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Abstract: This paper presents a systematic review of the emerging applications of artificial
intelligence (AI), Internet of Things (IoT), and sensor-based technologies in the diagnosis of
autism spectrum disorder (ASD). The integration of these technologies has led to promising
advances in identifying unique behavioral, physiological, and neuroanatomical markers as-
sociated with ASD. Through an examination of recent studies, we explore how technologies
such as wearable sensors, eye-tracking systems, virtual reality environments, neuroimag-
ing, and microbiome analysis contribute to a holistic approach to ASD diagnostics. The
analysis reveals how these technologies facilitate non-invasive, real-time assessments across
diverse settings, enhancing both diagnostic accuracy and accessibility. The findings under-
score the transformative potential of AI, IoT, and sensor-based driven tools in providing
personalized and continuous ASD detection, advocating for data-driven approaches that
extend beyond traditional methodologies. Ultimately, this review emphasizes the role
of technology in improving ASD diagnostic processes, paving the way for targeted and
individualized assessments.

Keywords: autism spectrum disorder; artificial intelligence; Internet of Things; sensor-
based technologies; non-invasive diagnostics

1. Introduction
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition charac-

terized by distinctive social, behavioral, and communication challenges, with significant
variability between individuals [1]. Traditional diagnostic methodologies, which primarily
rely on observational and behavioral assessments, often face challenges related to accessibil-
ity, consistency, and timeliness. However, recent advancements in technology, particularly
in artificial intelligence (AI), the Internet of Things (IoT), and sensor-based methodologies,
present new possibilities for enhancing ASD detection. These tools are increasingly uti-
lized to capture unique, data-driven markers of ASD, transforming diagnostic practices
through more objective, precise, and scalable approaches [2–4]. The adoption of wearable
sensors, eye-tracking systems, and multimodal VR environments holds the potential to
provide an innovative means of observing ASD-related motor patterns, attentional pro-
cesses, and physiological responses in real time. These technologies may enable continuous
and non-intrusive monitoring, supporting early detection of ASD, and providing insights
into behavioral and neurological traits that have been challenging to capture reliably. How-
ever, advances in current research is needed to validate their effectiveness. For instance,
sensor-based methodologies could help identify stereotypical behaviors and motor patterns
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associated with ASD in naturalistic settings, potentially providing data that might inform
timely and tailored interventions [5–7]. Neuroimaging and microbiome analysis also ex-
tend this technological frontier by suggesting ASD-specific neurological and biological
characteristics. AI-enhanced neuroimaging can help in identifying structural and functional
brain connectivity patterns linked to ASD, contributing to a deeper understanding of its
neuroanatomical basis [8,9].

This review examines the latest AI, IoT, and sensor-based methodologies in ASD
research, highlighting their applications, benefits, and limitations. By synthesizing findings
from diverse studies, our aim (and contribution to this research domain) is to demonstrate
how these technological advancements are reshaping ASD diagnostics, offering a multidi-
mensional perspective that facilitates more personalized, effective, and accessible support
for people with ASD. Furthermore, building on our discussion of the identified challenges
and open issues, we propose a comprehensive approach toward a holistic framework for
ASD detection that combines emerging technologies with traditional diagnostic methods.

The structure of this paper is as follows: Section 1 introduces the research context,
highlighting the primary objectives and significance of the study. Section 2 provides
background knowledge essential for understanding the research, including foundational
concepts and relevant theoretical frameworks. Section 3 outlines the methodology, detailing
the data collection and analytical techniques employed. Section 4 presents the results,
emphasizing key findings. Section 5 discusses these findings in relation to the existing
body of knowledge, identifying implications and limitations and offering a proposal for
feature work. Finally, Section 6 concludes the paper, summarizing the contributions and
suggesting directions for future research.

2. Background Knowledge
ASD is a neurodevelopmental condition characterized by social, behavioral, and com-

munication challenges [10]. The symptoms and severity of ASD vary greatly, emphasizing
the importance of personalized diagnostic and intervention strategies [11]. Traditional diag-
nostic methodologies for ASD primarily rely on behavioral observation, clinical interviews,
and standardized assessment tools. These methodologies are designed to identify core
ASD characteristics, such as difficulties in social interaction, communication challenges,
and restricted or repetitive behaviors.

2.1. Traditional Diagnostic Methodologies

Traditional diagnostic methodologies for ASD have been the cornerstone of clinical
practice for many years, providing valuable insights and reliable assessments. Commonly
used tools include the Autism Diagnostic Observation Schedule (ADOS) [12] and the
Autism Diagnostic Interview-Revised (ADI-R) [13–15], both of which involve detailed
evaluations conducted by trained professionals. The ADI-R is a structured interview with
caregivers, designed to gather detailed information about developmental history and
current behaviors in areas such as social interaction, communication, and restricted or
repetitive behaviors. It is particularly effective for individuals aged 18 months and older
and aligns with diagnostic criteria from the DSM [16] and ICD [17]. The ADOS, on the other
hand, is a semi-structured assessment that involves direct observation of an individual’s
behavior during structured and unstructured activities. It evaluates communication, social
interaction, and play behaviors, with modules tailored to different age groups and lan-
guage levels. Together, these tools offer a comprehensive approach by combining caregiver
insights with real-time behavioral observations [18]. These methodologies have proven to
be effective in identifying core symptoms and guiding interventions, establishing a foun-
dation for understanding and addressing ASD. Despite their long-standing validity, these
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approaches are not without limitations. They can be time-intensive, often requiring lengthy
observation and evaluation sessions, which may hinder their scalability and accessibility,
especially in underserved regions [19,20]. Specifically, traditional methodologies can be
limited by the following:

• Delayed Diagnosis: The combination of subjectivity, time constraints, and limited access
can lead to significant delays in diagnosis. This delay can have cascading effects, as early
intervention is crucial to improving long-term outcomes for people with ASD [21].

• Clinician Subjectivity: Traditional diagnostic methodologies heavily rely on clinicians’
observations and interpretations of a child’s behavior. This introduces the risk of
subjective bias, as clinicians can perceive and interpret the same behavior differently
based on their experience, training, or unconscious biases [22].

• Environmental Variability: A child’s behavior can fluctuate depending on the environ-
ment or even the time of day. Traditional assessments, often conducted in unfamiliar
clinical settings, may not accurately capture a child’s typical behavior patterns in
naturalistic settings [23].

• Cultural Considerations: Perceptions of "typical" behavior can vary across cultures.
Traditional assessments may not consistently account for these cultural differences,
potentially leading to misinterpretations of behavior in children from diverse back-
grounds [24].

• Assessment Burden: Traditional diagnostic assessments often require multiple ob-
servation and interaction sessions with the child. This can be time-consuming for
both the clinician and the family, potentially creating barriers to timely diagnosis and
intervention [19].

• Accessibility Challenges: The requirement for specialized clinicians and resources for
traditional assessments can create disparities in access to diagnosis, particularly in
rural or underserved communities with limited healthcare infrastructure [25].

2.2. Emerging Technologies: Transforming ASD Detection

The integration of emerging technologies has the potential to address these limitations,
possibly offering more objective, continuous, and personalized insights into an individ-
ual’s unique ASD characteristics, although further research is needed to confirm their
effectiveness [26].

2.2.1. AI in ASD Detection

AI, with its capabilities in pattern recognition and predictive analytics, has the potential
to revolutionize ASD detection. Techniques such as deep learning in neural networks can
process large datasets of behavioral and physiological information, potentially identifying
subtle patterns and markers that might not be readily apparent to human observers [27,28].
By utilizing AI in this setting, there is a potential of gaining more objective and comprehen-
sive insights into an individual’s ASD characteristics, which could support earlier and more
accurate diagnoses. Nonetheless, the need for further investigation into the effectiveness of
these approaches underscores the motivation for exploring methodologies in this study.

2.2.2. IoT and Real-Time Data Monitoring

IoT provides the infrastructure for interconnecting various devices, enabling real-time
data collection and monitoring in naturalistic settings. IoT-powered wearable devices,
smart home sensors, and environmental monitoring systems offer the potential to provide
continuous, unobtrusive insights into an individual’s behavior, communication patterns,
and physiological responses. While IoT-enabled technologies could complement traditional
assessments by delivering a more holistic understanding of ASD characteristics across
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different contexts, their effectiveness in reliably detecting ASD remains an area of active
exploration of characteristics across different contexts [29].

2.2.3. Sensor-Based Technologies for Behavioral and Physiological Insights

Advanced sensor-based technologies, including commercially available or patient-
specific wearable devices, eye-tracking systems, and electroencephalogram (EEG) sensors,
enable the collection of objective and quantifiable data on behavioral and physiological
markers associated with ASD. These tools provide a means to detect subtle variations in
motor behavior, gaze dynamics, and neural activity that are often imperceptible using
traditional observational approaches [30]. However, the application of these technologies in
accurately identifying ASD traits and their integration into diagnostic frameworks require
further validation, which underscores the need for a systematic evaluation [30].

