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Abstract:

 We present a local convergence analysis of an eighth order three step method in order to approximate a locally unique solution of nonlinear equation in a Banach space setting. In an earlier study by Sharma and Arora (2015), the order of convergence was shown using Taylor series expansions and hypotheses up to the fourth order derivative or even higher of the function involved which restrict the applicability of the proposed scheme. However, only first order derivative appears in the proposed scheme. In order to overcome this problem, we proposed the hypotheses up to only the first order derivative. In this way, we not only expand the applicability of the methods but also propose convergence domain. Finally, where earlier studies cannot be applied, a variety of concrete numerical examples are proposed to obtain the solutions of nonlinear equations. Our study does not exhibit this type of problem/restriction.
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1. Introduction

Numerical analysis is a wide-ranging discipline having close connections with mathematics, computer science, engineering and the applied sciences. One of the most basic and earliest problem of numerical analysis concerns with finding efficiently and accurately the approximate locally unique solution [image: there is no content] of the equation of the form



[image: there is no content]



(1)




where F is a Fréchet differentiable operator defined on a convex subset D of X with values in Y, where X and Y are the Banach spaces.
Analytical methods for solving such equations are almost non-existent for obtaining the exact numerical values of the required roots. Therefore, it is only possible to obtain approximate solutions and one has to be satisfied with approximate solutions up to any specified degree of accuracy, by relying on numerical methods which are based on iterative procedures. Therefore, researchers worldwide resort to an iterative method and they have proposed a plethora of iterative methods [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]. While, using these iterative methods researchers face the problems of slow convergence, non-convergence, divergence, inefficiency or failure (for detail please see Traub [15] and Petkovic et al. [13]).

The convergence analysis of iterative methods is usually divided into two categories: semi-local and local convergence analysis. The semi-local convergence matter is, based on the information around an initial point, to give criteria ensuring the convergence of iteration procedures. On the other hand, the local convergence is based on the information around a solution, to find estimates of the radii of convergence balls. A very important problem in the study of iterative procedures is the convergence domain. Therefore, it is very important to propose the radius of convergence of the iterative methods.

We study the local convergence analysis of three step method defined for each n=0,1,2,⋯ by



yn=xn-F′(xn)-1F(xn),zn=[image: there is no content](xn,yn),xn+1=ϕ8(xn,yn,zn)=zn-[zn,xn;F]-1[zn,yn;F]2[zn,yn;F]-[zn,xn;F]-1F(zn),



(2)




where [image: there is no content] is an initial point, [·,·;F]:D2→L(X), [image: there is no content] is any two-point optimal fourth-order scheme. The eighth order of convergence of Scheme (2) was shown in [1] when [image: there is no content] and [x,y;F]=F(x)-F(y)x-y for [image: there is no content] and [x,x;F]=F′(x). That is when [·,·;F] is a divided difference of first order of operator F [5,6]. The local convergence was shown using Taylor series expansions and hypotheses reaching up to the fifth order derivative. The hypotheses on the derivatives of F and H limit the applicability of Scheme (2). As a motivational example, define function F on [image: there is no content], D=[-1π,2π] by


F(x)=x3log(π2x2)+x5sin1x,x≠0,0,x=0.








Then, we have that



[image: there is no content]










[image: there is no content]








and


F′′′(x)=1x(1-36x2)cos1x+x22+6log(π2x2)+(60x2-9)sin1x.








One can easily find that the function [image: there is no content] is unbounded on [image: there is no content] at the point [image: there is no content]. Hence, the results in [1], cannot apply to show the convergence of Scheme (2) or its special cases requiring hypotheses on the fifth derivative of function F or higher. Notice that, in particular, there is a plethora of iterative methods for approximating solutions of nonlinear equations [1,2,3,4,5,6,7,8,10,11,12,13,14,15,16]. These results show that initial guess should be close to the required root for the convergence of the corresponding methods. However, how close an initial guess would be required for the convergence of the corresponding method? These local results give no information on the radius of the ball convergence for the corresponding method. The same technique can be applied to other methods.

