A Novel Deep Learning Segmentation and Classification Framework for Leukemia Diagnosis
<p>The flowchart of the proposed algorithm.</p> "> Figure 2
<p>The internal structure of the segmentation stage.</p> "> Figure 3
<p>The complete architecture of the developed classification model.</p> "> Figure 4
<p>Achieved accuracy and DSC outputs.</p> "> Figure 5
<p>Classification results of the testing group.</p> "> Figure 6
<p>The achieved results.</p> "> Figure 7
<p>Samples of the segmented image.</p> "> Figure 8
<p>Samples of the segmented image.</p> "> Figure 9
<p>The visualization chart of 5-fold cross-validation outputs.</p> ">
Abstract
:1. Introduction
1.1. Research Problem and Motivations
1.2. Research Contributions
- I.
- Developing a novel segmentation process to detect leukemia based on a deep learning architecture according to a U-shaped architecture.
- II.
- Implementing the UNET model to extract various characteristics for the categorization of the main two categories.
- III.
- Using four datasets to evaluate the proposed approach.
- IV.
- Calculating several performance quantities to evaluate the correctness and robustness of the presented algorithm.
1.3. Related Work
2. Materials and Methods
2.1. Problem Statement
2.2. Datasets
2.3. The Proposed System
2.4. The Evaluated Metrics
3. Results
3.1. Experimental Setup
3.2. Results
3.3. Comparative Assessment
3.4. The Cross-Validation Results
3.5. The Influence of Modifying the Deployed Hyperparameters
3.6. The Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Veeraiah, N.; Alotaibi, Y.; Subahi, A.F. MayGAN: Mayfly optimization with generative adversarial network-based deep learning method to classify leukemia form blood smear images. Comput. Syst. Sci. Eng. 2023, 42, 2039–2058. [Google Scholar] [CrossRef]
- Nekoeian, S.; Rostami, T.; Norouzy, A.; Hussein, S.; Tavoosidana, G.; Chahardouli, B.; Rostami, S.; Asgari, Y.; Azizi, Z. Identification of lncRNAs associated with the progression of acute lymphoblastic leukemia using a competing endogenous RNAs network. Oncol. Res. 2023, 30, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Veeraiah, N.; Alotaibi, Y.; Subahi, A.F. Histogram-based decision support system for extraction and classification of leukemia in blood smear images. Comput. Syst. Sci. Eng. 2023, 46, 1879–1900. [Google Scholar] [CrossRef]
- Baig, R.; Rehman, A.; Almuhaimeed, A.; Alzahrani, A.; Rauf, H.T. Detecting malignant leukemia cells using microscopic blood smear images: A deep learning approach. Appl. Sci. 2022, 12, 6317. [Google Scholar] [CrossRef]
- Sadashiv, W.K.; Sanjay, K.S.; Pradeep, S.V.; Anil, C.A.; Janardhan, K.A. Detection and classification of leukemia using deep learning. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 3235–3237. [Google Scholar] [CrossRef]
- Sriram, G.; Babu, T.R.G.; Praveena, R.; Anand, J.V. Classification of Leukemia and Leukemoid Using VGG-16 Convolutional Neural Network Architecture. Mol. Cell. Biomech. 2022, 19, 29–41. [Google Scholar] [CrossRef]
- Rupapara, V.; Rustam, F.; Aljedaani, W.; Shahzad, H.F.; Lee, E. Blood cancer prediction using leukemia microarray gene data and hybrid logistic vector trees model. Sci. Rep. 2022, 12, 1000. [Google Scholar] [CrossRef]
- Venkatesh, K.; Pasupathy, S.; Raja, S.P. A construction of object detection model for acute myeloid leukemia. Intell. Autom. Soft Comput. 2022, 36, 543–556. [Google Scholar] [CrossRef]
- Atteia, G.E. Latent space representational learning of deep features for acute lymphoblastic leukemia diagnosis. Comput. Syst. Sci. Eng. 2022, 45, 361–377. [Google Scholar] [CrossRef]
- Bukhari, M.; Yasmin, S.; Sammad, S.; El-Latif, A.A.A. A deep learning framework for leukemia cancer detection in microscopic blood samples using squeeze and excitation learning. Math. Probl. Eng. 2022, 2022, 2801228. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Asadi, F.; Hosseini, A.; Bashash, D.; Abolghasemi, H.; Roshanpour, A. Machine Learning in Detection and Classification of Leukemia Using Smear Blood Images: A Systematic Review. Sci. Program. 2021, 2021, 9933481. [Google Scholar] [CrossRef]
