Future Carbon Sequestration and Timber Yields from Chinese Commercial Forests under Shared Socioeconomic Pathways
<p>Research framework.</p> "> Figure 2
<p>Region distribution of the projected forest total timber yields and carbon sequestration in China, by SSPs.</p> "> Figure 3
<p>Tree species of projected timber yields (<b>a</b>) and carbon sequestration (<b>b</b>) by SSPs in ten five-year periods. An explanation of each tree name abbreviation is shown in <a href="#forests-14-00153-t0A4" class="html-table">Table A4</a>.</p> "> Figure 4
<p>Relationship between timber yields and carbon sequestration by regions (<b>a</b>) and by tree species (<b>b</b>) under all SSPs.</p> "> Figure 5
<p>Key model estimates for weight parameter sensitivity in all SSPs. Forest area, total carbon sequestration, total timber yield, and total profits are selected in this study and listed above. The bars in pink, green, and blue colors represent the changes in percentage between weight sensitivity analysis and the SSP2. C75/T25, C25/T75, C0/T100 represent that the carbon weights are 75%, 25%, and 0%, while the timber weights are 25%, 75%, and 100%, respectively.</p> "> Figure 6
<p>Key model estimates for other socioeconomic parameter sensitivity in all SSPs. The bars in green and orange colors represent the changes in percentage between sensitivity analysis result and the SSP2 result.</p> "> Figure 7
<p>Commercial forest area changes across SSPs, from 2018 to 2068.</p> "> Figure A1
<p>Regional projected timber production by SSPs in ten five-year rotation periods.</p> "> Figure A2
<p>Regional projected carbon sequestration by SSPs in ten five-year rotation periods.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Shared Socioeconomic Pathway (SSP) Scenarios in Forest Management
2.3. Forest Age-Stand Module
2.4. Timber Production Module
2.5. Carbon Sequestration Module
2.6. Management Objective, Constraints, and Assumptions
2.7. Data
3. Results
3.1. Projected Regional Timber Yields and Carbon Sequestration
3.2. Projected Timber Yields and Carbon Sequestration by Tree Species
3.3. Total Timber Profits and Total Carbon Profits
3.4. Sensitivity Analysis
3.4.1. Social Preferences Sensitivity
3.4.2. Other Socioeconomic Parameters Sensitivity
4. Discussion
4.1. CFs Could Potentially Sequester Substantial Carbon but Yield Limited Timber
4.2. The Total Commercial Forest Area Changes Are Unexpectedly Larger in the Next 50 Years
4.3. Socioeconomic Alternatives Have a Strong Impact on Forest Goods and Service Supply
4.4. Uncertainty and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Elements | SSP1 | SSP2 | SSP3 | SSP4 | SSP4 | Data Source |
---|---|---|---|---|---|---|
Timber price annual average growth [%] | 4% | 3% | 2% | 2% | 5% | [24,31] |
Carbon price annual average growth [%] | 25% | 11% | 18% | 14% | 23% | [54] |
No. | Model | Function |
---|---|---|
1 | Logistic Model | |
2 | Single Molecule Model | |
3 | Gompertz Model | |
4 | Korf Model | |