In the present study we expand the applicability of Scheme (2) using only hypotheses on the first order derivative of function F. We also propose the computable radii of convergence and error bounds based on the Lipschitz constants. We further present the range of initial guess [image: there is no content] that tells us how close the initial guess would be required for granted convergence of the Scheme (2). This problem was not addressed in [1]. The advantages of our approach are similar to the ones already mentioned for Scheme (2).

The rest of the paper is organized as follows: in Section 2, we present the local convergence analysis of Scheme (2). Section 3 is devoted to the numerical examples which demonstrate our theoretical results. Finally, the conclusion is given in the Section 4.



2. Local Convergence: One Dimensional Case

In this section, we define some scalar functions and parameters to study the local convergence of Scheme (2).

Let K0>0,K1>0,K>0,L0>0,L>0,M≥1, [image: there is no content], be given constants. Let us also assume [image: there is no content]:0,1L0→R, be nondecreasing and continuous function. Further, define function [image: there is no content]:0,1L0→R and [image: there is no content].

Suppose that



[image: there is no content](t)tλ-1<1,foreach0,1L0,[image: there is no content](t)→apositivenumberor+∞,ast→l<1L0forsomel>0.



(3)




Then, we have [image: there is no content]. By Equation (3) and the intermediate value theorem, function [image: there is no content] has zeros in the interval (0,l). Further, let [image: there is no content] be the smallest such zero. Moreover, define functions g1,p and [image: there is no content] in the interval 0,1L0 by



g1(t)=Lt2(1-L0t),p(t)=(K0[image: there is no content](t)tλ-1+K1)t,[image: there is no content](t)=p(t)-1andparameter[image: there is no content]by[image: there is no content]=22L0+L.








We have [image: there is no content] and for each t∈[0,[image: there is no content]):0≤g1(t)<1. We also get [image: there is no content](0)=-1 and [image: there is no content](t)→+∞ as [image: there is no content]. Denote by [image: there is no content] the smallest zero of function [image: there is no content] on the interval 0,1L0. Furthermore, define functions q and [image: there is no content] on the interval 0,1L0 by [image: there is no content] and [image: there is no content](t)=q(t)-1.

Using [image: there is no content](0)=-1<0 and Equation (3), we deduce that function [image: there is no content] has a smallest zero denoted by [image: there is no content].

Finally define functions [image: there is no content] and [image: there is no content] on the interval [0,min{[image: there is no content],[image: there is no content]}) by



[image: there is no content](t)=1+KM1-p(t)1-q(t)[image: there is no content](t)tλand[image: there is no content]=[image: there is no content](t)-1.








Then, we get [image: there is no content](0)=-1 and [image: there is no content](t)→+∞ as t→min{[image: there is no content],[image: there is no content]}. Denote by [image: there is no content] the smallest zero of function [image: there is no content] on the interval (0,min{[image: there is no content],[image: there is no content]}). Define



r=min{[image: there is no content],[image: there is no content],[image: there is no content]}.



(4)




Then, we have that



[image: there is no content]



(5)




and for each [image: there is no content]


[image: there is no content]



(6)






[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)




and


0≤[image: there is no content](t)<1.



(10)




U(γ,s) and U¯(γ,s) stand, respectively for the open and closed balls in X with center [image: there is no content] and radius [image: there is no content].
Next, we present the local convergence analysis of Scheme (2) using the preceding notations.


Theorem 1. 
Let us consider [image: there is no content] be a Fréchet differentiable operator. Let us also assume [·,·;F]:D2→L(X) be a divided difference of order one. Suppose that there exist [image: there is no content]∈D,L0>0,λ≥1 such that Equation (3) holds and for each [image: there is no content]



F([image: there is no content])=0,F′([image: there is no content])-1∈L(Y,X),



(11)






∥z(x)-[image: there is no content]∥≤[image: there is no content](∥x-[image: there is no content]∥)∥x-[image: there is no content]∥λ



(12)




and


F′([image: there is no content])-1F′(x)-F′([image: there is no content])≤L0∥x-[image: there is no content]∥.



