Spatial Prioritization of Ecosystem Services for Land Conservation: The Case Study of Central Italy
<p>Land use and land cover map of the study area (<b>a</b>); the administrative regions’ borders are marked in black, and EUAP areas are dotted. The location of the study area (<b>b</b>) and the digital elevation model (<b>c</b>) are also shown.</p> "> Figure 2
<p>Ecosystem services’ delivery maps and high delivery areas (HDAs) for runoff retention (<b>a</b>), local recharge (<b>b</b>), baseflow (<b>c</b>), and carbon stock (<b>d</b>).</p> "> Figure 3
<p>EUAP network (dotted), proposed protected areas (PPAs; the four identified patches are indicated by the letters A,B,C and D), and the ecosystem services’ priority areas (PA).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover Map
2.3. Ecosystem Services’ Spatial Assessment
- Local recharge, that is, the amount of precipitation that infiltrates the soil. Local recharge is derived from the local water balance, which is in turn dependent upon precipitation, quickflow, and evapotranspiration.
- Baseflow index, that is, the amount of groundwater going into the stream from each pixel and is given by the actual baseflow and the available recharge.
2.4. Identification of Proposed Protected Natural Areas
3. Results and Discussion
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jones, N.; Graziano, M.; Dimitrakopoulos, G. Social impacts of European Protected Areas and policy recommendations. Environ. Sci. Policy 2020, 112, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Melillo, J.M.; Lu, X.; Kicklighter, D.W.; Reilly, J.M.; Cai, Y.; Sokolov, A. Protected areas’ role in climate-change mitigation. Ambio 2016, 45, 133–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann-Wübbelt, A.; Fricke, A.; Sebesvari, Z.; Yakouchenkova, I.A.; Fröhlich, K.; Saha, S. High public appreciation for the cultural ecosystem services of urban and peri-urban forests during the COVID-19 pandemic. Sustain. Cities Soc. 2021, 74, 103240. [Google Scholar] [CrossRef]
- Fares, S.; Conte, A.; Alivernini, A.; Chianucci, F.; Grotti, M.; Zappitelli, I.; Corona, P. Testing Removal of Carbon Dioxide, Ozone, and Atmospheric Particles by Urban Parks in Italy. Environ. Sci. Technol. 2020, 54, 14910–14922. [Google Scholar] [CrossRef] [PubMed]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Munafò, M. Regulating Ecosystem Services of forests in ten Italian Metropolitan Cities: Air quality improvement by PM10 and O3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecol. Model. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Lausi, L.; Amodio, M.; Sebastiani, A.; Fusaro, L.; Manes, F. Assessing Cultural Ecosystem Services During the COVID-19 Pandemic at the Garden of Ninfa (ITALY). Ann. Bot. 2022, 12, 63–75. [Google Scholar]
- Pinheiro, R.O.; Triest, L.; Lopes, F.M. Cultural ecosystem services: Linking landscape and social attributes to ecotourism in protected areas. Ecosyst. Serv. 2021, 50, 101340. [Google Scholar] [CrossRef]
- European Commission. Eu Biodiversity Strategy for 2030—Bringing Nature Back into our Lives; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Ministero dell’Ambiente della Tutela del Territorio del Mare. Strategia Nazionale per la Biodiversità; Ministero dell’Ambiente della Tutela del Territorio del Mare: Rome, Italy, 2010. [Google Scholar]
- Hummel, C.; Poursanidis, D.; Orenstein, D.; Elliott, M.; Adamescu, M.C.; Cazacu, C.; Hummel, H. Protected Area management: Fusion and confusion with the ecosystem services approach. Sci. Total Environ. 2019, 651, 2432–2443. [Google Scholar] [CrossRef]
- Spanò, M.; Leronni, V.; Lafortezza, R.; Gentile, F. Are ecosystem service hotspots located in protected areas? Results from a study in Southern Italy. Environ. Sci. Policy 2017, 73, 52–60. [Google Scholar] [CrossRef]
- Italian Ministry of the Ecological Transition. PNRR, MiTE: Al via Progetti da 330 Milioni di Euro Per Piantare 6,6 Milioni di Alberi Nelle Città Metropolitane; Italian Ministry of the Ecological Transition: Rome, Italy, 2022. [Google Scholar]
- Blasi, C. Stato Della Biodiversità in Italia: Contributo alla Strategia Nazionale Per la Biodiversità; Palombi: Rome, Italy, 2005. [Google Scholar]
- Legambiente, La Legge Quadro Sulle aree Naturali Protette Compie 30 Anni. Aggiornare la Legge per Rafforzare la Tutela Della Biodiversita’ Contro la Crisi Climatica. Raggiungere L’obiettivo del 30% di Aree Protette Entro il 2030. 2021. Available online: https://www.legambiente.it/wp-content/uploads/2021/11/30-ANNI-DELLA-LEGGE-394.pdf (accessed on 15 September 2022).