2.3. From Traditional Assessments to Technological Advancements

To summarize, while traditional diagnostic methodologies for ASD have been widely
used, they may face limitations and introduce challenges, as previously mentioned. The
integration of emerging technologies, including AI, IoT, and sensor-based technologies,
offers a promising approach to overcome these challenges. By leveraging AI’s pattern
recognition capabilities and analyzing diverse data sources from wearable sensors and
IoT devices, it is possible to work toward achieving more objective, continuous, and
personalized insights into the unique ASD characteristics of individuals. This shift toward
technology-driven approaches has the potential to revolutionize ASD detection, making it
more insightful, accurate, timely, and accessible to diverse populations. The convergence of
these technologies offers the potential for non-invasive, scalable, and real-time approaches
to ASD diagnosis [10,31].

3. Research Methodology
This review examines the integration of AI, IoT, and sensor-based technologies in

autism detection, synthesizing findings from original research across multiple domains.
A meticulous and structured approach was followed to ensure the inclusion of relevant,
high-quality studies while minimizing potential biases. In the following section, the paper
provides a detailed description of the related work that is present in the literature. This ef-
fort is motivated by a single overarching research question: How are emerging technologies
transforming the diagnosis of ASD and leverage behavioral, physiological, and neurological
markers through innovative approaches? To answer this, the review synthesizes applica-
tions of technologies such as wearable sensors, eye-tracking systems, neuroimaging tools,
EEG-based devices, and IoT-enabled smart devices to identify ASD-specific behavioral,
physiological, and neurological markers. It further explores innovative approaches, includ-
ing virtual reality (VR) environments, AI-driven facial and head movement recognition,
gamified tools, and microbiome analysis, as well as the use of machine learning classifiers
to enhance diagnostic accuracy and scalability. By integrating these technologies, the re-
view highlights the transformative potential of data-driven approaches in advancing early
detection, improving accessibility, and paving the way for more personalized interventions
for individuals with ASD.

3.1. Inclusion and Exclusion Criteria

We established clear inclusion and exclusion criteria to maintain the rigor and focus of
this review. Only original research papers published in English in peer-reviewed journals
or conference proceedings were included. To avoid redundancy and potential bias, review
papers and meta-analyses were excluded, as they summarize primary research rather than
presenting original findings. Similarly, short communications were excluded due to their
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limited depth and scope. To capture the full spectrum of advancements in AI, IoT, and
sensor-based technology, no restrictions were applied regarding publication dates. Each
study also had to explicitly focus on the application of AI, IoT, or sensor-based technologies
within autism research, forming the basis of our study eligibility criteria.

3.2. Search Engines and Search Queries

We have searched in four scientific databases—(a) PubMed, (b) Elsevier ScienceDirect,
(c) Scopus, and (d) ACM Digital Library—to ensure a comprehensive literature search.
These databases were chosen for their extensive coverage of both technical and medi-
cal/psychological fields, providing a balanced collection of relevant studies. Searches
were conducted in October and November 2024 using customized search strings designed
for compatibility with each database’s query structure. A representative search string is
as follows:

TITLE((“internet of things” OR “IoT” OR “artificial intelligence” OR “AI” OR sensors)
AND (autism OR ASD) AND (diagnosis OR screening OR evaluation OR detection OR assessment
OR identification))

To enhance specificity, the search was restricted to papers with relevant keywords
appearing in the title. This decision was made after initial exploratory searches revealed
that querying all fields generated a large volume of studies with variable relevance (Table 1).
By focusing on title-based searches, we ensured a direct connection between the studies
and our research questions, thereby improving the precision of the review.

Table 1. Summary of paper selection process.

Database Initial Results (All Fields) Title-Based Results

ACM Digital Library 3859 35
ScienceDirect 7185 101
PubMed 470 175
Scopus 38,549 39
Total 50,063 350

3.3. Paper Selection, Data Extraction, and Reliability of Relevance Assessments

The initial selection of papers involved a systematic screening of titles for relevance
to the inclusion criteria. To assess the consistency of relevance assessments among three
independent reviewers, Fleiss’ Kappa was calculated [32]. Fleiss’ Kappa is a statistical
measure of agreement for categorical data that extends Cohen’s Kappa to multiple raters,
providing a robust metric for assessing inter-rater reliability. In this study, each paper
was rated as “completely relevant” (2), “somehow relevant” (1), or “not relevant” (0)
by three reviewers. Papers scoring a total of 6 were automatically advanced to the next
stage, while those scoring less than 3 were excluded. Papers with scores between 3 and
5 underwent further review. The calculated Fleiss’ Kappa score was 0.90, indicating a
high level of agreement among the reviewers. According to conventional interpretation
scales for Kappa values, this score suggests an “almost perfect” agreement. This high
agreement demonstrates that the reviewers consistently assessed the relevance of the
papers, validating the reliability of the relevance categorization process (Figure 1, Table 1)

Selected papers were then subjected to detailed examination. Data extraction was
conducted using structured spreadsheets to capture key findings, methodologies, and
techniques from each study. Terminologies were standardized to ensure consistency and
mitigate selective reporting bias. This iterative process allowed for a comprehensive
synthesis of findings.
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Figure 1. PRISMA flow diagram for selected papers.

3.4. Data Analysis

The analysis utilized a mixed-methodologies approach, combining frequency counts
and summary statistics to identify trends and patterns with thematic synthesis to explore
methodological approaches and key findings. This comprehensive approach provided a
deeper understanding of the application of AI, IoT, and sensor-based technologies in ASD
detection. A total of 57 studies were initially selected, with 53 passing title and abstract
screening and 30 included in the final analysis (Figure 1).

4. Results
The results of this study provide an overview of various AI, IoT, and sensor-based

technologies utilized for detecting ASD. Each approach demonstrates unique contributions
to improving diagnostic accuracy, early detection, and real-time monitoring. Below, a
concise summary of the key findings is presented, organized by methodologies, algorithms,
and key findings across diverse ASD populations. These findings highlight the potential
of advanced technologies in addressing the challenges of ASD detection and screening.
The results are summarized in Table 2, showcasing the scope and effectiveness of different
innovations in the field (Table 2).

Table 2. Overview of AI, IoT, and sensor-based approaches for ASD detection: approach, population,
algorithms used, and key findings.

First Author
and Date Approach Population Algorithm Used Key Findings

Millar et al.
(2019) [33] Serious game on tablet Children

3–5 years old Not mentioned

Tablet-based game identified
ASD-specific behavioral patterns;
high sensitivity and
specificity observed.
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Table 2. Cont.

First Author
and Date Approach Population Algorithm Used Key Findings

Mohammadian
Rad et al.
(2018) [2]

Wearable Sensors,
Deep Learning

Children
with ASD

Convolutional Neural
Network (CNN)

Deep learning detected
stereotypical motor movements
with wearable sensors; high
classification accuracy.

Alhassan et al.
(2023) [34]

EEG-based Detection,
Wearable Sensors

Children
with ASD

Support Vector
Machine (SVM)

Energy-efficient EEG scheme for
ASD detection; demonstrated
strong sensitivity and specificity.

Eraslan et al.
(2020) [6]

Eye-Tracking
Scanpath Analysis

Children
with ASD Random Forest

Scanpath trend analysis (the
sequence and movement of gaze
points) differentiated ASD from
non-ASD groups; identified
distinct gaze patterns in
ASD individuals.

Sohl et al.
(2022) [35]

AI Diagnosis Aid, Primary
Care (devise using mobile
caregiver questionnaire,
analysis of two home
videos by experts, and a
healthcare provider
questionnaire).

Children in
Primary Care

Naive Bayes
Classifier

Integrated AI aid in primary care
reduced time for ASD diagnosis
and improved diagnostic accuracy.

Xu et al.
(2024) [8]

Neuroimaging (fMRI)
and AI

Children
with ASD XGBoost

Quantitative assessment of brain
abnormalities in ASD; identified
structural differences with high
classification accuracy.

Wall et al.
(2012) [36]

Behavioral Diagnosis,
AI-based Question
Reduction

Children
with ASD Decision Tree

Reduced ASD diagnosis time by
using AI to condense diagnostic
questionnaire to essential items;
high sensitivity observed.

Shannon
(2021) [37]

Medical Device with AI for
ASD Diagnosis

Children in
Primary Care Random Forest

AI-based medical device
streamlined ASD diagnosis in
primary care; strong diagnostic
accuracy and specificity reported.

Shelke et al.
(2022) [3]

AI and IoT in
ASD Detection

Children
with ASD

K-Nearest Neighbors
(KNNs)

IoT-based continuous monitoring
system for ASD; effective in
real-time ASD behavior detection
and classification.

Shahamiri and
Thabtah
(2020) [38]

AI-based Mobile
Screening System

Children
with ASD

Convolutional Neural
Network (CNN)

AI-based mobile app achieved
high accuracy for ASD screening,
providing user-friendly solution
for caregivers.

Xu et al.
(2009) [7]

Vocal Analysis,
Phone-like Units

Children
with ASD

Support Vector
Machine (SVM)

Vocalization decomposition
method achieved high accuracy in
detecting ASD-specific
vocal characteristics.

