Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification
<p>Clean images and their adversarial images generated using nontargeted UAPs against Inception V3 model, which has been widely used in previous studies on DNN-based medical imaging (e.g., [<a href="#B22-algorithms-15-00144" class="html-bibr">22</a>,<a href="#B23-algorithms-15-00144" class="html-bibr">23</a>]) for (<b>a</b>) skin lesion, (<b>b</b>) OCT, and (<b>c</b>) chest X-ray image classifications. Here, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> in (<b>a</b>,<b>c</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mo>∞</mo> </mrow> </semantics></math> in (<b>b</b>) in terms of the UAP performance (<a href="#algorithms-15-00144-t001" class="html-table">Table 1</a>). Labels (without square brackets) next to the images are the predicted classes (see <a href="#app1-algorithms-15-00144" class="html-app">Table S1</a> for details). Each UAP is scaled by a maximum of 1 and a minimum of zero to visually emphasize UAPs.</p> "> Figure 2
<p>Normalized confusion matrices for Inception V3, ResNet50, and VGG16 models attacked using nontargeted UAPs for skin lesions, OCT, and chest X-ray image datasets. Here, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> for skin lesion and chest X-ray image datasets, and <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mo>∞</mo> </mrow> </semantics></math> for the OCT image dataset. See <a href="#app1-algorithms-15-00144" class="html-app">Table S1</a> for the abbreviations of the class labels.</p> "> Figure 3
<p>Effect of input dataset size on the fooling rates <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>f</mi> </msub> </mrow> </semantics></math> (%) of UAPs against Inception V3 (<b>a</b>), ResNet50 (<b>b</b>), and VGG16 models (<b>c</b>) for skin lesion image dataset. The values of <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>f</mi> </msub> </mrow> </semantics></math> for both the input and validation datasets are shown.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simple Black-Box Algorithm for UAPs
Algorithm 1 Computation of a nontargeted UAP | |
Input: Setof input images, classifier, setof search directions, attack strength, caponnorm of the perturbation, norm type(1, 2, or), maximum numberof iterations. | |
Output:nontargeted UAP vector | |
1: | ,, |
2: | while and do |
3: | Pick a direction randomly: |
4: | for do |
5: | |
6: | if then |
7: | |
8: | break |
9: | end if |
10: | end for |
11: | |
12: | |
13: | end while |
2.2. Medical Images and DNN Models
2.3. Generating UAPs
2.4. Evaluating the Performance of UAPs
3. Results
3.1. Nontargeted Attacks Using Black-Box UAPs
3.2. Targeted Attacks Using UAPs
3.3. Effect of the Input Dataset Size on the UAP Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing properties of neural networks. In Proceedings of the 2nd International Conference on Learning Representations, {ICLR} 2014, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial examples: Attacks and defenses for deep learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2805–2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Jimenez, G.; Modas, A.; Moosavi-Dezfooli, S.-M.; Frossard, P. Optimism in the face of adversity: Understanding and improving deep learning through adversarial robustness. Proc. IEEE 2021, 109, 635–659. [Google Scholar] [CrossRef]
- Matyasko, A.; Chau, L.-P. Improved network robustness with adversary critic. In Proceedings of the 32nd International Conference on Neural Information Processing Systems 2018, Montreal, QC, Canada, 3–8 December 2018; pp. 10601–10610. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 39–57. [Google Scholar] [CrossRef] [Green Version]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Kaissis, G.A.; Makowski, M.R.; Rückert, D.; Braren, R.F. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2020, 2, 305–311. [Google Scholar] [CrossRef]
- Finlayson, S.G.; Bowers, J.D.; Ito, J.; Zittrain, J.L.; Beam, A.L.; Kohane, I.S. Adversarial attacks on medical machine learning. Science 2019, 363, 1287–1289. [Google Scholar] [CrossRef] [PubMed]
- Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21 July–26 July 2017; pp. 86–94. [Google Scholar] [CrossRef] [Green Version]
- Hirano, H.; Takemoto, K. Simple iterative method for generating targeted universal adversarial perturbations. Algorithms 2020, 13, 268. [Google Scholar] [CrossRef]
- Hirano, H.; Minagi, A.; Takemoto, K. Universal adversarial attacks on deep neural networks for medical image classification. BMC Med. Imaging 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.-J. ZOO: Zeroth Order Optimization based black-box attacks to deep neural networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security; ACM: New York, NY, USA, 2017; pp. 15–26. [Google Scholar]