5 | Richards Model | |
6 | S Curve |
Regions | Tree Species | a | b | c | R2 | Observations * | Theoretical Model ** |
---|---|---|---|---|---|---|---|
Northeast | Korean pine | 4.84 | 0.888 | −0.345 | 0.878 | 17 | Model 4 |
Dahurian larch | 131.301 | 14.549 | 0.152 | 0.736 | 38 | Model 1 | |
Scots pine | 116.706 | 0.079 | 2.671 | 0.693 | 33 | Model 5 | |
Coniferous mixed forest | 8.433 | 0.598 | −0.333 | 0.921 | 13 | Model 4 | |
Poplar | 123.43 | 18.291 | 0.246 | 0.892 | 15 | Model 1 | |
Broadleaf mixed forest | 164.977 | 30.044 | - | 0.872 | 15 | Model 6 | |
Coniferous and broad-leaved mixed forest | 185.676 | 0.019 | 1.046 | 0.887 | 12 | Model 5 | |
North | Dahurian larch | 296.106 | 0.016 | 1.353 | 0.68 | 46 | Model 5 |
Scots pine | 258.227 | 10.347 | 0.092 | 0.705 | 17 | Model 3 | |
Chinese pine | 115.409 | 26.172 | - | 0.664 | 66 | Model 6 | |
Coniferous mixed forest | 137.255 | 0.055 | 4.378 | 0.864 | 11 | Model 5 | |
Poplar | 53.208 | 4.886 | - | 0.679 | 15 | Model 6 | |
Broadleaf mixed forest | 59.539 | 23.869 | 0.161 | 0.797 | 15 | Model 1 | |
East | Chinese fir | 147.377 | 0.056 | 1.737 | 0.928 | 14 | Model 5 |
Coniferous mixed forest | 10.268 | 0.361 | −0.482 | 0.948 | 13 | Model 4 | |
Poplar | 269.797 | 0.021 | 0.708 | 0.696 | 42 | Model 5 | |
Broadleaf mixed forest | 97.128 | 0.034 | 1.265 | 0.75 | 15 | Model 5 | |
Coniferous and broad-leaved mixed forest | 2.191 | 1.573 | −0.197 | 0.837 | 14 | Model 4 | |
South | Masson pine | 116.938 | 2.563 | 0.102 | 0.695 | 15 | Model 3 |
Chinese fir | 152.014 | 12.395 | 0.217 | 0.837 | 15 | Model 1 | |
Coniferous mixed forest | 72.841 | 17.629 | 0.396 | 0.628 | 14 | Model 1 | |
Eucalyptus | 93.149 | 0.087 | 1.137 | 0.626 | 58 | Model 5 | |
Broadleaf mixed forest | 119.985 | 0.039 | 1.389 | 0.915 | 15 | Model 5 | |
Coniferous and broad-leaved mixed forest | 2.28 | 1.913 | −0.183 | 0.962 | 14 | Model 4 | |
Central | Masson pine | 80.701 | 12.639 | 0.158 | 0.672 | 57 | Model 1 |
Chinese fir | 131.386 | 11.317 | 0.154 | 0.732 | 67 | Model 1 | |
Coniferous mixed forest | 412.179 | 0.005 | 0.83 | 0.903 | 13 | Model 5 | |
Oaks | 140.391 | 22.448 | - | 0.788 | 21 | Model 6 | |
Poplar | 117.856 | 0.088 | 1.119 | 0.627 | 21 | Model 5 | |
Broadleaf mixed forest | 396.586 | 0.002 | 0.787 | 0.834 | 15 | Model 5 | |
Coniferous and broad-leaved mixed forest | 140.719 | 8.581 | 0.073 | 0.685 | 21 | Model 1 | |
Northwest | Dahurian larch | 2.477 | 0.374 | −0.667 | 0.831 | 23 | Model 4 |
Chinese pine | 833.863 | 0.011 | 1.788 | 0.652 | 28 | Model 5 | |
Poplar | 172.586 | 4.929 | - | 0.070 | 71 | Model 6 | |
Spruce | 4.484 | 0.317 | −0.549 | 0.818 | 25 | Model 4 | |
Coniferous mixed forest | 74.859 | 0.07 | 3.696 | 0.612 | 14 | Model 5 | |
Broadleaf mixed forest | 122.892 | 50.422 | 0.292 | 0.644 | 14 | Model 1 | |
Coniferous and broad-leaved mixed forest | 140.196 | 13.635 | 0.059 | 0.695 | 19 | Model 1 | |
Southwest | Chinese white pine | 110.49 | 26.768 | 0.179 | 0.677 | 45 | Model 1 |