Novielli et al.
(2024) [39]

Explainable AI,
Microbiome Analysis

Children
with ASD

Explainable AI (XAI) -
SHAP

Identified ASD-related bacteria in
the gut microbiome; potential
biomarker for ASD diagnosis with
high AU-ROC.
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Table 2. Cont.

First Author
and Date Approach Population Algorithm Used Key Findings

Kim et al.
(2023) [4]

VR and Multimodal
Sensor Analysis

Children
with ASD Not specified

VR-based tool supported
self-awareness in ASD;
multimodal sensor data captured
distinct behavioral responses.

Kabir Mehedi
et al. (2023) [40]

Eye-Tracking
with Transformers

Children
with ASD

Convolutional
Transformer (CCT)

Convolutional transformers
enhanced ASD detection from
eye-tracking patterns; high
classification accuracy achieved.

Neeharika and
Riyazuddin
(2023) [41]

AI Model for
ASD Detection

Children
with ASD

Multilayer
Perceptron (MLP)

Multilayer perceptron model
optimized for ASD detection;
demonstrated strong
diagnostic accuracy.

Deng et al.
(2021) [42]

Stress and
Attention Monitoring

Children
with ASD Logistic Regression

Wearable system accurately
monitored attention and stress,
providing real-time data for
caregiver interventions.

Megerian et al.
(2022) [26]

AI-Based Medical Device
for Diagnosis

Children
with ASD Random Forest

High diagnostic accuracy
observed in AI-based device
aiding ASD diagnosis in
clinical settings.

Gokmen et al.
(2024) [43] Head Movement Analysis Children

with ASD
Support Vector
Machine (SVM)

Kinesic analysis of head
movements provided ASD
markers; demonstrated high
accuracy in distinguishing
ASD patterns.

Ashraf et al.
(2024) [44]

Brain Connectivity
Analysis with IoT

Children
with ASD

Convolutional Neural
Network (CNN)

IoT and transfer learning
enhanced ASD detection through
brain connectivity analysis;
achieved strong classification
performance.

Chen et al.
(2019) [5]

Guided Play and
Digital Sensing

Children
with ASD

Convolutional Neural
Network (CNN)

Digital sensing in guided play
detected stereotypical behaviors;
potential for early ASD screening
through play.

Anjum et al.
(2024) [45] Facial Image Analysis Children

with ASD Deep Learning

Deep learning-based feature
extraction achieved high accuracy
in identifying ASD-related
facial features.

Eraslan et al.
(2020) [6]

Web-Based Eye
Movement Analysis

Children
with ASD Random Forest

Eye movement analysis via web
identified ASD gaze patterns;
promising for remote
ASD screening.

Parui et al.
(2023) [9]

Brain Connectivity and
Sensor Analysis

Children
with ASD

Convolutional Neural
Network (CNN)

Functional connectivity networks
identified ASD markers; improved
detection accuracy using
sensor data.

Reddy et al.
(2024) [46]

IoT-based automated light
sensitivity assessment
framework

Children
with ASD

IoT-LSAS (Child
Control Mode (CCM)
and System Control
Mode (SCM))

Achieved 95% agreement in CCM
and 90% in SCM with
practitioner assessments.
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Table 2. Cont.

First Author
and Date Approach Population Algorithm Used Key Findings

Talaat et al.
(2024) [47]

Real-time facial emotion
recognition system for
ASD children

Children
with ASD

Xception (Pre-trained
DCNN),
Autoencoder

Achieved 95.23% accuracy, with
real-time response enabled by fog
and IoT technologies.

Kumar &
Umesh
(2025) [48]

High Energy and Reliable
Sensory and Behavior Data
Collection (HERSBDC) for
energy-efficient and
reliable ASD data
collection

ASD patients
using IoT
networks

HERSBDC algorithm
(uneven clustering
with multi-objective
routing)

Improved network lifetime by
62.28%, delivery ratio by 15.04%,
and reduced delay by 52.65%.

Alzakari et al.
(2025) [49]

Two-phase strategy for
ASD diagnosis and tailored
educational strategies

Toddlers
with ASD

Logistic Regression,
Support Vector
Machine (LR-SVM)

Achieved 94% accuracy in ASD
identification and 99.29% accuracy
in educational strategy selection.

Rubio-Martín
et al. (2024) [50]

Combined ML, DL, and
NLP approaches for ASD
detection from social
media text data

Twitter users
(404,627 tweets,
90,000 subset for
training/testing)

Decision Trees, XGB,
KNN, RNN, LSTM,
Bi-LSTM, BERT,
BERTweet

Achieved 88% accuracy in
classifying tweets as ASD-related
or non-ASD-related,
demonstrating the utility of AI in
early ASD detection.

Jeon et al.
(2024) [51]

ML and XAI approaches
for ASD diagnosis with
rigorous data
preprocessing

Pediatric ASD
patients (clinical
datasets)

Neural Networks,
Extreme Gradient
Boosting

Achieved high accuracy, precision,
and recall; XAI revealed
behavioral features as key
predictors, enhancing model
interpretability and clinician trust.

Pan et al.
(2024) [52]

AI tools for ASD diagnosis
using edge computing in
educational settings

Students
with ASD
in schools

AlexNet architecture
for facial analysis

Achieved accurate, cost-effective
ASD diagnosis through facial
analysis, highlighting interpretive
features for improving
educational interventions.

4.1. Sensor-Based Detection of Motor Patterns and Stereotypical Behaviors

This chapter examines three studies that investigate innovative approaches for detect-
ing stereotypical behaviors and motor patterns associated with ASD. These methodologies
utilize wearable sensors, guided play interventions, and vocal analysis to enhance diag-
nostic precision and understanding of ASD-related characteristics. Together, these studies
highlight how technology-driven approaches contribute to accurate ASD detection, con-
tinuous monitoring, and even therapeutic interventions, emphasizing the scalability and
accessibility of these techniques for diverse settings.

The first study conducted by Mohammadian Rad et al. (2018) [2] examined the appli-
cation of deep learning in conjunction with wearable sensors to identify stereotyped motor
motions in patients with ASD. In this study, the researchers developed a convolutional
neural network (CNN) model trained to recognize ASD-specific movement patterns by
analyzing data collected from wearable sensors placed on the participants. The sensors
gathered fine-grained motion data, capturing the frequency, intensity, and rhythm of move-
ments characteristic of stereotypical behaviors. To validate the model, the researchers
assessed sensitivity, specificity, and overall accuracy, achieving impressive results: the
model demonstrated a 94% accuracy in correctly classifying ASD and non-ASD movement
patterns. This high precision underscores the potential of combining wearable sensors
with deep learning for non-intrusive ASD detection, suggesting a scalable method suitable
for both clinical settings and home-based monitoring. The study concluded that such
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integration offers a promising approach for early screening and continuous tracking of
ASD-related motor behaviors, facilitating more timely interventions and personalized care.

In a related vein, Chen et al. (2019) [5] explored how guided play environments
embedded with digital sensors could capture stereotypical play behaviors indicative of
ASD. This study utilized a setup in which children engaged in structured play activities
designed to encourage both typical and atypical behaviors, with sensors embedded to
track these interactions. Several innovative smart toys equipped with wireless sensors
have been designed to monitor and detect stereotypical body movements during play.
These devices often incorporate technologies such as accelerometers and video cameras to
achieve precise tracking and analysis. The data collected from these play sessions provided
insight into behavioral patterns, particularly repetitive and restricted play tendencies often
observed in children with ASD. Using comparative analysis between children with ASD
and neurotypical peers, the researchers achieved an accuracy rate of 91% in detecting
subtle behavioral differences. This approach not only demonstrated high diagnostic value
but also highlighted guided play as a potentially therapeutic interaction, as it promotes
social engagement while enabling objective measurement of behavioral cues. The study
concluded that guided play environments equipped with digital sensing offer dual benefits:
they serve as a diagnostic tool for early ASD detection and may also support therapeutic
interventions by encouraging naturalistic social interaction.

Xu et al. (2009) [7] focused on vocal analysis as a non-intrusive means of identifying
ASD-related speech patterns. The researchers developed a machine learning model to
analyze vocalizations by decomposing them into phone-like units. Advanced algorithms
extract features from these units to identify ASD-specific vocal characteristics, such as
atypical pitch, rhythm, or sound production patterns. The extracted features are processed
using machine learning models, which classify the data and determine the likelihood of
ASD presence with high sensitivity and specificity. By comparing the vocal patterns in
children with ASD against those in neurotypical children, the study was able to detect
distinct characteristics in speech prosody (rhythm, intonation, pitch, stress, and tempo
of spoken language) and articulation. This analysis yielded a high accuracy rate of 89%,
indicating that vocalization decomposition could effectively distinguish ASD-specific vocal
traits. The study emphasized the feasibility of using vocal data for ASD screening, noting
that this method’s practicality lies in its adaptability across various settings, from clinical
environments to at-home applications. The findings support vocal analysis as an accessible
and effective tool for early ASD detection, especially when other diagnostic methodologies
are unavailable or impractical.

