Estimation of Extreme Daily Rainfall Probabilities: A Case Study in Kyushu Region, Japan
<p>Location of rainfall stations. White circles and triangles indicate meteorological observatories and AMeDAS, respectively.</p> "> Figure 2
<p>Kendall’s τ of annual maximum daily rainfall between stations plotted against distance.</p> "> Figure 3
<p>Spatial distribution of the two-year value.</p> "> Figure 4
<p>Spatial distribution of the 10-year value.</p> "> Figure 5
<p>Boxplots for normalized values of annual maximum daily rainfall at 23 stations. Whiskers of the box show 25th (lower) and 75th (upper) percentile values. The gray line is the median value.</p> "> Figure 6
<p>Quantile–quantile plot.</p> "> Figure 7
<p>Relationship between normalized values of annual maximum daily rainfall and the RP.</p> "> Figure 8
<p>Comparison of RP estimated by the proposed regression equation, RP estimated by the GEV, and RP by the empirical method (Cunnane [<a href="#B39-forests-14-00147" class="html-bibr">39</a>]) at AMeDAS Izumi (<b>a</b>), Morotsuka (<b>b</b>), Aso-Otohime (<b>c</b>), and Asakura (<b>d</b>).</p> "> Figure 9
<p>Annual maximum daily rainfall at the AMeDAS Asakura between 1976 and 2020. Gray circles indicate annual maximum value. Bold line indicates Sen’s slope (Hipel and McLeod 1996 [<a href="#B47-forests-14-00147" class="html-bibr">47</a>]; Sen 1968 [<a href="#B48-forests-14-00147" class="html-bibr">48</a>]) (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Procedure
2.2. Data Collection
2.3. Investigation of Spatial Correlation of Annual Maximum Value for Daily Rainfall
2.4. Normalization of Daily Rainfall Data
2.5. Extreme Value Analysis
3. Results and Discussion
3.1. Spatial Correlation of Annual Maximum Value Daily Rainfall between 1981 and 2010
3.2. Spatial Distribution of 2- and 10-Year Values
3.3. Normalized Values of Annual Maximum Daily Rainfall at Each Station
3.4. Relationship between Normalized Daily Rainfall and the RP
3.5. Verification of Our Method at Short-Record Stations
3.6. Usefulness and Limitation of Our Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hagon, K.; Turmine, V.; Pizzini, G.; Freebairn, A.; Singh, R. Hazards everywhere-climate and disaster trends and impacts. In World Disasters Report 2020; IFRC, Ed.; IFRC: Geneva, Switzerland, 2020; pp. 34–115. [Google Scholar]
- Hilker, N.; Badoux, A.; Hegg, C. The Swiss flood and landslide damage database 1972–2007. Nat. Hazards Earth Syst. Sci. 2009, 9, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Ushiyama, M.; Yokomaku, S. Location characteristics of victims caused by recent heavy rainfall disasters. J. Disaster Inf. Stud. 2013, 11, 81–89, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- McBride, C.M.; Kruger, A.C.; Dyson, L. Changes in extreme daily rainfall characteristics in South Africa: 1921–2020. Weather. Clim. Extrem. 2022, 38, 100517. [Google Scholar] [CrossRef]
- Shinohara, Y.; Kume, T. Changes in the factors contributing to the reduction of landslide fatalities between 1945 and 2019 in Japan. Sci. Total Environ. 2022, 827, 154392. [Google Scholar] [CrossRef]
- Matsumoto, J. Heavy rainfalls over east Asia. Int. J. Climatol. 1989, 9, 407–423. [Google Scholar] [CrossRef]
- Oguchi, T.; Saito, K.; Kadomura, H.; Grossman, M. Fluvial geomorphology and paleohydrology in Japan. Geomorphology 2001, 39, 3–19. [Google Scholar] [CrossRef]
- Chigira, M. September 2005 rain-induced catastrophic rockslides on slopes affected by deep-seated gravitational deformations, Kyushu, southern Japan. Eng. Geol. 2009, 108, 1–15. [Google Scholar] [CrossRef]
- Jitousono, T.; Igura, M.; Ue, H.; Ohishi, H.; Kakimoto, T.; Kitou, K.; Koga, S.; Sakai, Y.; Sakasnhima, T.; Shinohara, Y.; et al. The july 2020 rainfall-induced sediment disasters in Kumamoto prefecture, Japan. Int. J. Eros. Control Eng. 2021, 13, 93–100. [Google Scholar] [CrossRef]
- Sidle, R.C.; Chigira, M. Landslides and debris flows strike Kyushu, Japan. EOS Trans. Am. Geophys. Union 2004, 85, 145–151. [Google Scholar] [CrossRef]
- Takahashi, T.; de Jong, W.; Kakizawa, H.; Kawase, M.; Matsushita, K.; Sato, N.; Takayanagi, A. New frontiers in Japanese Forest Policy: Addressing ecosystem disservices in the 21st century. Ambio 2021, 50, 2272–2285. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Kawamura, R. Appearance of a Quasi-Quadrennial Variation in Baiu Precipitation in Southern Kyushu, Japan, after the Beginning of This Century. SOLA 2022, 18, 181–186. [Google Scholar] [CrossRef]