(13)




Moreover, suppose that there exist K0>0,K1>0,K>0,L>0 and [image: there is no content] such that for each x,y∈U[image: there is no content],1L0∩D


F′([image: there is no content])-1[x,y;F]-F′([image: there is no content])≤K0∥x-[image: there is no content]∥+K1∥y-[image: there is no content]∥,



(14)






F′([image: there is no content])-1[x,y;F]≤K,



(15)






F′([image: there is no content])-1F′(x)-F′(y)≤L∥x-y∥,



(16)






F′([image: there is no content])-1F′(x)≤M



(17)




and


U¯[image: there is no content],r⊆D,



(18)




where the radius of convergence r is defined by Equation (4) and z(x)=[image: there is no content](x,x-F′(x)-1F(x)). Then, the sequence [image: there is no content] generated by Scheme (2) for [image: there is no content]∈U([image: there is no content],r)-{[image: there is no content]} is well defined, remains in U([image: there is no content],r) for each [image: there is no content] and converges to [image: there is no content]. Moreover, the following estimates hold


∥yn-[image: there is no content]∥≤g1(∥xn-[image: there is no content]∥)∥xn-[image: there is no content]∥<∥xn-[image: there is no content]∥<r,



(19)






∥zn-[image: there is no content]∥≤[image: there is no content](∥xn-[image: there is no content]∥)∥xn-[image: there is no content]∥<∥xn-[image: there is no content]∥



(20)




and


∥xn+1-[image: there is no content]∥≤[image: there is no content](∥xn-[image: there is no content]∥)∥xn-[image: there is no content]∥<∥xn-[image: there is no content]∥,



(21)




where the [image: there is no content] functions are defined by previously. Furthermore, for T∈r,2L0, the limit point [image: there is no content] is the only solution of equation [image: there is no content] in U¯([image: there is no content],r)∩D.



Proof. 
We shall show estimates Equations (19)–(21) hold with the help of mathematical induction. By hypotheses [image: there is no content]∈U([image: there is no content],r)-{[image: there is no content]}, Equations (5) and (13), we get that



F′([image: there is no content])-1F′([image: there is no content])-F′([image: there is no content])≤L0∥x-[image: there is no content]∥<L0r<1.



(22)




It follows from Equation (22) and the Banach Lemma on invertible operators [5,14] that F′([image: there is no content])-1∈L(Y,X),y0 is well defined and



F′([image: there is no content])-1F′([image: there is no content])≤11-L0∥[image: there is no content]-[image: there is no content]∥.



(23)




Using the first sub step of Scheme (2) for [image: there is no content], Equations (4), (6), (11) and (23), we get in turn



∥y0-[image: there is no content]∥=[image: there is no content]-[image: there is no content]-F([image: there is no content])-1F([image: there is no content])≤F′([image: there is no content])-1F′([image: there is no content])∫01F′([image: there is no content])-1F′([image: there is no content]+θ([image: there is no content]-[image: there is no content]))-F′([image: there is no content])([image: there is no content]-[image: there is no content])dθ≤L∥[image: there is no content]-[image: there is no content]∥21-L∥[image: there is no content]-[image: there is no content]∥=g1∥∥[image: there is no content]-[image: there is no content]∥)∥[image: there is no content]-[image: there is no content]∥<∥[image: there is no content]-[image: there is no content]∥<r,