Summarizing, these studies underscore the potential of wearable sensors, guided
play environments, and vocal analysis in advancing ASD detection and monitoring. Each
approach leverages unique data modalities—motor patterns, play interactions, and vocal
characteristics—offering complementary perspectives on ASD’s behavioral markers. By
facilitating early and accurate detection, these technological approaches pave the way
for personalized support and enhanced quality of life for individuals with ASD and
their families.

4.2. Eye Movement and Visual Processing Analysis and Virtual Reality

Non-invasive methodologies for detecting ASD characteristics are examined, focusing
on differences in gaze patterns, attention, and visual processing between individuals with
ASD and their neurotypical counterparts. This section underlines the effectiveness of eye-
tracking as a diagnostic tool, utilizing scanpath trends, fixation metrics, and gaze heatmaps
to identify early markers of ASD.
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Eraslan et al. (2020) [6] conducted a study in which they examined the potential
of eye-tracking data on web-based tasks to identify ASD by analyzing scanpath trends.
The researchers implemented machine learning algorithms to process gaze patterns and
identify deviations in visual attention, such as fixation duration and gaze shifts, among
individuals with and without ASD. Methodologically, the study focused on collecting
eye-tracking data while participants engaged with web-based visual stimuli, allowing for
real-time data capture. Results showed that individuals with ASD exhibited significantly
different scanpath trends, particularly in terms of fixation stability and gaze repetition,
compared to neurotypical individuals. The model achieved high accuracy, as measured
by area under the curve (AUC) and precision scores, indicating strong sensitivity and
specificity in differentiating ASD from non-ASD gaze patterns. The authors concluded that
scanpath trend analysis via web-based tasks is a practical and scalable method for ASD
screening, enabling accessible assessments that could be used beyond clinical settings.

Expanding on this approach, another study by Eraslan et al. (2020) [53] examined
specific eye movement metrics, including fixations, saccades, and dwell time, to further
investigate attentional biases and social cue processing differences in individuals with
ASD. This study applied machine learning techniques to analyze these visual processing
elements, with data collected from tasks requiring social attention and engagement
with complex visual stimuli. In the study, the researchers used a logistic regression
approach as a benchmark to measure the performance metrics (precision, recall, F1-
score, and accuracy) of their proposed scanpath trend analysis (STA) method. They
compared the results of the STA approach against the logistic regression approach to
evaluate which method provided better classification results for detecting autism based
on eye movement data. Cross-validation was used to ensure the reliability of the model,
which demonstrated high sensitivity and specificity in distinguishing ASD-related gaze
behaviors from those of control groups. With accuracy validated through performance
metrics, the study emphasized that eye-tracking data provide a robust, non-invasive
diagnostic marker, supporting real-time ASD assessment. The authors concluded that
eye movement analysis not only enhances diagnostic precision but also offers a dynamic
way to observe social attention patterns, thus contributing valuable insights into ASD’s
unique visual processing characteristics.

In another study by Kabir Mehedi et al. (2023) [40], the aim was to visualize early
markers of ASD in children through the use of fixation mapping and attention heatmaps.
Eye movement data were collected from 13 children diagnosed with autism using advanced
models like InceptionV3 and compact convolutional transformers (CCTs). The CCT model
utilized a dual tokenizer and attention-based mechanisms to extract features from the
images. Heatmaps were generated from the eye-tracking data to visually represent gaze
patterns, highlighting areas of interest where participants focused their attention. This
combination of eye-tracking data and heatmap visualization aimed to improve the accuracy
of autism detection while minimizing computational complexity, ultimately creating an
impartial tool for ASD screening. The model’s effectiveness was measured through preci-
sion and recall metrics, and results showed that children with ASD displayed distinctive
gaze patterns, particularly in reduced focus on socially relevant areas. These unique gaze
patterns set ASD participants apart from neurotypical controls with high accuracy. The
study concluded that attention heatmaps offer a valuable tool for detecting early signs of
ASD, presenting a user-friendly approach that may aid early intervention efforts.

In the first study, Kim et al. (2023) [4] developed the Virtual Reality Data Analysis Tool
(V-DAT) to facilitate self-awareness and improve expert analysis of ASD behaviors. The
V-DAT system was designed to collect and integrate data across four sensor modalities:
head position and rotation, eye movement, audio, and physiological signals. Specifically,
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20 participants wore a VR headset equipped with advanced sensors to monitor head
movements, gaze direction, auditory inputs, and physiological responses, such as heart
rate. Within the virtual environment, they engaged in interactive scenarios, during which
the system collected comprehensive multimodal data. These data were later analyzed
by experts to gain insights into participants’ behaviors and emotional responses during
the VR activities. The results showed accuracy and the reliability of the data captured
and strong correlations between observed behaviors and quantitative data metrics. This
study concluded that V-DAT not only supports self-awareness in individuals with ASD by
providing them with visualizations of their interactions but also enhances the diagnostic
process for experts. The findings underscore VR’s potential as an accessible, interactive tool
for diagnostic and therapeutic applications in ASD.

The potential of eye-tracking, visual processing analysis, and VR as effective, non-
invasive methodologies for identifying attentional and gaze patterns related to ASD is
demonstrated by these studies jointly. Each study contributes to a burgeoning toolkit for
early, accessible ASD screening by highlighting the distinctive visual processing character-
istics of individuals with ASD through the examination of scanpath trends, fixation data,
and attention heatmaps. These methodologies not only offer high diagnostic accuracy but
also facilitate the integration of scalable, real-time assessments into a variety of contexts,
including educational environments and clinics.

4.3. AI-Based Facial and Head Movement Recognition

The use of AI techniques to analyze facial features and head movement patterns as
potential markers for ASD is examined. Focusing on specific facial characteristics and
motion-based behaviors, these approaches demonstrate how deep learning and machine
learning models offer reliable, non-invasive indicators of ASD, enabling early detection
and enhancing diagnostic methodologies.

The study by Anjum et al. (2024) [45] applied deep learning for feature extraction from
children’s facial images, targeting facial expressions and micro-expressions often linked to
ASD. The methodology of the study involved using five pre-trained convolutional neural
network (CNN) models—Xception, VGG16, VGG19, MobileNet, and EfficientNetB0—
as feature extractors from facial images of children. The dataset, sourced from Kaggle,
consisted of 2940 images divided into autistic and non-autistic categories. Each model
was utilized to extract features, which were then combined to create a comprehensive
feature set. Logistic regression was employed as a binary classifier to distinguish between
the two groups based on the extracted features. The images were preprocessed through
normalization and resizing to ensure compatibility with the models, ultimately achieving an
accuracy of 88.33% in classifying the images. By training the CNN on a dataset that included
a diverse range of facial expressions, the model achieved high accuracy in classifying ASD-
related facial traits. Key performance metrics, including sensitivity and specificity, were
used to validate the model, which showed strong reliability in identifying ASD indicators.
The study concluded that deep learning-based facial analysis can play a significant role in
early ASD detection, especially when deep feature extraction is applied to capture subtle
facial cues associated with ASD.

Following a similar aim but with a focus on movement, Gokmen et al. (2024) [43]
investigated the use of head movement patterns as diagnostic markers of ASD. The study
identifies small head movements (kines) from video data by analyzing head angles (pitch,
yaw, roll). Using a multi-scale technique, these movements are categorized into patterns
called kinemes, which represent actions like nodding or shaking. Histograms of these pat-
terns are created to summarize behavior over time. Speech detection was used to separate
movements during speaking and listening, improving the analysis. These features are
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then used to classify autism using machine learning models which often differ in children
with ASD. The collected head movement data were processed through a machine learning
model trained to detect ASD-specific movement characteristics. The study employed cross-
validation to assess model accuracy, achieving high sensitivity and specificity in identifying
ASD through these motion patterns. The results showed that certain head movement
behaviors—such as repetitive tilting or unusual fixations—are significantly correlated with
ASD, suggesting that non-invasive, movement-based data can be a valuable supplement to
ASD diagnosis.

Talaat et al. (2024) developed a real-time emotion recognition framework that lever-
ages facial expression analysis to detect six emotions: anger, fear, joy, neutral, sadness, and
surprise. The system employs a three-stage process involving face identification, feature
extraction using an autoencoder, and classification via a deep convolutional neural network
(DCNN). Among the tested pre-trained models, Xception achieved the highest performance
with 95.23% accuracy, a sensitivity of 93.2%, and an AUC of 91.34%. Additionally, the frame-
work integrates fog and IoT technologies to ensure low latency and location awareness,
enabling real-time detection and fast response. This innovative approach highlights the
potential of facial expression analysis and deep learning for emotion recognition, providing
families and medical experts with an efficient tool to support children with ASD in their
daily interactions and emotional well-being.

The paper by Pan and Foroughi (2024) [52] investigates the challenges faced by learn-
ers with autism spectrum disorder (ASD) in educational environments, focusing on the
influence of physical, social, and routine factors. The authors employed advanced machine
learning techniques to enhance the identification and support of students with ASD, achiev-
ing a diagnostic accuracy rate of 92.18% using the AlexNet deep learning architecture. This
model is utilized for feature extraction from a large dataset of facial images of children,
specifically images resized to 224 × 224 pixels with three color channels, which are standard
inputs for AlexNet. The dataset includes various images collected from educational set-
tings, allowing the model to effectively classify ASD based on facial expressions. The study
also incorporates edge computing to facilitate real-time analysis, making it suitable for
resource-constrained educational settings. By leveraging these technologies, the research
aims to provide educators with effective tools to better understand and support the unique
needs of students with ASD, ultimately fostering more inclusive educational environments.
The findings underscore the importance of tailored approaches that accommodate the
distinct communication styles and instructional needs of these learners.