Masson pine | 157.023 | 0.041 | 1.439 | 0.887 | 40 | Model 5 | |
Yunnan pine | 129.074 | 3.129 | 0.063 | 0.765 | 40 | Model 3 | |
Chinese fir | 121.18 | 0.102 | 1.223 | 0.747 | 38 | Model 5 | |
Coniferous mixed forest | 10.94 | 0.522 | −0.435 | 0.67 | 52 | Model 4 | |
Eucalyptus | 1.939 | 1.926 | −0.184 | 0.667 | 15 | Model 4 | |
Funereal cypress | 96.508 | 6.824 | 0.078 | 0.69 | 12 | Model 1 | |
Broadleaf mixed forest | 132.041 | 30.527 | - | 0.843 | 15 | Model 6 | |
Coniferous and broad-leaved mixed forest | 130.116 | 6.259 | 0.062 | 0.654 | 43 | Model 1 |
No | Tree Species | Latin Name | Abb. |
---|---|---|---|
1 | Eucalyptus | Eucalyptus spp. | ELS |
2 | Funereal cypress | Cupressus funebris | FC |
3 | Korean pine | Pinus koraiensis | KP |
4 | Chinese white pine | Pinus armandii | CWP |
5 | Broadleaf mixed forest | - | BMF |
6 | Oaks | Quercus spp. | OKS |
7 | Dahurian larch | Larix spp. | DL |
8 | Masson pine | Pinus massoniana | MP |
9 | Chinese fir | Cunninghamia lanceolate | CFR |
10 | Poplar | Populus spp. | POP |
11 | Chinese pine | Pinus tabulaeformis | CP |
12 | Yunnan pine | P. yunnanensis | YNP |
13 | Scots pine | Pinus sylvestris var. mongholica | SP |
14 | Coniferous and broad-leaved mixed forest | - | CBM |
15 | Coniferous mixed forest | - | CMF |
References
- Wang, S.; Chen, J.M.; Ju, W.M.; Feng, X.; Chen, M.; Chen, P.; Yu, G. Carbon Sinks and Sources in China’s Forests during 1901–2001. J. Environ. Manag. 2007, 85, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brienen, R.J.W.; Caldwell, L.; Duchesne, L.; Voelker, S.; Barichivich, J.; Baliva, M.; Ceccantini, G.; Di Filippo, A.; Helama, S.; Locosselli, G.M.; et al. Forest Carbon Sink Neutralized by Pervasive Growth-Lifespan Trade-Offs. Nat. Commun. 2020, 11, 4241. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; He, N.; Li, M.; Xu, L.; Wang, L.; Zhu, J.; Zeng, N.; Yan, P.; Si, G.; Zhang, X.; et al. Carbon Sequestration of Chinese Forests from 2010 to 2060: Spatiotemporal Dynamics and Its Regulatory Strategies. Sci. Bull. 2022, 67, 836–843. [Google Scholar] [CrossRef]
- den Elzen, M.; Fekete, H.; Höhne, N.; Admiraal, A.; Forsell, N.; Hof, A.F.; Olivier, J.G.J.; Roelfsema, M.; van Soest, H. Greenhouse Gas Emissions from Current and Enhanced Policies of China until 2030: Can Emissions Peak before 2030? Energy Policy 2016, 89, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Mallapaty, S. How China Could Be Carbon Neutral by Mid-Century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef]
- Xia, F.; Yang, Y.; Zhang, S.; Yang, Y.; Li, D.; Sun, W.; Xie, Y. Influencing Factors of the Supply-Demand Relationships of Carbon Sequestration and Grain Provision in China: Does Land Use Matter the Most? Sci. Total Environ. 2022, 832, 154979. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. Available online: https://www.forestry.gov.cn/ (accessed on 4 November 2022).
- Food and Agriculture Organization. Available online: https://www.fao.org/home/en (accessed on 4 November 2022).