- Imada, Y.; Kawase, H.; Watanabe, M.; Arai, M.; Shiogama, H.; Takayabu, I. Advanced risk-based event attribution for heavy regional rainfall events. NPJ Clim. Atmos. Sci. 2020, 3, 37. [Google Scholar] [CrossRef]
- Buishand, T.A. Extreme rainfall estimation by combining data from several sites. Hydrol. Sci. J. 1991, 36, 345–365. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Baloutsos, G. Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences. Nat. Hazards 2000, 29, 29–48. [Google Scholar] [CrossRef]
- Overeem, A.; Buishand, A.; Holleman, I. Rainfall depth-duration-frequency curves and their uncertainties. J. Hydrol. 2007, 348, 124–134. [Google Scholar] [CrossRef]
- Stewart, E.J.; Reed, D.W.; Faulkner, D.S.; Reynard, N.S. The FORGEX method of rainfall growth estimation I: Review of requirement. Hydrol. Earth Syst. Sci. 1999, 3, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Svensson, C.; Jones, D.A. Review of rainfall frequency estimation methods. J. Flood Risk Manag. 2010, 3, 296–313. [Google Scholar] [CrossRef] [Green Version]
- Gumbel, E.G. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958; pp. 1–375. [Google Scholar]
- Hosking, J.R.M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc. Ser. B (Methodol.) 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171. [Google Scholar] [CrossRef]
- Jou, P.H.; Mirhashemi, S.H. Frequency analysis of extreme daily rainfall over an arid zone of Iran using Fourier series method. Appl. Water Sci. 2023, 13, 16. [Google Scholar] [CrossRef]
- Suzuki, A.; Kikuchihara, H. Method for estimating the return period of annual maximum daily precipitation considering about extreme values. Tenki 1984, 31, 179–189. (In Japanese) [Google Scholar]
- Clarke-Halstad, K. A statistical method for estimating the reliability of a station-year rainfall-record. EOS Trans. Am. Geophys. Union 1938, 19, 526–529. [Google Scholar] [CrossRef]
- Clarke-Hafstad, K. Reliability of Station-Year Rainfall-Frequency Determinations. Trans. Am. Soc. Civ. Eng. 1942, 107, 633–652. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997; 224p. [Google Scholar]
- Buishand, T.A. Bivariate extreme-value data and the station-year method. J. Hydrol. 1984, 69, 77–95. [Google Scholar] [CrossRef]
- Daksiya, V.; Mandapaka, P.V.; Lo, E.Y.M. Effect of climate change and urbanisation on flood protection decisionmaking. J. Flood Risk Manag. 2021, 14, e12681. [Google Scholar] [CrossRef]
- Olsson, J.; Södling, J.; Berg, P.; Wern, L.; Eronn, A. Short-duration rainfall extremes in Sweden: A regional analysis. Hydrol. Res. 2019, 50, 945–960. [Google Scholar] [CrossRef]
- Mohammadi, M.; Finnan, J.; Baker, C.; Sterling, M. The potential impact of climate change on oat lodging in the UK and Republic of Ireland. Adv. Meteorol. 2020, 2020, 4138469. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Shida, T. Mud flow-floating log Disasters in Ichinomia Town, Kumamoto Pref. on July 2nd, 1990. Jpn. Soc. Eros. Control 1990, 43, 63–66. [Google Scholar] [CrossRef]
- Sassa, K. Mechanisms of Landslide Triggered Debris Flows. In Environmental Forest Science; Sassa, K., Ed.; Springer: Dordrecht, The Netherlands, 1998; pp. 499–518. [Google Scholar] [CrossRef]
- Yang, H.; Wang, F.; Vilímek, V.; Araiba, K.; Asano, S. Investigation of rainfall-induced shallow landslides on the northeastern rim of Aso caldera, Japan, in July 2012. Geoenviron. Disasters 2015, 2, 20. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Kuzuha, Y.; Tomosugi, K.; Kishii, T. Spatial correlation structure of precipitation. Proc. Hydraul. Eng. 2002, 46, 127–132, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Takara, K. History and Perspectives of Hydrologic Frequency Analysis in Japan. In Pioneering Works on Extreme Value Theory; Hoshino, N., Mano, S., Shimura, T., Eds.; Springer: Singapore, 2021; pp. 113–134. [Google Scholar] [CrossRef]
- Takasao, T.; Takara, K.; Shimizu, A. A basic study on frequency analysis of hydrologic data in the lake biwa basin. Annu. Disaster Prev. Res. Inst. Kyoto Univ. 1986, 29, 57–171, (In Japanese with English Abstract). Available online: http://hdl.handle.net/2433/71967 (accessed on 22 August 2022).