- Mondal, C.; Hasan, K.; Jawad, T.; Dutta, A.; Islam, R.; Awal, A.; Ahmad, M. Acute lymphoblastic leukemia detection from microscopic images using weighted ensemble of convolutional neural networks. arXiv 2021, arXiv:2105.03995v1. [Google Scholar]
- Sashank, G.V.S.; Jain, C.; Venkateswaran, N. Detection of acute lymphoblastic leukemia by utilizing deep learning methods. In Machine Vision and Augmented Intelligence—Theory and Applications. Lecture Notes in Electrical Engineering; Bajpai, M.K., Kumar Singh, K., Giakos, G., Eds.; Springer: Singapore, 2021; Volume 796, pp. 453–467. [Google Scholar]
- Alagu, S.; Priyanka, A.N.; Kavitha, G.; Bagan, K.B. Automatic detection of acute lymphoblastic leukemia using UNET based segmentation and statistical analysis of fused deep features. Appl. Artif. Intell. 2021, 35, 1952–1969. [Google Scholar] [CrossRef]
- Saleem, S.; Amin, J.; Sharif, M.; Anjum, M.A.; Iqbal, M.; Wang, S.-H. A deep network designed for segmentation and classification of leukemia using fusion of the transfer learning models. Complex Intell. Syst. 2021, 8, 3105–3120. [Google Scholar] [CrossRef]
- Kavya, N.D.; Meghana, A.V.; Chaithanya, S.; Aishwarya, S.K. Leukemia detection in short time duration using machine learning. Int. J. Adv. Res. Comput. Commun. Eng. 2021, 10, 485–489. [Google Scholar]
- Eckardt, J.-N.; Middeke, J.M.; Riechert, S.; Schmittmann, T.; Sulaiman, A.S.; Kramer, M.; Sockel, K.; Kroschinsky, F.; Schuler, U.; Schetelig, J.; et al. Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears. Leukemia 2021, 36, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Nemade, T.; Parihar, A.S. Leukemia detection employing machine learning: A review and taxonomy. Int. J. Adv. Eng. Manag. 2021, 3, 1197–1204. [Google Scholar]
- Maria, I.J.; Devi, T.; Ravi, D. Machine learning algorithms for diagnosis of leukemia. Int. J. Sci. Technol. Res. 2020, 9, 267–270. [Google Scholar]
- Loey, M.; Naman, M.; Zayed, H. Deep transfer learning in diagnosing leukemia in blood cells. Computers 2020, 9, 29. [Google Scholar] [CrossRef]
- Shafique, S.; Tehsin, S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol. Cancer Res. Treat. 2018, 17, 1–7. [Google Scholar] [CrossRef]
- Hariprasath, S.; Dharani, T.; Bilal, S.M. Automated detection of acute lymphocytic leukemia using blast cell morphological features. In Proceedings of the 2nd International Conference on Advances in Science and Technology (ICAST-2019), Bahir Dar, Ethiopia, 8–9 April 2019; K. J. Somaiya Institute of Engineering & Information Technology, University of Mumbai: Maharashtra, India, 2019; pp. 1–6. [Google Scholar]
- Parra, M.; Baptista, M.J.; Genesca, E.; Arias, P.L.; Esteller, M. Genetics and epigenetics of leukemia and lymphoma: From knowledge to applications, meeting report of the Josep Carreras Leukaemia Research Institute. Hematol. Oncol. 2020, 38, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.H.; Czuchlewski, D.R.; Arber, D.A.; Czader, M. Genetic Testing in the Diagnosis and Biology of Acute Leukemia. Am. J. Clin. Pathol. 2019, 152, 322–346. [Google Scholar] [CrossRef]
- Rastogi, N. Genetics of Acute Myeloid Leukemia—A Paradigm Shift. Indian Pediatr. 2018, 55, 465–466. [Google Scholar] [CrossRef]
- Aria, M.; Ghaderzadah, M.; Bashash, D. Acute Lymphoblastic Leukemia (ALL) Image Dataset, Kaggle. 2021. Available online: https://www.kaggle.com/datasets/mehradaria/leukemia (accessed on 3 May 2023).
- Sharma, N. Leukemia Dataset, Kaggle. 2020. Available online: https://www.kaggle.com/code/nikhilsharma00/leukemia-classification/input (accessed on 3 May 2023).
- Larxel, Leukemia Classification, Kaggle. 2020. Available online: https://www.kaggle.com/datasets/andrewmvd/leukemia-classification (accessed on 3 May 2023).
- Eshraghi, M.A.; Ghaderzadeh, M. Blood Cells Cancer (ALL) Dataset. 2021. Available online: https://www.kaggle.com/datasets/mohammadamireshraghi/blood-cell-cancer-all-4class?resource=download (accessed on 3 May 2023).