- Bottalico, F.; Pesola, L.; Vizzarri, M.; Antonello, L.; Barbati, A.; Chirici, G.; Corona, P.; Cullotta, S.; Garfì, V.; Giannico, V.; et al. Modeling the Influence of Alternative Forest Management Scenarios on Wood Production and Carbon Storage: A Case Study in the Mediterranean Region. Environ. Res. 2016, 144, 72–87. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lu, N.; Fu, B.; Wang, S.; Deng, L.; Wang, L. Current and Future Carbon Stocks of Natural Forests in China. For. Ecol. Manag. 2022, 511, 120137. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. To Harvest or Not to Harvest? Forest Management as a Trade-off between Bioenergy Production and Carbon Sink. J. Clean. Prod. 2020, 268, 122219. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Stål, G.; Arnesson-Ceder, L.; Hallberg Sramek, I.; Hoen, H.F.; Svensson, A.; Wernick, I.K.; Högberg, P.; Lundmark, T.; Nordin, A. Managing Existing Forests Can Mitigate Climate Change. For. Ecol. Manag. 2022, 513, 120186. [Google Scholar] [CrossRef]
- Luyssaert, S.; Marie, G.; Valade, A.; Chen, Y.-Y.; Njakou Djomo, S.; Ryder, J.; Otto, J.; Naudts, K.; Lansø, A.S.; Ghattas, J.; et al. Trade-Offs in Using European Forests to Meet Climate Objectives. Nature 2018, 562, 259–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, W.; Xiang, W.; Ouyang, S.; Hu, Y.; Chen, L.; Zeng, Y.; Deng, X.; Zhao, Z.; Forrester, D.I. Spatially Explicit Optimization of the Forest Management Tradeoff between Timber Production and Carbon Sequestration. Ecol. Indic. 2022, 142, 109193. [Google Scholar] [CrossRef]
- Qin, H.; Dong, L.; Huang, Y. Evaluating the Effects of Carbon Prices on Trade-Offs between Carbon and Timber Management Objectives in Forest Spatial Harvest Scheduling Problems: A Case Study from Northeast China. Forests 2017, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cheng, X.; Han, H. Analyzing Land-Use Change Scenarios for Ecosystem Services and Their Trade-Offs in the Ecological Conservation Area in Beijing, China. Int. J. Environ. Res. Public Health 2020, 17, 8632. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, D.; Cao, Y.; Zhang, L.; Peng, H.; Wang, K.; Xie, H.; Wang, C. An Integrated Remote Sensing and Model Approach for Assessing Forest Carbon Fluxes in China. Sci. Total Environ. 2022, 811, 152480. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.R.L.; Wu, C.; Acil, N.; Carvalhais, N.; Pugh, T.A.M.; Sadler, J.P.; Seidl, R. A Climate Risk Analysis of Earth’s Forests in the 21st Century. Science 2022, 377, 1099–1103. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Shen, C.; Li, Y.; Feng, Z.; Zeng, W.; Huang, G. Relationship between the Geographical Environment and the Forest Carbon Sink Capacity in China Based on an Individual-Tree Growth-Rate Model. Ecol. Indic. 2022, 138, 108814. [Google Scholar] [CrossRef]
- Zhang, A.; Deng, R. Spatial-Temporal Evolution and Influencing Factors of Net Carbon Sink Efficiency in Chinese Cities under the Background of Carbon Neutrality. J. Clean. Prod. 2022, 365, 132547. [Google Scholar] [CrossRef]
- He, G.; Zhang, Z.; Zhu, Q.; Wang, W.; Peng, W.; Cai, Y. Estimating Carbon Sequestration Potential of Forest and Its Influencing Factors at Fine Spatial-Scales: A Case Study of Lushan City in Southern China. Int. J. Environ. Res. Public Health 2022, 19, 9184. [Google Scholar] [CrossRef]
- Macintosh, A.; Keith, H.; Lindenmayer, D. Rethinking Forest Carbon Assessments to Account for Policy Institutions. Nat. Clim Chang. 2015, 5, 946–949. [Google Scholar] [CrossRef]
- Daigneault, A.; Favero, A. Global Forest Management, Carbon Sequestration and Bioenergy Supply under Alternative Shared Socioeconomic Pathways. Land Use Policy 2021, 103, 105302. [Google Scholar] [CrossRef]
