Assessment of the Spatiotemporal Dynamics of Suitable Habitats for Typical Halophytic Vegetation in China Based on Maxent Model and Landscape Ecology Theory
<p>Distribution records of the three species of <span class="html-italic">Tamarix</span> L. we screened for.</p> "> Figure 2
<p>Suitable habitat and proportions of three <span class="html-italic">Tamarix</span> L. species.</p> "> Figure 3
<p>Core potential habitats of the three <span class="html-italic">Tamarix</span> species (<b>a</b>); and habitat distribution of <span class="html-italic">T. chinensis</span> (<b>b</b>), <span class="html-italic">T. austromongolica</span> (<b>c</b>), and <span class="html-italic">T. leptostachya</span> (<b>d</b>).</p> "> Figure 4
<p>Land use patterns of <span class="html-italic">T. chinensis</span> (<b>a</b>–<b>e</b>), <span class="html-italic">T. austromongolica</span> (<b>f</b>–<b>j</b>), and <span class="html-italic">T. leptostachya</span> (<b>k</b>–<b>o</b>) from 1980 to 2020.</p> "> Figure 5
<p>Landscape risk indices for <span class="html-italic">T. chinensis</span> (<b>a</b>–<b>e</b>), <span class="html-italic">T. austromongolica</span> (<b>f</b>–<b>j</b>), and <span class="html-italic">T. leptostachya</span> (<b>k</b>–<b>o</b>).</p> "> Figure 6
<p>Trends and significance of landscape risk indices for <span class="html-italic">T. chinensis</span> (<b>a</b>), <span class="html-italic">T. austromongolica</span> (<b>b</b>), and <span class="html-italic">T. leptostachya</span> (<b>c</b>); area of significance statistics (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.1.1. Acquisition and Selection of Species Location Information
2.1.2. Data Sources and Preprocessing
2.2. Research Method
2.2.1. Model Analysis and Verification
2.2.2. Landscape Pattern Index
2.2.3. Trend Analysis and Significance Testing
3. Results
3.1. Model Result Analysis
3.2. Three Types of the Suitable Tamarix Habitat Spatial Pattern Characteristics
3.3. Suitable Habitat Ecological Risk Assessment
3.4. Suitable Habitat Ecological Risk Trend Analysis
4. Discussion
4.1. Optimization of Species Suitable Habitats by LERI
4.2. Three Types of Tamarisk Suitable Habitat Spatial Distribution Patterns
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, B. Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. Biology 2021, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.H.; They, N.H.; Rodrigues, L.R.; Alvarenga-Lucius, L.; Pita-Barbosa, A. Salty freshwater macrophytes: The effects of salinization in freshwaters upon non-halophyte aquatic plants. Sci. Total Environ. 2023, 857, 159608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.J.; Chen, Y.N.; Ali, S. Abiotic stress and human activities reduce plant diversity in desert riparian forests. Ecol. Indic. 2023, 152, 110340. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Michalak, M.; Kukula-Koch, W.; Ben Saad, R.; ben Romdhane, W.; Zeljković, S.Ć.; Mnif, W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022, 12, 1583. [Google Scholar] [CrossRef]
- Cao, Q.Q.; Yang, B.M.; Li, J.R.; Wang, R.S.; Liu, T.; Xiao, H.J. Characteristics of soil water and salt associated with Tamarix ramosissima communities during normal and dry periods in a semi-arid saline environment. CATENA 2020, 193, 104661. [Google Scholar] [CrossRef]