- Chen, J.; Su, M.; Shen, S.; Xiong, H.; Zheng, H. POBA-GA: Perturbation optimized black-box adversarial attacks via genetic algorithm. Comput. Secur. 2019, 85, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Frank, J.S.; Weinberger, K.Q. Low frequency adversarial perturbation. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, {UAI} 2019, Tel Aviv-Yafo, Israel, 22–25 July 2019; Volume 115, pp. 1127–1137. [Google Scholar]
- Guo, C.; Gardner, J.R.; You, Y.; Wilson, A.G.; Weinberger, K.Q. Simple black-box adversarial attacks. In Proceedings of the 36th International Conference on Machine Learning, Beach, CA, USA, 9–15 June 2019; pp. 2484–2493. [Google Scholar]
- Poursaeed, O.; Katsman, I.; Gao, B.; Belongie, S. Generative Adversarial Perturbations. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognitio, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4422–4431. [Google Scholar]
- Tsuzuku, Y.; Sato, I. On the structural sensitivity of deep convolutional networks to the directions of Fourier basis functions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 51–60. [Google Scholar]
- Minagi, A.; Hirano, H.; Takemoto, K. Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning. J. Imaging 2022, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef] [PubMed]
- Khrulkov, V.; Oseledets, I. Art of singular vectors and universal adversarial perturbations. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8562–8570. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Moosavi-Dezfooli, S.-M.; Fawzi, A.; Frossard, P. DeepFool: A simple and accurate method to fool deep neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2574–2582. [Google Scholar]
- Xiao, C.; Zhong, P.; Zheng, C. Enhancing adversarial defense by k-winners-take-all. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Mahmood, K.; Gurevin, D.; van Dijk, M.; Nguyen, P.H. Beware the black-box: On the robustness of recent defenses to adversarial examples. Entropy 2021, 23, 1359. [Google Scholar] [CrossRef] [PubMed]
- Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Tursynbek, N.; Vilkoviskiy, I.; Sindeeva, M.; Oseledets, I. Adversarial Turing patterns from cellular automata. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; pp. 2683–2691. [Google Scholar]
- Brendel, W.; Rauber, J.; Bethge, M. Decision-based adversarial attacks: Reliable attacks against black-Box machine learning models. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Chen, J.; Jordan, M.I.; Wainwright, M.J. HopSkipJumpAttack: A query-efficient decision-based attack. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1277–1294. [Google Scholar]
- Jiang, H.; Kim, B.; Guan, M.; Gupta, M. To trust or not to trust a classifier. In Proceedings of the Advances in Neural Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31. [Google Scholar]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed]
- Lauritsen, S.M.; Kristensen, M.; Olsen, M.V.; Larsen, M.S.; Lauritsen, K.M.; Jørgensen, M.J.; Lange, J.; Thiesson, B. Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nat. Commun. 2020, 11, 3852. [Google Scholar] [CrossRef] [PubMed]
Dataset/Architecture | Skin Lesion | OCT | Chest X-ray | |||
---|---|---|---|---|---|---|
Inception V3 | 78.8 (13.6) | 65.6 (10.2) | 31.7 (1.6) | 44.9 (3.3) | 41.8 (2.1) | 44.1 (2.6) |
ResNet50 | 71.9 (11.1) | 33.9 (8.6) | 5.5 (1.3) | 69.3 (4.3) | 51.5 (5.9) | 50.9 (6.2) |
VGG16 | 76.6 (5.3) | 38.9 (3.6) | 40.9 (0.7) | 75.1 (2.0) | 50.0 (1.8) | 50.0 (2.4) |
Dataset Target Class/ Architecture | Skin Lesion | OCT | Chest X-ray | |||
---|---|---|---|---|---|---|
Control | Case | Control | Case | Control | Case | |
Inception V3 | 63.8 (64.8) | 60.9 (10.4) | 27.3 (27.2) | 92.2 (25.2) | 67.1 (54.4) | 91.8 (45.9) |
ResNet50 | 76.0 (66.6) | 81.2 (10.6) | 28.6 (28.3) | 93.5 (24.8) | 53.8 (57.6) | 97.6 (42.4) |
VGG16 | 80.0 (72.4) | 79.0 (7.7) | 25.1 (26.5) | 97.9 (24.6) | 97.4 (51.5) | 97.1 (48.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koga, K.; Takemoto, K. Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification. Algorithms 2022, 15, 144. https://doi.org/10.3390/a15050144
Koga K, Takemoto K. Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification. Algorithms. 2022; 15(5):144. https://doi.org/10.3390/a15050144
Chicago/Turabian StyleKoga, Kazuki, and Kazuhiro Takemoto. 2022. "Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification" Algorithms 15, no. 5: 144. https://doi.org/10.3390/a15050144
APA StyleKoga, K., & Takemoto, K. (2022). Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification. Algorithms, 15(5), 144. https://doi.org/10.3390/a15050144