(24)




which shows Equation (18) for [image: there is no content] and y0∈U([image: there is no content],r). Then, from Equations (3) and (12), we see that Equation (20) follows. Hence, [image: there is no content]∈U([image: there is no content],r). Next, we shall show that [[image: there is no content],[image: there is no content];F]-1∈L(Y,X) and 2[[image: there is no content],y0;F]-[[image: there is no content],[image: there is no content];F]-1∈L(Y,X).
Using Equations (4), (5), (7), (13), (14) and (24), we get in turn that



F′([image: there is no content])-1[[image: there is no content],[image: there is no content],F]-F′([image: there is no content])≤K0∥[image: there is no content]-[image: there is no content]∥+K1∥[image: there is no content]-[image: there is no content]∥≤K0[image: there is no content](∥[image: there is no content]-[image: there is no content]∥)∥[image: there is no content]-[image: there is no content]∥λ+K1∥[image: there is no content]-[image: there is no content]∥,=p(∥[image: there is no content]-[image: there is no content]∥)<p(r)<1.



(25)




It follows from Equation (25) that



[[image: there is no content],[image: there is no content];F]-1F′([image: there is no content])≤11-p(∥[image: there is no content]-[image: there is no content]∥).



(26)




Similarly, but using Equation (8) instead of Equation (7), we obtain in turn that



F′([image: there is no content])-12[[image: there is no content],y0;F]-F′([image: there is no content])-[[image: there is no content],[image: there is no content];F]-F′([image: there is no content])≤2F′([image: there is no content])-1[[image: there is no content],y0;F]-F′([image: there is no content])+F′([image: there is no content])-1[[image: there is no content],[image: there is no content];F]-F′([image: there is no content]),≤2K0∥[image: there is no content]-[image: there is no content]∥+K1∥y0-[image: there is no content]∥+p(∥[image: there is no content]-[image: there is no content]∥),≤2(K0[image: there is no content](∥[image: there is no content]-[image: there is no content]∥)∥[image: there is no content]-[image: there is no content]∥λ+K1g1(∥[image: there is no content]-[image: there is no content]∥)∥[image: there is no content]-[image: there is no content]∥)+p(∥[image: there is no content]-[image: there is no content]∥),=q(∥[image: there is no content]-[image: there is no content]∥)<q(r)<1.



(27)




That is



2[[image: there is no content],y0;F]-[[image: there is no content],[image: there is no content];F]-1F′([image: there is no content])≤11-q(∥[image: there is no content]-[image: there is no content]∥).



(28)




Hence, [image: there is no content] is well defined by the third sub step of Scheme (2) for [image: there is no content]. We can write by Equation (11)



F([image: there is no content])=F([image: there is no content])-F([image: there is no content])=∫01F′([image: there is no content]+θ([image: there is no content]-[image: there is no content]))([image: there is no content]-[image: there is no content])dθ.



(29)




Notice that ∥[image: there is no content]+θ([image: there is no content]-[image: there is no content])-[image: there is no content]∥=θ∥[image: there is no content]-[image: there is no content]∥<r. Hence, we have that [image: there is no content]+θ([image: there is no content]-[image: there is no content])∈U([image: there is no content],r). Then, by Equations (17) and (29) we get that



F′([image: there is no content])-1F([image: there is no content])=∫01F′([image: there is no content])-1F′([image: there is no content]+θ([image: there is no content]-[image: there is no content]))([image: there is no content]-[image: there is no content])dθ≤M∥[image: there is no content]-[image: there is no content]∥.



(30)




We also have that by replacing [image: there is no content] by [image: there is no content] in Equation (30) that



F′([image: there is no content])-1F([image: there is no content])≤M∥[image: there is no content]-[image: there is no content]∥,



(31)




since [image: there is no content]∈U([image: there is no content],r).
Then, using the last substep of Scheme (2) for [image: there is no content], Equations (4), (10), (15), (20) (for [image: there is no content]), (26), (28), and (31) that