- Duan, Q.X.; Zhu, Z.H.; Wang, B.S.; Chen, M. Recent Progress on the Salt Tolerance Mechanisms and Application of Tamarisk. Int. J. Mol. Sci. 2022, 23, 3325. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Xu, X.; Ramos, T.B.; Huang, Q.; Huo, Z.; Huang, G. Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin. J. Hydrol. 2017, 552, 490–504. [Google Scholar] [CrossRef]
- Sillero, N.; Arenas-Castro, S.; Enriquez-Urzelai, U.; Vale, C.G.; Sousa-Guedes, D.; Martínez-Freiría, F.; Real, R.; Barbosa, A.M. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol. Model. 2021, 456, 109671. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Ahmadi, M.; Hemami, M.-R.; Kaboli, M.; Shabani, F. MaxEnt brings comparable results when the input data are being completed; Model parameterization of four species distribution models. Ecol. Evol. 2023, 13, e9827. [Google Scholar] [CrossRef]
- Bradie, J.; Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 2017, 44, 1344–1361. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Xia, J.B.; Lang, Y.; Zhao, Q.K.; Liu, P.; Su, L. Photosynthetic characteristics of Tamarix chinensis under different groundwater depths in freshwater habitats. Sci. Total Environ. 2021, 761, 143221. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, W.k.; Pan, B.; Yin, L. Characters of Tamarix hispida Willd Communities and Its Ecological & Physiological Adaptation. J. Desert Res. 2003, 23, 112–117. [Google Scholar]
- Yang, W.; Zhang, D.; Yin, L.; Zhang, L. Distribution and Cluster Analysis on the Similarity of the Tamarix Communities in Xinjiang. Arid Zone Res. 2002, 19, 6–11. [Google Scholar] [CrossRef]
- Fang, O.; Jia, H.; Qiu, H.; Ren, H. Age of arboreous Tamarix austromongolica and its growth response to environment in Tongde County of Qinghai, China. Chin. J. Plant Ecol. 2017, 41, 738–748. [Google Scholar]
- Hang, F.; Mang, D.; Zheng, Q.; Xiao, B.; Zhang, Y.; Fu, Q.; Du, J. Species Diversity of Tamarix ramosissima Communities in DifferentHabitats and the Relationship Between Soil Moisture and Salinityin the Middle and Lower Reaches of Shiyang River Basin. Res. Soil Water Conserv. 2022, 29, 49–56. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Xu, D.P.; Zhuo, Z.H.; Wang, R.L.; Ye, M.; Pu, B. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Glob. Ecol. Conserv. 2019, 19, e00691. [Google Scholar] [CrossRef]
- Shi, F.N.; Liu, S.L.; An, Y.; Sun, Y.X.; Zhao, S.; Liu, Y.X.; Li, M.Q. Climatic factors and human disturbance influence ungulate species distribution on the Qinghai-Tibet Plateau. Sci. Total Environ. 2023, 869, 161681. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fan, Y.; Zheng, J.H.; Guan, J.Y.; Lin, J.; Wu, J.G.; Liu, L.; Wu, R.; Liu, Y.J. Impacts of climate change and human activity on the potential distribution of Aconitum leucostomum in China. Sci. Total Environ. 2024, 912, 168829. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Z.S.; Zhu, Z.X.; Tao, Y.Z.; Xiang, J. Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model. Sci. Rep. 2023, 13, 1806. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Wang, H.M.; Tong, J.P.; Bai, Y.; Alatalo, J.M.; Liu, G.; Fang, Z.; Zhang, F. Impacts of environment and human activity on grid-scale land cropping suitability and optimization of planting structure, measured based on the MaxEnt model. Sci. Total Environ. 2022, 836, 155356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.F.; Lei, M.; Wei, C.H.; Guo, X.X. Assessing the suitable regions and the key factors for three Cd-accumulating plants (Sedum alfredii, Phytolacca americana, and Hylotelephium spectabile) in China using MaxEnt model. Sci. Total Environ. 2022, 852, 158202. [Google Scholar] [CrossRef]