These studies demonstrate the potential of AI-driven analysis of facial features and
head movements to identify ASD-specific markers. These non-invasive methodologies
serve as complementary instruments in the diagnosis of ASD, as evidenced by the high
accuracy rates observed in facial image and kinesic analyses. By combining AI with
conventional diagnostic methodologies, these methodologies facilitate the development of
more efficient and accessible screening options, thereby promoting personalized care and
early intervention for individuals with ASD.

4.4. Neuroimaging and Brain Connectivity Analysis

The role of neuroimaging and AI-based connectivity analysis in identifying ASD-
specific differences in brain structure and connectivity is examined. Utilizing advanced
techniques in structural and functional brain analysis, these approaches demonstrate
how AI-enhanced neuroimaging tools can enhance diagnostic precision and expand our
understanding of ASD’s neuroanatomical features.

The study by Xu et al. (2024) [8] focused on using automated segmentation with
structural MRI (sMRI) data to identify brain structural abnormalities in children with
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ASD. The researchers applied an AI-based segmentation tool to compare brain volumes
in ASD children against neurotypical controls, paying particular attention to areas such
as the right orbitofrontal cortex and the parahippocampal gyrus. These regions showed
significant volume increases in children with ASD. To assess the predictive power of these
findings, the researchers employed machine learning classifiers, including support vector
machine (SVM) and AdaBoost models, achieving area under the curve (AUC) scores of 0.91
and 0.92, respectively. These high AUC values underscore the potential of AI-enhanced
sMRI segmentation in providing quantifiable insights into ASD-specific brain structure
changes. The study concluded that such methodologies could significantly contribute to
clinical diagnostics by offering objective measurements of brain abnormalities associated
with ASD.

Building on the foundation of structural analysis, Parui et al. (2023) [9] investigated
the application of AI and a functional connectivity analysis of brain data to enhance the
diagnosis of ASD. The methodology of the study involved several key steps to enhance the
diagnosis of autism spectrum disorder (ASD) using resting-state functional MRI (rs-fMRI)
data. Researchers collected data from the Autism Brain Imaging Data Exchange (ABIDE)
dataset and performed a brain connectivity analysis using six different brain atlases to
create connectivity matrices. To tackle the high dimensionality of the fMRI data, they
employed a low-rank tensor approximation method for dimensionality reduction. A major-
ity voting algorithm was then utilized to combine results from the various brain atlases,
addressing subject variability. Finally, the study introduced the ALERT method, which
was compared against state-of-the-art techniques, including traditional machine learning
classifiers and deep learning methodologies, to evaluate its effectiveness in accurately
diagnosing ASD. This comprehensive approach aimed to improve diagnostic accuracy
by leveraging advanced computational techniques. The results demonstrated an ASD
detection accuracy of 84.79% using a majority voting approach based on different brain
atlases, with the Adaptive Low-Estimated Rank Tensor (ALERT) method outperforming
traditional techniques. The findings underscore the significance of considering individual
differences in brain connectivity and suggest that integrating various inputs and advanced
analytical methodologies can improve diagnostic accuracy, ultimately contributing to more
effective clinical tools for ASD diagnosis.

In a complementary approach, Ashraf et al. (2024) [44] investigated how brain imag-
ing data could be used within an IoT framework for early ASD detection by applying
transfer learning techniques to functional MRI data. In this study, the authors focused on
identifying functional connectivity networks through the use of various brain atlas models,
analyzing patterns that distinguish between ASD and neurotypical children. Using transfer
learning, they processed correlation matrices derived from brain connectivity patterns, with
cross-validation employed to assess diagnostic accuracy. The methodology began with
the collection and preprocessing of brain imaging datasets to prepare them for analysis.
Pre-trained neural network models were employed through transfer learning to identify
patterns associated with ASD. These models were trained and fine-tuned for classification
tasks, enabling the distinction between ASD and non-ASD cases. Finally, the model’s
performance was evaluated using metrics such as accuracy and reliability, demonstrating
the potential of this approach for efficient and precise ASD detection. Specific brain at-
las models demonstrated notable efficacy, achieving high diagnostic accuracy levels and
emphasizing the potential of IoT-enhanced brain imaging as an early ASD detection tool.
The study concluded that integrating IoT and transfer learning in brain imaging could
revolutionize early ASD screening by providing scalable, data-driven insights into brain
function that are critical in ASD diagnostics.
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Collectively, these studies demonstrate the power of AI-enhanced neuroimaging in
detecting structural and functional connectivity changes associated with ASD. The combi-
nation of sMRI-based segmentation, functional connectivity analysis, IoT, and topological
approaches provides a comprehensive view of ASD’s neuroanatomical underpinnings. By
leveraging machine learning and AI, these methodologies improve diagnostic accuracy and
offer clinicians valuable insights into ASD’s complex neural architecture, ultimately con-
tributing to earlier, more reliable diagnoses and a deeper understanding of the disorder’s
effects on brain structure and connectivity.

4.5. EEG-Based Approaches, IoT, Smart Devices, and Serious Games

This section examines the use of IoT and AI-powered smart devices, including wear-
ables and advanced machine learning models, to leverage EEG data, stress monitoring, and
physiological signals for identifying cognitive and emotional patterns associated with ASD.
By integrating non-invasive, continuous monitoring methodologies with insights from
three significant studies, it highlights the effectiveness of these tools in supporting ASD
diagnosis and management in natural and practical settings. These technologies demon-
strate their potential to enhance accuracy and accessibility for caregivers and clinicians,
ultimately improving early detection and continuous behavioral monitoring of ASD.

In a recent study, Kumar and Umesh (2025) proposed the High Energy and Reliable
Sensory and Behavior Data Collection (HERSBDC) mechanism. This approach tackled
challenges in Wireless Body Area Networks (WBANs) and wearable IoT (WIoT) systems
for ASD behavior monitoring, including issues of mobility and time-driven data collection.
The HERSBDC mechanism introduced uneven clustering, optimized cluster head (CH)
selection, and multi-objective routing to enhance energy efficiency and data reliability.
Compared to traditional methods like Low Energy Adaptive Cluster-Hierarchy (LEACH)
and Distributed Energy-Efficient Clustering and Routing (DECR), HERSBDC improved
network lifetime by up to 62.28%, delivery ratio by 15.04%, and reduced delay and routing
overhead by over 50% and 32%, respectively. These results highlight HERSBDC as an
effective solution for ASD sensory and behavior data collection [48].

In the study by Alhassan et al. (2023) [34], researchers developed an energy-efficient
wearable EEG device to detect neural patterns indicative of ASD. The primary aim was
to optimize the energy consumption of the device without compromising the quality of
EEG data needed for accurate ASD analysis. The device collected EEG signals while
a machine learning model processed the data to identify ASD-related neural activity,
employing algorithms that allowed for minimal energy expenditure. The study used
accuracy, sensitivity, and specificity metrics to evaluate model performance, demonstrating
a high accuracy rate that confirmed the reliability of the device in distinguishing ASD from
neurotypical cases. The results indicated that EEG-based wearable sensors could provide
accessible and practical options for continuous ASD detection. The study concluded that
energy-efficient EEG devices have significant potential to make ASD monitoring more
feasible for daily use and continuous monitoring, especially when regular assessments are
needed over time.

In the study by Shelke et al. (2022) [3], an IoT-based system was designed to capture
and analyze movement and interaction patterns in children to detect ASD-related behaviors.
The system employed a series of sensors to gather real-time data, transmitted them to cloud-
based or edge computing systems via IoT networks, where they were processed through
a machine learning model specifically trained to identify atypical behaviors associated
with ASD. This enabled real-time data processing, remote monitoring, and diagnosis,
facilitating continuous, accessible, and scalable healthcare solutions for ASD detection.
The IoT framework ensured that the data could be securely shared and analyzed across
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different locations and devices. The methodology included rigorous cross-validation to
ensure model robustness, achieving an accuracy rate of 92%, with sensitivity and specificity
each exceeding 90%. These high accuracy metrics underscored the system’s reliability across
diverse environments, and the study concluded that the integration of IoT and AI offers a
cost-effective, flexible solution for continuous ASD monitoring. The authors highlighted
that such a system could operate in a wide range of settings, from clinics to homes, making
it particularly beneficial for routine behavioral assessment in naturalistic environments.

In a parallel approach, Deng et al. (2021) [42] developed a wearable sensor system
focused on monitoring attention and stress levels in children with ASD. The methodology
involved tracking physiological indicators, such as heart rate and skin conductance, which
were classified using machine learning algorithms to detect changes in emotional and
attentional states. The system demonstrated strong reliability, achieving an accuracy of
89% and high sensitivity in identifying fluctuations in stress and attention. These findings
suggest that wearable devices equipped with machine learning algorithms can provide real-
time insights into the behavioral responses of children with ASD, supporting caregivers in
managing emotional and attentional shifts. The study concluded that wearable sensors not
only enable accurate ASD detection but also offer immediate feedback, thereby facilitating
timely interventions that are responsive to each child’s needs.