- Japan Meteorological Agency. Extreme Weather Risk Map 2006. Available online: https://www.jma.go.jp/jma/press/0703/28b/riskmap18.pdf (accessed on 8 November 2022). (In Japanese).
- Hazen, A. Storage to be provided in impounding municipal water supply. Trans. Am. Soc. Civ. Eng. 1914, 77, 1539–1640. [Google Scholar] [CrossRef]
- Cunnane, C. Unbiased plotting positions—A review. J. Hydrol. 1979, 37, 205–222. [Google Scholar] [CrossRef]
- Fukuoka Regional Headquarters, JMA. Information on Meteorology, Earthquakes, Volcanoes, and Oceans—About Climate. Available online: https://www.jma-net.go.jp/fukuoka/kaiyo/tenkou_main.html (accessed on 8 November 2022). (In Japanese).
- Chaithong, T. Influence of changes in extreme daily rainfall distribution on the stability of residual soil slopes. Big Earth Data 2022, 1–25. [Google Scholar] [CrossRef]
- Gaume, E.; Livet, M.; Desbordes, M.; Villeneuve, J.P. Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999. J. Hydrol. 2004, 286, 135–154. [Google Scholar] [CrossRef]
- Sabo Planning Division Sabo Department, NILIM, MLIT. Manual of Technical Standard for establishing Sabo master plan for debris flow and driftwood. Tech. Note Natl. Inst. Land Infrastruct. Manag. 2016, 904, 1–77. (In Japanese) [Google Scholar]
- Sabo Planning Division Sabo Department, NILIM, MLIT. Manual of Technical Standard for designing Sabo facilities against debris flow and driftwood. Tech. Note Natl. Inst. Land Infrastruct. Manag. 2016, 905, 1–78. (In Japanese) [Google Scholar]
- Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier: Amsterdam, The Netherlands, 1994; 1012p. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
Name | Location | Observation Period (Start Year) | ||
---|---|---|---|---|
X | Y | Z (m) | ||
Fukuoka | 130°22.5′ E | 33°34.9′ N | 2.5 | 131 (1890~) |
Izuka | 130°41.6′ E | 33°39.1′ N | 37.5 | 86 (1935~) |
Oita | 131°37.1′ E | 33°19.3′ N | 4.6 | 134 (1887~) |
Hita | 130°55.7′ E | 33°19.3′ N | 82.9 | 79 (1942~) |
Saga | 130°18.3′ E | 33°15.9′ N | 5.5 | 131 (1890~) |
Hirado | 129°33.0′ E | 33°09.5′ N | 57.8 | 81 (1940~) |
Sasebo | 129°43.6′ E | 33°09.5′ N | 3.9 | 75 (1946~) |
Nagasaki | 129°52.0′ E | 32°44.0′ N | 26.9 | 143 (1978~) |
Unzen | 130°15.7′ E | 32°44.2′ N | 677.5 | 97 (1924~) |
Fukue | 128°49.6′ E | 32°41.6′ N | 25.1 | 59 (1962~) |
Induhara | 129°17.5′ E | 34°11.8′ N | 3.7 | 135 (1886~) |
Kamamato | 130°42.4′ E | 32°11.8′ N | 37.7 | 131 (1890~) |
Ushibuka | 130°01.6′ E | 32°11.8′ N | 3.0 | 72 (1949~) |
Hitoyoshi | 130°45.3′ E | 32°13.0′ N | 145.8 | 78 (1943~) |