- Shi, X.D.; Wang, J.W.; Zhang, L.; Chen, S.X.; Zhao, A.L.; Ning, X.D.; Fan, G.R.; Wu, N.S.; Zhang, L.; Wang, Z.D. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Gao, J.; Gong, J.; Yang, J.X.; Li, J.Y.; Li, S.C. Measuring Spatial Connectivity between patches of the heat source and sink (SCSS): A new index to quantify the heterogeneity impacts of landscape patterns on land surface temperature. Landsc. Urban Plan. 2022, 217, 104260. [Google Scholar] [CrossRef]
- Zhang, Z.; Gong, J.; Plaza, A.; Yang, J.X.; Li, J.Y.; Tao, X.W.; Wu, Z.Y.; Li, S.C. Long-term assessment of ecological risk dynamics in Wuhan, China: Multi-perspective spatiotemporal variation analysis. Environ. Impact Assess. Rev. 2024, 105, 107372. [Google Scholar] [CrossRef]
- Huang, L.Y.; Yuan, L.C.; Xia, Y.Y.; Yang, Z.Y.; Luo, Z.L.; Yan, Z.; Li, M.Y.; Yuan, J.A. Landscape ecological risk analysis of subtropical vulnerable mountainous areas from a spatiotemporal perspective: Insights from the Nanling Mountains of China. Ecol. Indic. 2023, 154, 110883. [Google Scholar] [CrossRef]
- Tan, L.; Luo, W.; Yang, B.; Huang, M.; Shuai, S.; Cheng, C.; Zhou, X.; Li, M.; Hu, C. Evaluation of landscape ecological risk in key ecological functional zone of South–to–North Water Diversion Project, China. Ecol. Indic. 2023, 147, 109934. [Google Scholar] [CrossRef]
- Bal, A. Improving the Robustness of the Theil-Sen Estimator Using a Simple Heuristic-Based Modification. Symmetry 2024, 16, 698. [Google Scholar] [CrossRef]
- Hamed, K.H. Exact distribution of the Mann–Kendall trend test statistic for persistent data. J. Hydrol. 2009, 365, 86–94. [Google Scholar] [CrossRef]
- Xu, H.; Yue, C.; Zhang, Y.; Liu, D.; Piao, S.L. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc. Natl. Acad. Sci. USA 2023, 120, e2304988120. [Google Scholar] [CrossRef]
- Shabani, F.; Ahmadi, M.; Kumar, L.; Solhjouy-fard, S.; Tehrany, M.S.; Shabani, F.; Kalantar, B.; Esmaeili, A. Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecol. Indic. 2020, 116, 106436. [Google Scholar] [CrossRef]
- Schmidt, H.; Radinger, J.; Teschlade, D.; Stoll, S. The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt. Ecol. Model. 2020, 418, 108937. [Google Scholar] [CrossRef]
- Sillero, N.; Barbosa, A.M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 2021, 35, 213–226. [Google Scholar] [CrossRef]
- Elsen, P.R.; Saxon, E.C.; Simmons, B.A.; Ward, M.; Williams, B.A.; Grantham, H.S.; Kark, S.; Levin, N.; Perez-Hammerle, K.-V.; Reside, A.E.; et al. Accelerated shifts in terrestrial life zones under rapid climate change. Glob. Chang. Biol. 2022, 28, 918–935. [Google Scholar] [CrossRef]
- Barnett, L.A.K.; Ward, E.J.; Anderson, S.C. Improving estimates of species distribution change by incorporating local trends. Ecography 2021, 44, 427–439. [Google Scholar] [CrossRef]
- Xu, W.X.; Wang, J.M.; Zhang, M.; Li, S.J. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Q.L.; Yi, J.H.; Huang, X. Analysis of the heterogeneity of urban expansion landscape patterns and driving factors based on a combined Multi-Order Adjacency Index and Geodetector model. Ecol. Indic. 2022, 136, 108655. [Google Scholar] [CrossRef]
- Wang, S.; Tan, X.; Fan, F. Landscape Ecological Risk Assessment and Impact Factor Analysis of the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4726. [Google Scholar] [CrossRef]