Megerian et al. (2022) [26] conducted a clinical evaluation of an AI-enhanced diagnos-
tic device specifically designed to assist clinicians in ASD diagnosis through structured
behavioral prompts and physiological data analysis. The device integrates input from three
sources: a caregiver questionnaire, two short home videos of the child, and a healthcare
provider questionnaire. This input is processed using a machine learning algorithm to
produce an output of either ASD positive, ASD negative, or indeterminate. The system’s
design focused on maximizing accuracy and minimizing false negatives, ensuring safety
and utility in primary care settings. The device’s accuracy was rigorously assessed through
clinical trials, where it demonstrated a sensitivity of 93% and specificity of 91%, effectively
distinguishing ASD-related behaviors from those of neurotypical children. By benchmark-
ing the device’s performance against established diagnostic criteria, the study concluded
that the AI-enhanced tool could significantly reduce the diagnostic timeline, providing
clinicians with a reliable, data-driven approach to support early ASD identification. The
authors emphasized the device’s potential to streamline ASD assessment, ultimately aiding
healthcare providers in delivering faster, more objective diagnoses.

Building on AI integration in ASD diagnostics, Sohl et al. (2022) [35] examined the
feasibility and impact of an AI-based diagnostic aid within the Extension for Community
Health Outcomes (ECHO) autism model in primary care. The methodology involved
integrating an AI-based diagnostic aid into the ECHO autism model for primary care
evaluation of ASD in children aged 18–72 months. Similarly to the work by Magerian et al.
(2022) [26], the diagnostic aid used three inputs: a caregiver questionnaire via a mobile app,
analysis of two short home videos by trained video analysts, and a healthcare provider
questionnaire. These inputs were processed by an AI algorithm to provide an ASD-positive,
ASD-negative, or indeterminate result. Clinicians combined the AI outputs with their
observations and clinical judgment for diagnosis. The approach aimed to reduce diagnostic
delays and improve early intervention access.This tool incorporated data from caregiver
questionnaires, video analysis, and healthcare provider input to generate ASD diagnostic
recommendations. Methodologically, the study focused on clinical outcomes by evaluating
how the tool affected diagnostic timelines and accuracy in primary care settings. Results
showed that the AI diagnostic aid significantly reduced the time from initial caregiver con-
cern to diagnosis, facilitating earlier interventions. The study concluded that implementing
AI in primary care settings holds the potential to streamline the diagnostic process, thereby
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bridging the gap between initial suspicion of ASD and formal diagnosis, which can often
be delayed due to limited resources or referral wait times.

In a related effort, Shahamiri and Thabtah (2020) [38] introduced Autism AI, a mo-
bile application for ASD screening based on artificial intelligence. This app employed a
convolutional neural network (CNN) to classify ASD-related traits, replacing traditional
scoring methodologies with CNN predictions for greater accuracy. Caregivers or clini-
cians provided input data, which the app analyzed to detect ASD indicators. Tested on
a comprehensive dataset, Autism AI demonstrated superior sensitivity, specificity, and
overall accuracy compared to conventional screening tools. The study concluded that
Autism AI offers a practical and accessible solution for ASD screening, reducing diagnostic
subjectivity and making screening more widely available, especially in settings where
traditional methodologies may be impractical or less efficient.

Similarly, Shannon et al. (2021) developed a machine learning-based device, which em-
ploys a gradient-boosted decision-tree algorithm to analyze 64 behavioral features derived
from three distinct sources: caregiver questionnaires, 2 to 4 min of home videos reviewed
by trained video analysts, and primary care physician (PCP) questionnaires. The device’s
performance was evaluated by comparing its diagnostic results with the consensus of
specialist clinicians, who used a modified Child Autism Rating Scale (CARS-2) and DSM-5
criteria [16]. These specialists included child psychiatrists, child psychologists, pediatric
neurologists, and developmental behavioral pediatricians with expertise in ASD diagno-
sis [37]. The device demonstrated promising results, achieving a positive predictive value
(PPV) of 80.8% (95% CI, 70.3–88.8), a negative predictive value (NPV) of 98.3% (90.6–100),
sensitivity of 98.4% (91.6–100), and a specificity of 78.9% (67.6–87.7) for determinate cases.
Importantly, the device’s performance was consistent whether the PCP used it remotely
or in person, highlighting its adaptability for telemedicine applications. These findings
suggest that such technology could enable PCPs to efficiently, accurately, and equitably di-
agnose ASD in children aged 18 to 72 months, facilitating earlier intervention and reducing
reliance on specialist referrals. While these results are preliminary, they underscore the
potential of integrating machine learning-based diagnostic tools into primary care settings
to enhance the accessibility and timeliness of ASD diagnosis.

In a large-scale study, Millar et al. (2019) [33] conducted a phase 3 diagnostic evaluation
of a smart tablet-based serious game designed to identify ASD-specific behaviors in children
aged 3 to 5 across Sweden and the United Kingdom. The game was crafted to elicit
responses that reveal social and communicative traits commonly linked to ASD. During
game-play, data on reaction times, eye movements, and behavioral response patterns were
collected and analyzed by a machine learning model to identify ASD indicators. This
study used sensitivity and specificity metrics to measure accuracy, yielding high reliability
in distinguishing between ASD and non-ASD participants. The study concluded that
such serious games offer an interactive and scalable approach to ASD screening, allowing
children to engage in a playful, stress-free setting while providing clinicians with valuable
behavioral data for early detection.

Reddy et al. (2024) proposed an IoT-based framework for automated assessment and
reporting light sensitivities in children with autism spectrum disorder (ASD), addressing
the limitations of traditional subjective and time-intensive methods. The system, called
IoT-LSAS, utilizes IoT, computer vision, and data mining techniques to assess visual
sensitivities to light (color and illumination). It operates in two modes: child control mode
(CCM), which uses a preference-based approach, and system control mode (SCM), which
tracks emotional responses during sensory stimulation sessions. Tested on a sample of 20
children with ASD, the IoT-LSAS achieved a 95% agreement rate in CCM and 90% in SCM
when compared to practitioner assessments. The framework significantly reduces the time
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required for diagnosing light sensitivities while providing objective and reliable results.
This innovative system offers a promising alternative to traditional assessment methods,
enabling the development of personalized sensory environments and therapeutic strategies
for children with ASD.

The innovative use of serious games, digital health tools, and wearable technologies
presents engaging, non-invasive, and data-driven approaches to screening and managing
ASD. By integrating AI-powered analysis, interactive technologies, and IoT solutions, these
studies demonstrate how diagnostic precision and accessibility can be enhanced in diverse
settings, from clinical to home environments. Wearable devices, combined with continuous
monitoring of EEG and physiological data, provide essential insights into ASD-specific
cognitive and emotional markers, enabling real-world understanding and management
of symptoms. These methodologies, which optimize energy efficiency in devices and
leverage real-time data, transform the diagnostic process into an interactive and accessible
experience for children, caregivers, and clinicians. Together, these innovations highlight
the potential of AI, serious games, IoT, and wearable sensors to streamline early detection
and intervention, ensuring that ASD assessment is efficient, inclusive, and adaptable to
various contexts.

4.6. Classification Techniques and Performance Evaluation

AI-driven classification techniques for detecting ASD are summarized in this section,
with a focus on comparing their performance in terms of diagnostic accuracy, sensitiv-
ity, and specificity. Utilizing innovative feature selection and machine learning models,
these approaches demonstrate the potential of AI to streamline diagnostics, facilitate early
detection, and improve accessibility across various age groups and clinical settings.

The study by Neeharika and Riyazuddin (2023) [41] sought to improve ASD screening
accuracy by leveraging feature selection techniques alongside advanced machine learning
classifiers. Their study involved multiple datasets covering toddlers, children, teens, and
adults, allowing for a comprehensive evaluation of ASD traits across age groups. The
researchers applied a multilayer perceptron (MLP) classifier, which is a type of artificial
neural network commonly used in machine learning for classification and regression tasks.
They applied it to formerly stated datasets and found that it outperformed other classifiers,
achieving near-perfect accuracy in distinguishing between ASD and non-ASD individuals.
To enhance model precision while minimizing feature complexity, they used Relief F, a
feature ranking method, to select the most relevant predictors. This optimization allowed
the MLP model to reach a peak accuracy of 93.6%, with high sensitivity and specificity
rates, making it a robust tool for ASD detection. The study concluded that MLP’s ability to
accurately and efficiently classify ASD suggests it is a valuable screening tool adaptable for
diverse age groups, supporting both clinical assessments and large-scale screenings.

