changes and socio-economic impact assessment: A case study of Koshi River. Arab. J. Geosci. 2022, 15, 1426. [Google Scholar] [CrossRef]
- Jiao, Q.; Fan, M.; Tao, J.; Wang, W.; Liu, D.; Wang, P. Forest fire patterns and lightning-caused forest fire detection in Heilongjiang Province of China using satellite data. Fire 2023, 6, 166. [Google Scholar] [CrossRef]
- Ma, W.; Feng, Z.; Cheng, Z.; Chen, S.; Wang, F. Identifying forest fire driving factors and related impacts in china using random forest algorithm. Forests 2020, 11, 507. [Google Scholar] [CrossRef]
- Gupta, N.; Patel, J.; Gupta, N.; Vishwakarma, A. Urban organic waste as a source of bioenergy for electricity generation in Bhopal, Madhya Pradesh. IOP Conf. Ser. Earth Environ. Sci. 2022, 1084, 012024. [Google Scholar] [CrossRef]
- Reddy, C.S.; Bird, N.G.; Sreelakshmi, S.; Manikandan, T.M.; Asra, M.; Krishna, P.H.; Jha, C.; Rao, P.; Diwakar, P. Identification and characterization of spatio-temporal hotspots of forest fires in South Asia. Environ. Monit. Assess. 2019, 191, 791. [Google Scholar] [CrossRef]
- Tošić, I.; Mladjan, D.; Gavrilov, M.; Živanović, S.; Radaković, M.; Putniković, S.; Petrović, P.; Mistridželović, I.K.; Marković, S. Potential influence of meteorological variables on forest fire risk in Serbia during the period 2000–2017. Open Geosci. 2019, 11, 414–425. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I. Global trends of forest loss due to fire from 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Schroeder, W.; Biswas, S.; Justice, C. Trends in vegetation fires in south and southeast Asian countries. Sci. Rep. 2019, 9, 7422. [Google Scholar] [CrossRef] [PubMed]
Type of Data | Year | Data Source |
---|---|---|
Meteorological data | 1998–2023 | https://www.pmd.gov.pk?/ (accessed on 14 March 2024) https://power.larc.nasa.gov (accessed on 14 March 2024) |
Wildfires data | 1998–2023 | https://www.fwegb.gov.pk (accessed on 18 October 2023) |
DEM data | 2023 | https://earthexplorer.usgs.gov/srtm (30 m) (accessed on 28 September 2024) |
Slope data | 2023 | https://earthexplorer.usgs.gov/srtm (30 m) (accessed on 28 September 2024) |
Burned area | 1998–2023 | https://www.fwegb.gov.pk (accessed on 12 January 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, K.; Souane, A.A.; Ahmad, H.; Suita, F.; Shu, Z.; Huang, H.; Wang, F. Correlating Fire Incidents with Meteorological Variables in Dry Temperate Forest. Forests 2025, 16, 122. https://doi.org/10.3390/f16010122
Abbas K, Souane AA, Ahmad H, Suita F, Shu Z, Huang H, Wang F. Correlating Fire Incidents with Meteorological Variables in Dry Temperate Forest. Forests. 2025; 16(1):122. https://doi.org/10.3390/f16010122
Chicago/Turabian StyleAbbas, Khurram, Ali Ahmed Souane, Hasham Ahmad, Francesca Suita, Zhan Shu, Hui Huang, and Feng Wang. 2025. "Correlating Fire Incidents with Meteorological Variables in Dry Temperate Forest" Forests 16, no. 1: 122. https://doi.org/10.3390/f16010122
APA StyleAbbas, K., Souane, A. A., Ahmad, H., Suita, F., Shu, Z., Huang, H., & Wang, F. (2025). Correlating Fire Incidents with Meteorological Variables in Dry Temperate Forest. Forests, 16(1), 122. https://doi.org/10.3390/f16010122