- Salviano, I.R.; Gardon, F.R.; dos Santos, R.F. Ecological corridors and landscape planning: A model to select priority areas for connectivity maintenance. Landsc. Ecol. 2021, 36, 3311–3328. [Google Scholar] [CrossRef]
- Qu, Y.B.; Su, D.S.; Wei, C.C.; Zhang, Q.Q.; Jiang, G.H. How to prevent landscape ecological risk with a land use optimal allocation system: An empirical study of the Yellow River Delta in China. Ecol. Indic. 2023, 154, 110888. [Google Scholar] [CrossRef]
Datasets | Description and Variables | Spatial Resolution (m) | Available Period |
---|---|---|---|
WorldClim 2.1 | WorldClim is a climate dataset widely used in ecological modeling research, which includes 19 indicators related to temperature and precipitation. | 1000 | 1970–2000 |
Basic soil property dataset of high-resolution China Soil Information Grids | The dataset consisted of (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm) soil organic carbon, pH, total nitrogen, total phosphorus, total potassium, cation exchange, gravel content (>2 mm), sand, silt, clay, soil texture type, bulk weight, and soil body thickness, and 105 other variables. | 1000 | 2010–2018 |
Copernicus DEM | Based on the COP-DEM data, the topographic metrics (e.g., slope gradient and slope direction) were extracted. Other topographic properties(i.e., slope, aspect, hillshade)were calculated in ArcGISPro3.1. | 30 | ~ |
China Multi-period Land Use Remote Sensing Monitoring Data Set (1980–2020) | The CNLUCC dataset was based on Landsat remote sensing images and was constructed through manual vision of land use in China. The land use is classified into six primary categories: cultivated land, forest land, grassland, water area, construction land, and unused land. | 1000 | 1980–2020 |
HydroRIVERS | The HydroRIVERS dataset is the vector data of the global river network, including features such as river order and river reach length. Generation of distance to river data based on ArcGISPro3.1. | ~ | ~ |
Species | AUCtrain | AUCtest | TSS |
---|---|---|---|
T. chinensis | 0.933 | 0.901 | 0.846 |
T. austromongolica | 0.961 | 0.943 | 0.885 |
T. leptostachya | 0.974 | 0.964 | 0.862 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Liu, X.; Chen, X.; Li, H.; Mamat, Z.; Liu, J.; Liu, R.; Wang, R.; Xing, L.; Li, J. Assessment of the Spatiotemporal Dynamics of Suitable Habitats for Typical Halophytic Vegetation in China Based on Maxent Model and Landscape Ecology Theory. Forests 2024, 15, 1757. https://doi.org/10.3390/f15101757
Guo F, Liu X, Chen X, Li H, Mamat Z, Liu J, Liu R, Wang R, Xing L, Li J. Assessment of the Spatiotemporal Dynamics of Suitable Habitats for Typical Halophytic Vegetation in China Based on Maxent Model and Landscape Ecology Theory. Forests. 2024; 15(10):1757. https://doi.org/10.3390/f15101757
Chicago/Turabian StyleGuo, Fuyin, Xiaohuang Liu, Xuehua Chen, Hongyu Li, Zulpiya Mamat, Jiufen Liu, Run Liu, Ran Wang, Liyuan Xing, and Junnan Li. 2024. "Assessment of the Spatiotemporal Dynamics of Suitable Habitats for Typical Halophytic Vegetation in China Based on Maxent Model and Landscape Ecology Theory" Forests 15, no. 10: 1757. https://doi.org/10.3390/f15101757
APA StyleGuo, F., Liu, X., Chen, X., Li, H., Mamat, Z., Liu, J., Liu, R., Wang, R., Xing, L., & Li, J. (2024). Assessment of the Spatiotemporal Dynamics of Suitable Habitats for Typical Halophytic Vegetation in China Based on Maxent Model and Landscape Ecology Theory. Forests, 15(10), 1757. https://doi.org/10.3390/f15101757