- WWF. Trentennale Della Legge Quadro Sulle aree Protette la Sfida del 30X30 in Italiaper Difendere la Natura Più Ricca D’Europa. 2021. Available online: https://www.wwf.it/uploads/30ennale-Legge-Quadro-Aree-Protette-11_21_compressed.pdf (accessed on 25 September 2022).
- Cancellieri, L.; Rosati, L.; Brunetti, M.; Mancini, L.D.; Primi, R.; Ronchi, B.; Filibeck, G. The dry grasslands of Abruzzo National Park, the oldest protected area in the Apennines (Central Italy): Overview of vegetation composition, syntaxonomy, ecology and diversity. Tuexenia 2020, 40, 547–571. [Google Scholar] [CrossRef]
- Conti, F.; Ciaschetti, G.; Di Martino, L.; Bartolucci, F. An annotated checklist of the vascular flora of Majella National Park (Central Italy). Phytotaxa 2019, 412, 1–90. [Google Scholar] [CrossRef]
- Ciucci, P.; Altea, T.; Antonucci, A.; Chiaverini, L.; Di Croce, A.; Mauro, F.; Lazio, B.M.N.R. Distribution of the brown bear (Ursus arctos marsicanus) in the Central Apennines, Italy, 2005–2014. Hystrix Ital. J. Mammal. 2017, 28, 86. [Google Scholar] [CrossRef]
- Mancinelli, S.; Boitani, L.; Ciucci, P. Determinants of home range size and space use patterns in a protected wolf (Canis lupus) population in the central Apennines, Italy. Can. J. Zool. 2018, 96, 828–838. [Google Scholar] [CrossRef] [Green Version]
- Frassinet, M.; Argento, A.; Cavaliere, V.; Esse, E.; Janni, O. Associazione Studi Ornitologici Italia Meridionale; L’Avifauna del Parco Regionale del Matese (Campania): San Giorgio a Cremano, Italy, 2009. [Google Scholar]
- EC. 2017. Available online: https://land.copernicus.eu/user-corner/publications/clc-flyer (accessed on 10 September 2022).
- Fusaro, L.; Marando, F.; Sebastiani, A.; Capotorti, G.; Blasi, C.; Copiz, R.; Manes, F. Mapping and Assessment of PM10 and O3 Removal by Woody Vegetation at Urban and Regional Level. Remote Sens. 2017, 9, 791. [Google Scholar] [CrossRef] [Green Version]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; López, A.; Elorza, F.J.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total Environ. 2013, 458, 246–255. [Google Scholar] [CrossRef]
- Ovando, P.; Beguería, S.; Campos, P. Carbon sequestration or water yield? The effect of payments for ecosystem services on forest management decisions in Mediterranean forests. Water Resour. Econ. 2019, 28, 100119. [Google Scholar] [CrossRef]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yan, H.; Liu, M.; Kang, L.; Yu, J.; Yang, R. Relationship between PM 2.5 adsorption and leaf surface morphology in ten urban tree species in Shenyang, China. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1029–1039. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Scordo, F.; Lavender, T.M.; Seitz, C.; Perillo, V.L.; Rusak, J.A.; Piccolo, M.C.; Perillo, G.M. Modeling Water Yield: Assessing the Role of Site and Region-Specific Attributes in Determining Model Performance of the InVEST Seasonal Water Yield Model. Water 2018, 10, 1496. [Google Scholar] [CrossRef] [Green Version]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Vogl, A.L. InVEST User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. 2020. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html (accessed on 10 September 2022).