∥[image: there is no content]-[image: there is no content]∥≤∥[image: there is no content]-[image: there is no content]∥+[[image: there is no content],[image: there is no content];F]-1F′([image: there is no content])F′([image: there is no content])-1[[image: there is no content],[image: there is no content];F]×[[image: there is no content],y0;F]-[[image: there is no content],[image: there is no content];F]-1F′([image: there is no content])F′([image: there is no content])-1F([image: there is no content]),≤∥[image: there is no content]-[image: there is no content]∥+KM∥[image: there is no content]-[image: there is no content]∥1-p(∥[image: there is no content]-[image: there is no content]∥)1-q(∥[image: there is no content]-[image: there is no content]∥),≤1+KM1-p(∥[image: there is no content]-[image: there is no content]∥)1-q(∥[image: there is no content]-[image: there is no content]∥)∥[image: there is no content]-[image: there is no content]∥,≤[image: there is no content](∥[image: there is no content]-[image: there is no content]∥)∥[image: there is no content]-[image: there is no content]∥<∥[image: there is no content]-[image: there is no content]∥<r,



(32)




which shows Equation (21) for [image: there is no content] and [image: there is no content]∈U([image: there is no content],r). By simply replacing [image: there is no content], y0,[image: there is no content] by [image: there is no content], ym,zm in the preceding estimates we arrive at Equations (19)–(21). Then, from the estimates ∥xm+1-[image: there is no content]∥<∥[image: there is no content]-[image: there is no content]∥<r, we conclude that limm→∞xk=[image: there is no content] and xm+1∈U([image: there is no content],r). Finally, to show the uniqueness part, let y*∈U¯([image: there is no content],T) be such that [image: there is no content]. Set Q=∫01F′[image: there is no content]+θ(y*-[image: there is no content])dθ. Then, using Equation (14), we get that


F′([image: there is no content])-1(Q-F′([image: there is no content]))≤L0∫01θ∥[image: there is no content]-y*∥dθ=L02T<1.



(33)




Hence, Q-1∈L(Y,X). Then, in view of the identity F(y*)-F([image: there is no content])=Q(y*-[image: there is no content]), we conclude that [image: there is no content]=y* ☐



Remark 2.2 



	(a)

	In view of Equation (11) and the estimate



F′([image: there is no content])-1[x,[image: there is no content];F]=F′([image: there is no content])-1([x,[image: there is no content];F]-F′([image: there is no content])-F′([image: there is no content]))+I,≤1+F′([image: there is no content])-1([x,[image: there is no content];F]-F′([image: there is no content])),≤1+L0∥[image: there is no content]-[image: there is no content]∥,








condition Equation (13) can be dropped and M can be replaced by



[image: there is no content]








or [image: there is no content] since [image: there is no content]



	(b)

	The results obtained here can be used for operators F satisfying the autonomous differential equation [5,6] of the form



[image: there is no content]








where P is a known continuous operator. Since F′([image: there is no content])=P(F([image: there is no content]))=P(0), we can apply the results without actually knowing the solution [image: there is no content]. Let as an example [image: there is no content] Then, we can choose [image: there is no content].



	(c)

	The radius [image: there is no content] was shown in [5,6] to be the convergence radius for Newton’s method under conditions Equations (11) and (12). It follows from Equation (4) and the definition of [image: there is no content] that the convergence radius r of the Scheme (2) cannot be larger than the convergence radius [image: there is no content] of the second order Newton’s method. As already noted, [image: there is no content] is at least the size of the convergence ball given by Rheinboldt [14]



[image: there is no content]








In particular, for [image: there is no content], we have that



[image: there is no content]<[image: there is no content]








and



[image: there is no content][image: there is no content]→13asL0L→0.








That is our convergence ball [image: there is no content] is at most three times larger than Rheinboldt’s. The same value for [image: there is no content] given by Traub [15].



	(d)

	We shall show that how to define function [image: there is no content] and l appearing in condition Equation (3) for the method



yn=xn-F′(xn)-1F(xn),zn=[image: there is no content](xn,yn):=yn-[yn,xn;F]-1F′(xn)[yn,xn;F]-1F′(yn),xn+1=ϕ8(xn,yn,zn).