- Dong, L.; Bettinger, P.; Liu, Z.; Qin, H. Spatial Forest Harvest Scheduling for Areas Involving Carbon and Timber Management Goals. Forests 2015, 6, 1362–1379. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Bettinger, P.; Liu, Z. Estimating the Optimal Internal Carbon Prices for Balancing Forest Wood Production and Carbon Sequestration: The Case of Northeast China. J. Clean. Prod. 2021, 281, 125342. [Google Scholar] [CrossRef]
- Dong, L.; Lu, W.; Liu, Z. Developing Alternative Forest Spatial Management Plans When Carbon and Timber Values Are Considered: A Real Case from Northeastern China. Ecol. Model. 2018, 385, 45–57. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The Roads Ahead: Narratives for Shared Socioeconomic Pathways Describing World Futures in the 21st Century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Nepal, P.; Korhonen, J.; Prestemon, J.P.; Cubbage, F.W. Projecting Global Planted Forest Area Developments and the Associated Impacts on Global Forest Product Markets. J. Environ. Manag. 2019, 240, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Daigneault, A.; Johnston, C.; Korosuo, A.; Baker, J.S.; Forsell, N.; Prestemon, J.P.; Abt, R.C. Developing Detailed SharedSocioeconomic Pathway (SSP)Narratives for the Global Forest Sector. J. For. Econ. 2019, 34, 7–45. [Google Scholar] [CrossRef]
- Daigneault, A.; Baker, J.S.; Guo, J.; Lauri, P.; Favero, A.; Forsell, N.; Johnston, C.; Ohrel, S.B.; Sohngen, B. How the Future of the Global Forest Sink Depends on Timber Demand, Forest Management, and Carbon Policies. Glob. Environ. Chang. 2022, 76, 102582. [Google Scholar] [CrossRef]
- Eriksson, L.O.; Forsell, N.; Eggers, J.; Snäll, T. Downscaling of Long-Term Global Scenarios to Regions with a Forest Sector Model. Forests 2020, 11, 500. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Avitabile, V.; Hijioka, Y.; DasGupta, R.; Togawa, T.; Murayama, Y. The Future of Southeast Asia’s Forests. Nat. Commun. 2019, 10, 1829. [Google Scholar] [CrossRef] [Green Version]
- Blattert, C.; Lemm, R.; Thürig, E.; Stadelmann, G.; Brändli, U.-B.; Temperli, C. Long-Term Impacts of Increased Timber Harvests on Ecosystem Services and Biodiversity: A Scenario Study Based on National Forest Inventory Data. Ecosyst. Serv. 2020, 45, 101150. [Google Scholar] [CrossRef]
- Hirigoyen, A.; Acuna, M.; Rachid-Casnati, C.; Franco, J.; Navarro-Cerrillo, R. Use of Optimization Modeling to Assess the Effect of Timber and Carbon Pricing on Harvest Scheduling, Carbon Sequestration, and Net Present Value of Eucalyptus Plantations. Forests 2021, 12, 651. [Google Scholar] [CrossRef]
- OpenSolver for Excel. Available online: https://opensolver.org/ (accessed on 11 December 2022).
- Jiang, L.; O’Neill, B.C. Global Urbanization Projections for the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Jing, C.; Tao, H.; Jiang, T.; Wang, Y.; Zhai, J.; Cao, L.; Su, B. Population, Urbanization and Economic Scenarios over the Belt and Road Region under the Shared Socioeconomic Pathways. J. Geogr. Sci. 2020, 30, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Guo, Z.; Piao, S.; Fang, J. Forest biomass carbon pool in China from 2000 to 2050: Projections based on the relationship between biomass density and forest age. Sci. China Life Sci. 2010, 40, 587–594. [Google Scholar]
- Zhu, J.; Dai, E.; Zheng, D.; Wang, X. Characteristic of tradeoffs between timber production and carbon storage for plantation under harvesting impact: A case study of Huitong National Research Station of Forest Ecosystem. J. Geogr. Sci. 2018, 28, 1085–1098. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Wang, G.G.; Liu, G.; Xu, S. Forest Biomass of China: An Estimate Based on the Biomass–Volume Relationship. Ecol. Appl. 1998, 8, 1084–1091. [Google Scholar] [CrossRef]
- Faustmann, M. Calculation of the Value Which Forest Land and Immature Stands Possess for Forestry. J. Forest Econ. 1995, 1, 7–14. [Google Scholar]
- The Central Bank of the People’s Republic of China. Available online: http://www.pbc.gov.cn/en/3688006/index.html (accessed on 1 December 2022).