Nobeoka | 131°39.4′ E | 32°34.9′ N | 19.2 | 60 (1961~) |
Aburatsu | 131°22.4′ E | 31°34.7′ N | 2.9 | 72 (1949~) |
Miyakonojo | 131°04.9′ E | 31°43.8′ N | 153.8 | 79 (1942~) |
Miyazaki | 131°24.8′ E | 31°56.3′ N | 9.2 | 135 (1886~) |
Akune | 130°12.0′ E | 32°01.6′ N | 40.1 | 82 (1939~) |
Kagoshima | 130°32.8′ E | 31°33.3′ N | 3.9 | 138 (1883~) |
Makurazaki | 130°17.5′ E | 31°16.3′ N | 29.5 | 98 (1923~) |
Yakushima | 130°39.5′ E | 30°23.1′ N | 37.3 | 84 (1937~) |
Tanegashima | 130°58.9′ E | 30°43.2′ N | 24.9 | 73 (1948~) |
AMeDAS | Location | Occurrence of Disasters (Year) | References | ||
---|---|---|---|---|---|
X | Y | Z (m) | |||
Asakura | 130°41.7′ E | 33°24.4′ N | 38.0 | 2017 | Takahashi et al. (2021) [12] |
Aso-Otohime | 131°02.4′ E | 32°56.8′ N | 487.0 | 1990 2012 | Ishikawa and Shida (1990) [32] Yang et al. (2015) [34] |
Izumi | 130°21.1′ E | 32°05.6′ N | 11.0 | 1997 | Sassa (1998) [33] |
Morotsuka | 131°20.1′ E | 32°31.0′ N | 150.0 | 2005 | Chigira (2005) [9] |
Name | 2-Year Value | 10-Year Value | SLSC |
---|---|---|---|
Fukuoka | 121.6 | 182.7 | 0.019 |
Izuka | 131.1 | 213.6 | 0.026 |
Oita | 124.4 | 240.2 | 0.031 |
Hita | 126.1 | 178.6 | 0.018 |
Saga | 124.4 | 186.8 | 0.022 |
Hirado | 159.4 | 239.0 | 0.006 |
Sasebo | 150.2 | 242.7 | 0.024 |
Nagasaki | 130.4 | 250.6 | 0.033 |
Unzen | 207.3 | 330.8 | 0.021 |
Fukue | 152.7 | 273.7 | 0.028 |
Induhara | 160.2 | 243.9 | 0.024 |
Kamamato | 166.2 | 276.6 | 0.023 |
Ushibuka | 146.2 | 246.1 | 0.024 |
Hitoyoshi | 161.2 | 254.0 | 0.027 |
Nobeoka | 172.2 | 265.3 | 0.021 |
Aburatsu | 176.1 | 271.6 | 0.022 |
Miyakonojo | 180.7 | 310.4 | 0.028 |
Miyazaki | 166.8 | 293.1 | 0.028 |
Akune | 144.2 | 256.1 | 0.021 |
Kagoshima | 158.8 | 234.4 | 0.022 |
Makurazaki | 155.9 | 253.6 | 0.030 |
Yakushima | 241.0 | 341.8 | 0.022 |
Tanegashima | 176.5 | 284.5 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T.; Shuin, Y. Estimation of Extreme Daily Rainfall Probabilities: A Case Study in Kyushu Region, Japan. Forests 2023, 14, 147. https://doi.org/10.3390/f14010147
Sato T, Shuin Y. Estimation of Extreme Daily Rainfall Probabilities: A Case Study in Kyushu Region, Japan. Forests. 2023; 14(1):147. https://doi.org/10.3390/f14010147
Chicago/Turabian StyleSato, Tadamichi, and Yasuhiro Shuin. 2023. "Estimation of Extreme Daily Rainfall Probabilities: A Case Study in Kyushu Region, Japan" Forests 14, no. 1: 147. https://doi.org/10.3390/f14010147
APA StyleSato, T., & Shuin, Y. (2023). Estimation of Extreme Daily Rainfall Probabilities: A Case Study in Kyushu Region, Japan. Forests, 14(1), 147. https://doi.org/10.3390/f14010147