(34)




Clearly method (34) is a special case of Scheme (2). If [image: there is no content] then Method (34) reduces to Kung-Traub method [15]. We shall follow the proof of Theorem 1 but first we need to show that [yn,xn;F]-1∈L(Y,X). We get that



F′([image: there is no content])-1[yn,xn;F]-F′([image: there is no content])≤K0∥yn-[image: there is no content]∥+K1∥xn-[image: there is no content]∥,≤K0g1(∥xn-[image: there is no content]∥)+K1∥xn-[image: there is no content]∥,=p0(∥xn-[image: there is no content]∥).



(35)




As in the case of function p, function [image: there is no content], where [image: there is no content] has a smallest zero denoted by [image: there is no content] in the interval 0,1L0. Set l=[image: there is no content]. Then, we have from the last sub step of Method (34) that



∥zn-[image: there is no content]∥≤∥yn-[image: there is no content]∥+[yn,xn;F]-1F′([image: there is no content])F′([image: there is no content])-1F′(xn),[yn,xn;F]-1F′(xn)F′([image: there is no content])-1F(yn),≤∥yn-[image: there is no content]∥+M21-p0(∥xn-[image: there is no content]∥)2∥yn-[image: there is no content]∥,1+M21-p0(∥xn-[image: there is no content]∥)2g1(∥xn-[image: there is no content]∥)∥xn-[image: there is no content]∥,1+M21-p0(∥xn-[image: there is no content]∥)2L∥xn-[image: there is no content]∥21-L0∥xn-[image: there is no content]∥.



(36)




It follows from Equation (36) that [image: there is no content] and [image: there is no content](t)=L1-L0t1+M21-p0(t)2. Then, the convergence radius is given by



r=min{[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]}.



(37)












3. Numerical Example and Applications

In this section, we shall check the effectiveness and validity of our theoretical results which we have proposed in Section 2 on the scheme proposed by Sharma and Arora [1]. For this purpose, we shall choose a variety of nonlinear equations which are mentioned in the following examples including motivational example. At this point, we chose the following eighth order methods proposed by Sharma and Arora [1]



yn=xn-F′(xn)-1F(xn),zn=yn-2[yn,xn;F]-F′(xn)-1F(yn),xn+1=ϕ8(xn,yn,zn),



(38)






yn=xn-F′(xn)-1F(xn),zn=yn-([yn,xn;F]2)-1F′(xn)F(yn),xn+1=ϕ8(xn,yn,zn)



(39)




and


yn=xn-F′(xn)-1F(xn),zn=yn-(2[yn,xn;F]-1-F′(xn)-1)F(yn),xn+1=ϕ8(xn,yn,zn),



(40)




denoted by [image: there is no content], [image: there is no content] and [image: there is no content], respectively.
The initial guesses [image: there is no content] are selected with in the range of convergence domain which gives guarantee for convergence of the iterative methods. Due to the pages limit, all the values of parameters are done for only 5 significant digits and displayed in the Table 1, Table 2 and Table 3 and examples Equations (1)–(3), although 100 significant digits are available. The considered test examples with corresponding initial guess, radius of convergence and necessary number of iterations (n) for getting the desired accuracy are displayed in Table 1, Table 2 and Table 3.

Table 1. Different values of parameters which satisfy Theorem 1.


	Cases
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	r
	[image: there is no content]
	n
	ρ





	[image: there is no content]
	0.66667
	0.66667
	0.28658
	0.27229
	0.76393
	0.27229
	0.25
	4
	9.0000



	[image: there is no content]
	0.66667
	0.66667
	0.28658
	0.27229
	0.76393
	0.27229
	0.25
	4
	9.0000



	[image: there is no content]
	0.66667
	0.66667
	0.28658
	0.27229
	0.76393
	0.27229
	0.25
	4
	9.0000








Table 2. Different values of parameters which satisfy Theorem 1.