- Dong, L.; Bettinger, P.; Qin, H.; Liu, Z. Optimizing Rotation Lengths for Maximizing Carbon Balance of Larch Plantations in Northeast China. J. Clean. Prod. 2022, 343, 131025. [Google Scholar] [CrossRef]
- Li, Q. Forest Carbon Storage and Carbon Sequestration Potential during 2010–2050 in China; Chinese Academy of Forestry: Beijing, China, 2016. [Google Scholar]
- IPCC-TFI. Available online: https://www.ipcc-nggip.iges.or.jp/software/ (accessed on 4 November 2022).
- Wen, D.; He, N. Forest Carbon Storage along the North-South Transect of Eastern China: Spatial Patterns, Allocation, and Influencing Factors. Ecol. Indic. 2016, 61, 960–967. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Carbon Sinks and Output of China’s Forestry Sector: An Ecological Economic Development Perspective. Sci. Total Environ. 2019, 655, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- China Carbon Emissions Trading. Available online: http://www.tanpaifang.com/tanhangqing/ (accessed on 11 December 2022).
- World Resource Institute Climate Watch. Available online: https://www.climatewatchdata.org/ghg-emissions?end_year=2019&start_year=1990 (accessed on 17 August 2022).
- Hu, X.; Iordan, C.M.; Cherubini, F. Estimating Future Wood Outtakes in the Norwegian Forestry Sector under the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2018, 50, 15–24. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, J.; Niu, S.; Chu, C.; Luo, Y. Limits to Growth of Forest Biomass Carbon Sink under Climate Change. Nat. Commun. 2018, 9, 2709. [Google Scholar] [CrossRef]
- IIASA SSP Database. Available online: https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=40 (accessed on 11 December 2022).
Elements | Parameters | SSP1 | SSP2 | SSP3 | SSP4 | SSP5 |
---|---|---|---|---|---|---|
Harvest and Processing technology | 75% | 70% | 65% | RFR 72% PFR 68% | 72% | |
Forest management cost | 90% | unchanged | 110% | RFR 93% PFR 110% | 93% | |
Plantation for commerce | 40% | 35% | 30% | RFR 37% PFR 20% | 37% | |
Felling growth rate | 1.5% | 0.9% | 0.5% | RFR 1.2% PFR 0.6% | 1.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Hu, M.; Huang, W.; Chen, C.X.; Li, J. Future Carbon Sequestration and Timber Yields from Chinese Commercial Forests under Shared Socioeconomic Pathways. Forests 2023, 14, 153. https://doi.org/10.3390/f14010153
Liu F, Hu M, Huang W, Chen CX, Li J. Future Carbon Sequestration and Timber Yields from Chinese Commercial Forests under Shared Socioeconomic Pathways. Forests. 2023; 14(1):153. https://doi.org/10.3390/f14010153
Chicago/Turabian StyleLiu, Fei, Mingxing Hu, Wenbo Huang, Cindy X. Chen, and Jinhui Li. 2023. "Future Carbon Sequestration and Timber Yields from Chinese Commercial Forests under Shared Socioeconomic Pathways" Forests 14, no. 1: 153. https://doi.org/10.3390/f14010153
APA StyleLiu, F., Hu, M., Huang, W., Chen, C. X., & Li, J. (2023). Future Carbon Sequestration and Timber Yields from Chinese Commercial Forests under Shared Socioeconomic Pathways. Forests, 14(1), 153. https://doi.org/10.3390/f14010153