- Gasparini, P.; Tabacchi, G. L’Inventario Nazionale delle Foreste dei serbatoi forestali di Carbonio INFC 2005. In Secondo Inventario Forestale Nazionale Italiano. Metodi Risultati; Ministero delle Politiche Agricole; Alimentari Forestali: Rome, Italy, 2011. [Google Scholar]
- Fattorini, L.; Marcheselli, M.; Pisani, C. A three-phase sampling strategy for large-scale multiresource forest inventories. J. Agric. Biol. Environ. Stat. 2006, 11, 296–316. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G.; Copiz, R.; Mollo, B. A first revision of the Italian Ecoregion Map. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2018, 152, 1201–1204. [Google Scholar] [CrossRef]
- Benra, F.; De Frutos, A.; Gaglio, M.; Álvarez-Garretón, C.; Felipe-Lucia, M.; Bonn, A. Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Turkelboom, F.; Leone, M.; Jacobs, S.; Kelemen, E.; García-Llorente, M.; Baró, F.; Rusch, V. When we cannot have it all: Ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 2018, 29, 566–578. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, L.; Wu, T. Coordinating ecosystem service trade-offs to achieve win–win outcomes: A review of the approaches. J. Environ. Sci. 2019, 82, 103–112. [Google Scholar] [CrossRef]
- Mokondoko; Manson, R.H.; Ricketts, T.H.; Geissert, D. Spatial analysis of ecosystem service relationships to improve targeting of payments for hydrological services. PLoS ONE 2018, 13, e0192560. [Google Scholar] [CrossRef] [Green Version]
- Muradian, R.; Arsel, M.; Pellegrini, L.; Adaman, F.; Aguilar, B.; Agarwal, B.; Urama, K. Payments for ecosystem services and the fatal attraction of win-win solutions: PES & fatal attraction of win-win solutions. Conserv. Lett. 2013, 6, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef] [Green Version]
- Fares, S.; Paoletti, E.; Calfapietra, C.; Mikkelsen, T.N.; Samson, R.; Le Thiec, D. Carbon Sequestration by Urban Trees. In The Urban Forest; Pearlmutter, D., Calfapietra, C., Samson, R., O’Brien, L., Ostoić, S.K., Sanesi, G., del Amo, R.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 7, pp. 31–39. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Guo, H.; Wu, G.; Wang, Y.; Li, W.; Cui, L. The Concentrations and Removal Effects of PM10 and PM2.5 on a Wetland in Beijing. Sustainability 2019, 11, 1312. [Google Scholar] [CrossRef] [Green Version]
- Van Meerveld, H.J.; Jones, J.P.; Ghimire, C.P.; Zwartendijk, B.W.; Lahitiana, J.; Ravelona, M.; Mulligan, M. Forest regeneration can positively contribute to local hydrological ecosystem services: Implications for forest landscape restoration. J. Appl. Ecol. 2021, 58, 755–765. [Google Scholar] [CrossRef]
- Conte, A.; Zappitelli, I.; Fusaro, L.; Alivernini, A.; Moretti, V.; Sorgi, T.; Fares, S. Significant Loss of Ecosystem Services by Environmental Changes in the Mediterranean Coastal Area. Forests 2022, 13, 689. [Google Scholar] [CrossRef]
- Filibeck, G.; Cancellieri, L.; Sperandii, M.G.; Belonovskaya, E.; Sobolev, N.; Tsarevskaya, N.; Biurrun, I. Biodiversity patterns of dry grasslands in the Central Apennines (Italy) along a precipitation gradient: Experiences from the 10th EDGG Field Worksho. Bull. Eurasian Dry Grassl. Group 2018, 36, 25–41. [Google Scholar] [CrossRef]
- Kermagoret, C.; Claudet, J.; Derolez, V.; Nugues, M.M.; Ouisse, V.; Quillien, N.; Mongruel, R. How does eutrophication impact bundles of ecosystem services in multiple coastal habitats using state-and-transition models. Ocean Coast. Manag. 2019, 174, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Jopke, C.; Kreyling, J.; Maes, J.; Koellner, T. Interactions among ecosystem services across Europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol. Indic. 2015, 49, 46–52. [Google Scholar] [CrossRef]
- Lee, H.; Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 2016, 66, 340–351. [Google Scholar] [CrossRef]