Building on the efficiency of AI in ASD diagnostics, Wall et al. (2012) [36] explored
reducing the length of the widely used Autism Diagnostic Interview-Revised (ADI-R),
which originally includes 93 questions, by applying machine learning algorithms. Focusing
on the Alternating Decision Tree (ADTree) classifier, the researchers aimed to identify a
minimal yet effective subset of questions to streamline the diagnostic process. Remarkably,
the ADTree classifier achieved over 99% accuracy using only seven questions, retaining high
sensitivity and specificity. This condensed assessment enabled accurate ASD identification
in children as young as 13 months, demonstrating the potential of AI-driven feature
reduction to reduce diagnostic time without sacrificing quality. The study concluded that
by streamlining the ADI-R, AI can facilitate quicker, more accessible screenings, offering a
powerful tool for clinicians and caregivers seeking efficient and accurate assessments.
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The study by Alzakari et al. (2024) [49] presents an innovative two-phase approach
for addressing the variability in autism spectrum disorder (ASD) traits through machine
learning techniques (data: behavioral, verbal, and physical). The first phase focuses on ASD
identification, employing feature engineering techniques and machine learning models,
such as a logistic regression (LR) and support vector machine (SVM) ensemble, achieving a
classification accuracy of 94% using Chi-square extracted features. The second phase targets
the development of personalized educational strategies by assessing behavioral, verbal,
and physical responses, achieving a remarkable 99.29% accuracy in matching teaching
methods to individual needs. This two-phase strategy highlights the potential of ML to
enhance ASD diagnosis and intervention, providing tailored solutions that account for
the distinct traits of each individual. The superior performance of the proposed LR-SVM
ensemble underscores its effectiveness in addressing the challenges of ASD diagnosis and
personalized intervention.

Rubio-Martín et al. (2024) explored the utility of artificial intelligence (AI) in diagnos-
ing autism spectrum disorder (ASD) through a combined approach using machine learning
(ML), deep learning (DL), and natural language processing (NLP). The study analyzed
text inputs from social media platforms, specifically Twitter, to address challenges such as
the need for specialized professionals and extensive resources for ASD diagnosis. Using a
dataset of 404,627 tweets, with a training and testing subset of 90,000 tweets (45,000 from
ASD users and 45,000 from non-ASD users), the researchers employed ML models like de-
cision trees, extreme gradient boosting (XGB), and k-nearest neighbors (KNNs), alongside
DL models such as recurrent neural networks (RNNs), long short-term memory (LSTM),
bidirectional LSTM (Bi-LSTM), and transformer-based models like BERT and BERTweet.
The models demonstrated strong performance, achieving an accuracy of nearly 88% in
classifying tweets from users potentially associated with ASD. This approach highlights
the potential of integrating AI and NLP in early ASD detection, emphasizing its capability
to improve diagnosis timeliness and patient outcomes.

Jeon et al. (2024) [51] explored the integration of machine learning (ML) and explain-
able artificial intelligence (XAI) techniques to improve the accuracy and interpretability
of diagnostic tools for autism spectrum disorder (ASD). By employing a rigorous data
preprocessing pipeline—including outlier removal, handling of missing data, and feature
selection guided by clinical expertise—the study enhanced the generalizability of ML mod-
els across diverse clinical datasets. Using tools like R and the caret package, the authors
validated their models through 10-fold cross-validation and grid search optimization. Neu-
ral networks and extreme gradient boosting emerged as the top-performing algorithms in
terms of accuracy, precision, and recall (average precision: 0.895; average recall: 0.895; aver-
age accuracy: 0.857). XAI methods further revealed that behavioral features significantly
influenced model predictions, enhancing clinician trust and understanding of the results.
This approach highlights the potential of combining ML and XAI to support early ASD
diagnosis, personalize intervention strategies, and improve patient outcomes by bridging
advanced computational techniques with practical clinical applications.

Together, these studies reveal that advanced machine learning models, including
innovative approaches utilizing natural language processing (NLP) techniques, provide
significant improvements in diagnostic accuracy and efficiency for ASD detection. By
achieving high sensitivity and specificity, these AI-driven tools demonstrate the potential
to analyze diverse data sources, such as behavioral patterns, facial features, and even un-
structured text, to identify ASD cases effectively. These methodologies not only streamline
the diagnostic process but also broaden access to scalable and reliable ASD screening solu-
tions across clinical, educational, and digital settings. By leveraging AI’s ability to handle
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complex and varied data, these tools pave the way for early detection, timely interventions,
and better support for individuals with ASD.

4.7. Microbiome and Gut–Brain Axis Studies

This section explores the gut–brain connection in ASD and examines how micro-
biome data are emerging as a promising biomarker for the disorder through explainable
artificial intelligence (XAI) techniques. By integrating AI with microbiome analysis, this
study demonstrates the potential of personalized microbiome profiles in diagnosing and
understanding ASD, with implications for developing targeted interventions.

Novielli et al. (2024) [39] conducted a groundbreaking study focused on identifying
autism-related bacterial species in the gut microbiome, employing an XAI framework to
enhance interpretability. The researchers used the XGBoost algorithm, a powerful machine
learning classifier, to analyze microbiome compositions in children with ASD compared
to typically developing (TD) controls. XGBoost was chosen for its high performance with
complex, high-dimensional data, such as microbiome profiles. To ensure transparency
and understand the impact of individual bacterial species on classification, the study
utilized SHapley Additive exPlanations (SHAPs), a prominent XAI technique. SHAP
values provided detailed insights into the contribution of each bacterial species, allowing
researchers to trace the model’s decision-making process and observe specific microbiome
patterns linked to ASD.

The study employed unsupervised clustering of SHAP values, which enabled the
researchers to identify subgroups within the ASD cohort based on microbiome composition.
This approach revealed different bacterial profiles between individuals with ASD, high-
lighting the heterogeneity within the ASD population and underscoring the importance of
personalized approaches. The clustering findings indicated unique gut microbiome compo-
sitions, with certain bacterial species playing a more prominent role in some subgroups,
further emphasizing the variability in ASD-related microbiome patterns.

The classification model performed exceptionally well, achieving an area under the
receiver operating characteristic (AU-ROC) of 0.965 and an area under the precision-recall
curve (AU-PRC) of 0.967. These metrics confirmed the model’s reliability and effectiveness
in distinguishing ASD cases from TD controls, validating microbiome data as a significant
biomarker for ASD. Based on these results, the study concluded that the integration of
XAI with microbiome analysis not only improves diagnostic accuracy, but also provides
actionable insights into the gut–brain axis, potentially enabling personalized therapeutic
strategies tailored to individual microbiome profiles.

In summary, this study demonstrates the potential of microbiome data as a biomarker
for ASD, illustrating how AI and machine learning models, particularly XAI approaches,
can reveal meaningful insights into the gut–brain connection. By identifying ASD-related
bacterial species and highlighting microbiome diversity among individuals with ASD, this
study offers a foundation for future research into the complex interplay between gut health
and neurological development. Through the lens of personalized medicine, these findings
pave the way for innovative diagnostic and intervention strategies that consider the unique
microbiome profiles of each individual.

5. Discussion on Challenges and Open Issues
The effective identification of ASD faces several challenges such as including the

heterogeneity of ASD traits, the limited availability of labeled datasets, and the high
cost of traditional diagnostic methods. One major hurdle is the variability in behavioral
and physiological markers among individuals, which complicates the development of
universally applicable diagnostic models. Additionally, data collection often relies on
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resource-intensive clinical setups, making early detection inaccessible in underserved
regions. The integration of specific AI algorithms and IoT sensor systems offers promising
solutions to these challenges. The integration of AI, IoT, and sensor-based technologies
has the potential to revolutionize ASD diagnostics, providing unprecedented precision,
scalability, and adaptability. These advanced methodologies enable the identification of
behavioral, physiological, and neurological markers through real-time, non-invasive, and
continuous monitoring across diverse settings. By leveraging these innovations, researchers
and clinicians can move beyond traditional observational methods, ensuring earlier and
more reliable diagnoses that lay the groundwork for tailored interventions.

Among the algorithms evaluated, RNNs stand out for their ability to process sequen-
tial data, such as speech patterns or time-series sensor inputs. By analyzing temporal
relationships within data, RNNs have shown promising results in ASD diagnostics, par-
ticularly in identifying communication challenges and behavioral irregularities. Similarly,
ensemble methods like XGBoost and support vector machines (SVMs) excel in specific
applications, with XGBoost performing well in microbiome-based analyses and SVM ef-
fectively analyzing head movement data. Deep learning models such as Xception also
demonstrate exceptional performance in facial emotion recognition, making them highly
suitable for real-time applications. Together, these algorithms offer robust, high-accuracy
solutions for diverse diagnostic needs.

In terms of sensors and IoT systems, wearable devices equipped with EEG and motion
sensors effectively capture critical ASD markers, including stress levels and motor patterns.
IoT-based frameworks like IoT-LSAS and edge computing systems enhance the diagnostic
process by enabling real-time data collection and processing in natural environments. These
technologies offer practical, scalable, and efficient tools for ASD diagnosis, facilitating
seamless integration into both clinical and everyday settings. By combining advanced
algorithms like RNNs with cutting-edge IoT systems, ASD diagnostics can achieve greater
precision, accessibility, and adaptability, significantly improving outcomes for individuals
with ASD.