	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	r





	0.044444
	0.066667
	0.011303
	0.022046
	0.088889
	0.011303








Table 3. Different values of parameters which satisfy Theorem 1.


	Cases
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	r
	[image: there is no content]
	n
	ρ





	[image: there is no content]
	0.0075648
	0.0075648
	0.0016852
	0.0094361
	0.0086685
	0.0016852
	0.310
	6
	8.0000



	[image: there is no content]
	0.0075648
	0.0075648
	0.0016852
	0.0094361
	0.0086685
	0.0016852
	0.310
	6
	8.0000



	[image: there is no content]
	0.0075648
	0.0075648
	0.0016852
	0.0094361
	0.0086685
	0.0016852
	0.310
	6
	8.0000








In addition, we also want to verify the theoretical order of convergence of Methods (38)–(40). Therefore, we calculate the computational order of convergence (COC) [9] approximated by using the following formulas



ρ=ln∥xn+2-[image: there is no content]∥∥xn+1-[image: there is no content]∥ln∥xn+1-[image: there is no content]∥∥xn-[image: there is no content]∥,for each=0,1,2,…



(41)




or the approximate computational order of convergence (ACOC) [9]


ρ*=ln∥xn+2-xn+1∥∥xn+1-xn∥ln∥xn+1-xn∥∥xn-xn-1∥,for each=1,2,…



(42)




During the current numerical experiments with programming language Mathematica (Version 9), all computations have been done with multiple precision arithmetic, which minimize round-off errors. We use [image: there is no content] as a tolerance error. The following stopping criteria are used for computer programs: [image: there is no content] and [image: there is no content].

Further, we use [image: there is no content] and function [image: there is no content] as defined above Equation (37) in all the examples.


Example 1. 
Let S=R,D=[-1,1],[image: there is no content]=0 and define function F on D by



[image: there is no content]



(43)




Then, we get [image: there is no content] and [image: there is no content]. We obtain different radius of convergence, COC (ρ) and n in the following Table 1.







Example 2 
Let X=Y=C[0,1], the space of continuous functions defined on [0,1] be and equipped with the max norm. Let [image: there is no content]=U¯(0,1). Define function F on [image: there is no content] by



[image: there is no content]



(44)




we have that


F′φ(ξ)(x)=ξ(x)-15∫01xτφ(τ)2ξ(τ)dτ,foreachξ∈[image: there is no content].



(45)




Then, for [image: there is no content]=0, we obtain that L0=7.5,L=15,M=K=2 and [image: there is no content]. We obtain different radius of convergence in the following Table 2.







Example 3 
Returning back to the motivation example at the introduction on this paper, we have [image: there is no content], M=K=2,K0=K1=L02 and our required zero is [image: there is no content]=1π. We obtain different radius of convergence, COC (ρ) and n in the following Table 3.







4. Conclusions

Most of the time, researchers mentioned that the initial guess should be close to the required root for the granted convergence of their proposed schemes for solving nonlinear equations. However, how close an initial guess would be required to grantee the convergence of the proposed method? We propose the computable radius of convergence and error bound by using Lipschitz conditions in this paper. Further, we also reduce the hypotheses from fourth order derivative of the involved function to only first order derivative. It is worth noticing that Scheme (2) is not changing if we use the conditions of Theorem 1 instead of the stronger conditions proposed by Sharma and Arora (2015). Moreover, to obtain the error bounds in practice and order of convergence, we can use the computational order of convergence which is defined in numerical Section 3. Therefore,we obtain in practice the order of convergence in a way that avoids the bounds involving estimates higher than the first Fréchet derivative. Finally, on account of the results obtained in Section 3, it can be concluded that the proposed study not only expands the applicability but also gives the computable radius of convergence and error bound of the scheme given by Sharma and Arora (2015) for obtaining simple roots of nonlinear equations.
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