- Turner, K.G.; Odgaard, M.V.; Bøcher, K.; Dalgaard, T.; Svenning, J.-C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Saidi, N.; Spray, C. Ecosystem services bundles: Challenges and opportunities for implementation and further research. Environ. Res. Lett. 2018, 13, 113001. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Zhao, W.; Wang, S.; Fu, B. Landscape functional zoning at a county level based on ecosystem services bundle: Methods comparison and management indication. J. Environ. Manag. 2019, 249, 109315. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, H.; Kong, L.; Huang, B.; Xu, W.; Ouyang, Z. Mapping ecosystem services bundles to detect high- and low-value ecosystem services areas for land use management. J. Clean. Prod. 2019, 225, 11–17. [Google Scholar] [CrossRef]
- Cellamare, C. A contribution to a territorial and local development project: An experience in the province of Rieti (Italy). In Options Méditerranéennes. Série A: Séminaires Méditerranéens (CIHEAM); CIHEAM: Bari, Italy, 2001. [Google Scholar]
- Pignatti, S. Impact of tourism on the mountain landscape of central Italy. Landsc. Urban Plan. 1993, 24, 49–53. [Google Scholar] [CrossRef]
- Ministry of Culture. Certosa di Trisulti. 2022. Available online: https://www.beniculturali.it/luogo/certosa-di-trisulti (accessed on 19 September 2022).
- Bologna, M.; Vigna Taglianti, A. New records on the Abruzzo brown bear range, particularly on Gran Sasso and Laga Mountains. Hystrix Ital. J. Mammal. 1992, 4, 75–80. [Google Scholar]
- Miller-Rushing, A.J.; Primack, R.B.; Ma, K.; Zhou, Z.-Q. A Chinese approach to protected areas: A case study comparison with the United States. Biol. Conserv. 2017, 210, 101–112. [Google Scholar] [CrossRef]
- Comitato per il Capitale Naturale. Quarto Rapporto sullo Stato del Capitale Naturale in Italia; Comitato per il Capitale Naturale: Rome, Italy, 2021. [Google Scholar]
- Sebastiani, A.; Marando, F.; Manes, F. Mismatch of regulating ecosystem services for sustainable urban planning: PM10 removal and urban heat island effect mitigation in the municipality of Rome (Italy). Urban For. Urban Green. 2021, 57, 126938. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel; Sharp, R.; Bullock, J.M. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 2018, 610, 666–677. [Google Scholar] [CrossRef]
- Alkemade, C.J.E.S.R. Consequences of Uncertainty in Global-Scale Land Cover Maps for Mapping Ecosystem Functions: An Analysis of Pollination Efficiency. Remote Sens. 2011, 3, 2057–2075. [Google Scholar] [CrossRef]
Baseflow | Local Recharge | Runoff Retention | Carbon Stock | |
---|---|---|---|---|
Baseflow | 1 | / | / | / |
Local recharge | 0.93 | 1 | / | / |
Runoff retention | 0.35 | 0.28 | 1 | / |
Carbon stock | 0.32 | 0.26 | 0.74 | 1 |
Coverage of the Study Area | Coverage of PAs | |||
---|---|---|---|---|
km2 | % | km2 | % | |
EUAP | 5277.3 | 16.23 | 842.3 | 31.5 |
PPAs | 887.9 | 2.73 | 885.2 | 33.1 |
EUAP + PPAs | 6164.99 | 18.96 | 1727.5 | 64.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastiani, A.; Fares, S. Spatial Prioritization of Ecosystem Services for Land Conservation: The Case Study of Central Italy. Forests 2023, 14, 145. https://doi.org/10.3390/f14010145
Sebastiani A, Fares S. Spatial Prioritization of Ecosystem Services for Land Conservation: The Case Study of Central Italy. Forests. 2023; 14(1):145. https://doi.org/10.3390/f14010145
Chicago/Turabian StyleSebastiani, Alessandro, and Silvano Fares. 2023. "Spatial Prioritization of Ecosystem Services for Land Conservation: The Case Study of Central Italy" Forests 14, no. 1: 145. https://doi.org/10.3390/f14010145
APA StyleSebastiani, A., & Fares, S. (2023). Spatial Prioritization of Ecosystem Services for Land Conservation: The Case Study of Central Italy. Forests, 14(1), 145. https://doi.org/10.3390/f14010145