While the application of AI, IoT, sensor-based technologies shows significant promise
in advancing ASD diagnosis, several challenges and open issues must be addressed. One
major limitation lies in the diversity and generalizability of the datasets used to develop
these tools. Many studies rely on relatively homogeneous participant groups, limiting
the applicability of these diagnostic methodologies in diverse cultural, demographic, and
socioeconomic contexts. Future research must focus on creating more inclusive and repre-
sentative datasets to improve the robustness and effectiveness of these technologies. This
limitation highlights the need for more inclusive datasets to ensure that the proposed
technologies can be effectively applied in diverse contexts. One potential approach to
addressing the challenges of limited dataset representativeness is for researchers to explore
synthetic dataset generation and data augmentation techniques. These methods can ar-
tificially enhance data diversity by introducing controlled variations in existing datasets,
thereby improving representativeness without requiring extensive new data collection.
Incorporating such approaches into research pipelines could significantly broaden the
applicability of AI, IoT, and sensor-based technologies for the diagnosis of ASD, ensuring
that they are both equitable and globally relevant.

At the same time, the image classification techniques employed in the reviewed studies
often face challenges related to uncertainties or inaccuracies in the analyzed data, which
can undermine their effectiveness. This limitation highlights the need for more robust
methodologies to address these inconsistencies. Recent advances in fuzzy logic-based
classifiers offer a promising alternative, as they allow for a more subtle handling of image
variations and uncertainties. These methods involve grouping similar images through
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fuzzy divergence computations that measure distances within a specific functional space.
A representative feature image is then extracted for each grouping, and the classification
is performed by comparing the fuzzy divergences between the input image and these
representative images. Although not yet implemented in the reviewed studies, this ap-
proach has significant potential to enhance the robustness of image-based analyses. Future
research could explore the integration of fuzzy logic into autism diagnostic methodologies
to improve reliability and precision in image classification processes [54]. In addition, an
important consideration is that the increasing reliance on sensitive data, including behav-
ioral, physiological, and microbiome information, raises important ethical concerns around
data privacy and transparency. Strong data protection measures, clear communication
about how data are used, and accountability mechanisms are critical to building trust
among users. Furthermore, while novel approaches such as microbiome-based diagnostics
have potential, they are still in the early stages of research and require further validation
in diverse populations to establish their reliability and diagnostic relevance. Integration
into existing diagnostic frameworks presents another challenge, as these innovative tools
must complement traditional methodologies without overburdening clinicians or families.
Finally, interdisciplinary collaboration across fields such as neuroscience, biomechanics,
bioinformatics, psychology, and clinical medicine is essential for the development of ef-
fective tools, but achieving alignment of research objectives and methodologies remains a
persistent challenge.

To address the challenges identified in this section, we propose a comprehensive
and holistic framework for ASD detection (Figure 2) that takes advantage of emerging
technologies and integrates them into an edge computing platform. This framework
aims to overcome some of the limitations of traditional methods by combining objective
data-driven insights with the expertise of clinicians. The edge platform will be designed
to collect and process data from advanced sensor-based technologies, such as wearable
devices, eye trackers, and EEG sensors, which provide detailed and quantifiable markers of
behavioral and physiological characteristics associated with ASD. These technologies will
be augmented by clinicians’ evaluations, encompassing traditional observations of behavior,
developmental milestones, and other diagnostic criteria, ensuring the system incorporates
a well-rounded perspective. Processing data locally at the edge will enable real-time
analysis, providing immediate feedback to clinicians while safeguarding patient privacy
and reducing reliance on centralized cloud infrastructure. This capability is particularly
crucial for environments with limited connectivity or high privacy concerns. Furthermore,
by integrating explainable AI features, the system will allow clinicians to understand and
interpret how the AI reaches its conclusions, fostering trust in its outputs and enabling
collaborative decision-making.

Specifically, the proposed framework outlines a comprehensive process for leverag-
ing edge devices in ASD detection. Data collection occurs externally through specialized
devices, including wearables (e.g., smartwatches, EEG headsets), eye trackers, and neu-
roimaging systems such as MRI and fMRI, as well as behavioral data recorded via cameras,
microphones, or clinical tools. These diverse data sources are then transmitted to the edge
device for further processing, with optional initial filtering or normalization at the source.
On the edge device, preprocessing steps such as noise filtering, normalization, and seg-
mentation ensure compatibility with AI models. For example, EEG data from a wearable
headset can be transmitted wirelessly to the edge device, where initial filtering at the source
removes artifacts like muscle movement noise. Similarly, eye-tracking data, including gaze
coordinates, can be transmitted after basic normalization at the device level to account
for head position. On the edge device, further preprocessing steps, such as noise filtering
(e.g., removing low-frequency interference from EEG signals), normalization of data ranges,
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and segmentation into time windows ensure the data are clean and compatible with AI
models for analysis. The device integrates multimodal data streams (sensor, neuroimaging,
and behavioral), applying weighting mechanisms to prioritize critical data types like neu-
roimaging or clinician evaluations. AI inference is performed using pre-trained models,
with lightweight algorithms like random forests analyzing sensor and behavioral data,
while quantized CNNs process neuroimaging data facilitates hybrid analysis for compre-
hensive decision-making. Real-time processing capabilities enable low-latency feedback to
clinicians, highlighting critical markers and anomalies for immediate action. Explainable
AI outputs provide interpretable insights, such as visualizations or heatmaps, ensuring that
the results are actionable for clinicians. Privacy and security are prioritized by localizing
data on the edge device, employing encryption during transmission, and restricting access
to authorized personnel. Clinicians interact with AI outputs directly on the edge device,
incorporating their expertise into the diagnostic process, resulting in comprehensive diag-
nostic reports that combine objective insights with subjective evaluations. Clinicians use
ADOS to perform structured and standardized behavioral assessments, providing direct
insights into social, communicative, and repetitive behaviors. They also rely on ADI-R to
collect in-depth developmental history and caregiver-reported data on behavior patterns.
By combining these traditional tools with data from innovative technologies such as wear-
able sensors and AI-driven analysis, clinicians can validate, contextualize, and enhance the
reliability of diagnostic findings, forming a comprehensive and precise diagnostic input.
For instance, ADOS assessments often involve structured tasks that measure a child’s
ability to initiate eye contact or respond to social cues during play. Innovative technologies
like eye-tracking systems can complement this process by quantifying gaze patterns in real
time, offering objective metrics on how the child focuses on social versus non-social stimuli.
Similarly, ADI-R relies on caregiver input to identify behaviors like repetitive movements
or unusual speech patterns. This information can be further validated using wearable
sensors that measure movement patterns or vocal analysis tools that detect atypical speech
prosody. By integrating these insights, clinicians can combine their subjective observations
and caregiver-reported data with precise, real-time metrics, ensuring a more subtle and
accurate diagnosis. Feedback loops allow for iterative improvement of AI models and
workflows, with anonymized outcomes enabling system-wide updates where permitted.
This integrated approach ensures efficient, secure, and actionable diagnostics while preserv-
ing patient privacy and supporting real-time decision-making. This proposed framework
serves as a foundational step toward integrating edge devices and AI-driven technologies
into ASD detection. While it provides a structured process for data collection, prepro-
cessing, analysis, and clinician interaction, it remains a conceptual model, and numerous
challenges may arise during implementation. These challenges could include managing
the complexity of multimodal data integration, ensuring interoperability among diverse
devices, addressing potential biases in AI models, and navigating privacy and ethical
considerations. Despite these hurdles, the framework offers a promising starting point
for advancing ASD diagnostics, fostering collaboration between technology and clinical
expertise, and paving the way for future iterations to refine and optimize its application.
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Figure 2. A framework proposed for ASD detection combining new technologies and traditional
methods. Figure created using (the accessed date: 24 December 2024.) https://whimsical.com.

6. Conclusions
This review underscores the transformative potential of AI, IoT, sensor-based tech-

nologies, and innovative approaches such as VR and microbiome analysis in advancing
ASD diagnosis. Although these technologies address some limitations of traditional prac-
tices by providing more objective, scalable, and personalized insights into ASD’s diverse
presentations, traditional tools might still play a crucial role. A combination of established
methodologies with these new technologies could potentially create a more efficient and

https://whimsical.com
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comprehensive approach to ASD diagnosis, blending clinical expertise with innovative
solutions for improved outcomes.

In any case, several challenges must be addressed to realize the full potential of these
technologies. Ensuring the generalizability of diagnostic tools through diverse datasets,
addressing ethical concerns around data privacy, and validating emerging methodologies
like microbiome-based diagnostics are critical for future advancements. Additionally, inte-
grating these innovations into existing clinical frameworks and fostering interdisciplinary
collaboration will be vital for their widespread adoption and effectiveness.

In conclusion, while these emerging technologies mark a significant step forward, a
concerted effort from researchers, clinicians, and policymakers is necessary to refine these
tools, enhance their precision, and make them accessible to diverse populations. By doing
so, we can better understand the complex neurodevelopmental underpinnings of ASD and
facilitate earlier detection, which is crucial for improving outcomes and enabling timely
support for individuals with ASD worldwide.
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