- Cranaf, R.; Kavitha, G.; Alague, S. Selective kernel U-Net Segmentation Method for Detection of Nucleus in Acute Lymphoblastic Leukemia blood cells. Proceedings of 13th National Conference on Signal Processing, Communication & VLSI Design (NCSCV’21), Online, 23–24 December 2021; pp. 16–21. [Google Scholar]
- Lu, Y.; Qin, X.; Fan, H.; Lai, T.; Li, Z. WBC-Net: A white blood cell segmentation network based on UNet++ and ResNet. Appl. Soft Comput. 2021, 101, 107006. [Google Scholar] [CrossRef]
- Taormina, V.; Raso, G.; Gentile, V.; Abbene, L.; Buttacavoli, A.; Bonsignore, G.; Valenti, C.; Messina, P.; Scardina, G.A.; Cascio, D. Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy. Sensors 2023, 23, 7674. [Google Scholar] [CrossRef] [PubMed]
Reference | Publication Year | Deployed Technology | Advantages | Limitations |
---|---|---|---|---|
[1] | 2023 | GNA, GSA, and PCA | Categorization of all four subtypes of leukemia | Using one small dataset and time-consuming due to the utilized number of operations |
[3] | 2023 | Histogram threshold segmentation classifier | Using color and brightness variations to detect leukemia | Requires multiple classifiers to reach high accuracy and classify two subtypes only |
[4] | 2022 | CNN and hibernation of two CNN blocks | The number of images in the utilized dataset was sufficient | The achieved accuracy was less than 90% and discovered two subtypes only |
[6] | 2022 | VGG-16 CNN | Reached nearly 98% accuracy | Classified two subtypes and the number of utilized images was insufficient |
[8] | 2022 | Region-based CNN | Achieved 97.3% accuracy and utilized a sufficient number of images | The evaluated performance quantities reached results between 93% and 97% |
[9] | 2022 | CNN | Achieved 100% accuracy | Utilizing a single dataset and categorizing a single type: ALL |
First Dataset [26] | Second Dataset [27] | Third Dataset [28] | Fourth Dataset [29] | |
---|---|---|---|---|
Number of images | 3256 | 6512 | 15,135 | 3242 |
Size | 116 MB | 210 MB | 909 MB | 2 GB |
Ground Truth | Yes | Yes | Yes | Yes |
Dataset Number | Number of Images | ||
---|---|---|---|
Training | Validation | Testing | |
1 | 2800 | 200 | 256 |
2 | 4790 | 722 | 1000 |
3 | 10,529 | 2500 | 2106 |
4 | 1582 | 800 | 860 |
Name of the Hyperparameter | Value |
---|---|
Learning rate: L | 0.001 |
Batch size | 16 |
Dropout | 0.25 |
Optimizer | Adam |
Regression weight | 0.001 |
Momentum | 0.8 |
Activation functions | ReLU and Sigmoid |
Number of iterations | 3000, 5000, 8000 |
Number of epochs | 65 |
Performance Quantity | With Optimizer | Without Optimizer |
---|---|---|
Accuracy | 97.82% | 95.39% |
Performance Metrics | Without Optimizer | With Optimizer |
---|---|---|
Accuracy | 95.39% | 97.82% |
Precision | 94.24% | 97.23% |
Recall | 93.98% | 96.79% |
Specificity | 95.78% | 97.03% |
F-score | 95.62% | 98.72% |
Jaccard Index | 93.81% | 97.91% |
DSC | 95.45% | 98.33% |
FLOPS | Number of Parameters | Execution Time |
---|---|---|
57.71 | 63.82 | 8.45 s |
Works | The Number of Utilized Datasets | Applied Technology | Accuracy | DSC |
---|---|---|---|---|
[1], 2023 | 1 | GAN, GAS, and PCA | 99.8% | 98.5% |
[3], 2023 | 1 | Histogram threshold segmentation classifier | 98% | N/A |
[6], 2022 | 1 | VGG-16 CNN | 98% | N/A |
[8], 2022 | 1 | Region-based CNN | 97.3% | N/A |
[9], 2022 | 1 | Hybrid deep learning tools: CNNs and inception v2 and support vector machine | 100% | N/A |
[10], 2022 | 2 | Squeeze and Excitation Learning | 98.3% | N/A |
[12], 2021 | 1 | Weighted ensemble of different CNNs | 86.2% | N/A |
The Proposed algorithm | 4 | Image preprocessing and UNET | 98.76% | 98.89% |
Indicator | LeNet | ResNet | Presented FRAMEWORK |
---|---|---|---|
Accuracy | 96.21% | 96.01% | 97.53% |
F-score | 96.98% | 95.35% | 98.11% |
Jaccard Index | 95.76% | 95.44% | 97.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, A.K.; Alsheikhy, A.A.; Shawly, T.; Azzahrani, A.; Said, Y. A Novel Deep Learning Segmentation and Classification Framework for Leukemia Diagnosis. Algorithms 2023, 16, 556. https://doi.org/10.3390/a16120556
Alzahrani AK, Alsheikhy AA, Shawly T, Azzahrani A, Said Y. A Novel Deep Learning Segmentation and Classification Framework for Leukemia Diagnosis. Algorithms. 2023; 16(12):556. https://doi.org/10.3390/a16120556
Chicago/Turabian StyleAlzahrani, A. Khuzaim, Ahmed A. Alsheikhy, Tawfeeq Shawly, Ahmed Azzahrani, and Yahia Said. 2023. "A Novel Deep Learning Segmentation and Classification Framework for Leukemia Diagnosis" Algorithms 16, no. 12: 556. https://doi.org/10.3390/a16120556
APA StyleAlzahrani, A. K., Alsheikhy, A. A., Shawly, T., Azzahrani, A., & Said, Y. (2023). A Novel Deep Learning Segmentation and Classification Framework for Leukemia Diagnosis. Algorithms, 16(12), 556. https://doi.org/10.3390/a16120556