Topological Design of Cellular Phononic Band Gap Crystals
<p>(<b>a</b>) Phononic crystals with 3 × 3 unit cells; and (<b>b</b>) irreducible first Brillouin zone (<span class="html-italic">Γ-Χ-Μ-Γ</span>).</p> "> Figure 2
<p>Material interpolation scheme with <span class="html-italic">x<sub>min</sub></span> = 0.01.</p> "> Figure 3
<p>Flow chart of optimization procedure using BESO method.</p> "> Figure 4
<p>Optimized relative band gap against different constraint ratio with bulk and shear modulus constraints.</p> "> Figure 5
<p>Evolution histories of the effective bulk modulus, bulk modulus constraint and corresponding HS upper bound in the optimization process with constraint ratio <span class="html-italic">β<sub>κ</sub></span> = 0.3.</p> "> Figure 6
<p>Evolution histories of the relative band gap size, volume fraction and topology in the optimization process with bulk modulus constraint <span class="html-italic">β<sub>κ</sub></span> = 0.3.</p> "> Figure 7
<p>Optimized topologies and corresponding band structures for out-of-plane mode with bulk modulus constraint. The black and white colors represent silicon and air, respectively. (<b>a</b>) The first band gap; (<b>b</b>) the second band gap; (<b>c</b>) the third band gap; (<b>d</b>) the fourth band gap; (<b>e</b>) the fifth band gap; (<b>f</b>) the sixth band gap; (<b>g</b>) the seventh band gap; and (<b>h</b>) the eighth band gap.</p> "> Figure 7 Cont.
<p>Optimized topologies and corresponding band structures for out-of-plane mode with bulk modulus constraint. The black and white colors represent silicon and air, respectively. (<b>a</b>) The first band gap; (<b>b</b>) the second band gap; (<b>c</b>) the third band gap; (<b>d</b>) the fourth band gap; (<b>e</b>) the fifth band gap; (<b>f</b>) the sixth band gap; (<b>g</b>) the seventh band gap; and (<b>h</b>) the eighth band gap.</p> "> Figure 7 Cont.
<p>Optimized topologies and corresponding band structures for out-of-plane mode with bulk modulus constraint. The black and white colors represent silicon and air, respectively. (<b>a</b>) The first band gap; (<b>b</b>) the second band gap; (<b>c</b>) the third band gap; (<b>d</b>) the fourth band gap; (<b>e</b>) the fifth band gap; (<b>f</b>) the sixth band gap; (<b>g</b>) the seventh band gap; and (<b>h</b>) the eighth band gap.</p> "> Figure 8
<p>Optimized topologies and corresponding band structures for out-of-plane mode with shear modulus constraint. (<b>a</b>) The first band gap; (<b>b</b>) the second band gap; (<b>c</b>) the third band gap; (<b>d</b>) the fourth band gap; (<b>e</b>) the fifth band gap; (<b>f</b>) the sixth band gap; (<b>g</b>) the seventh band gap; and (<b>h</b>) the eighth band gap.</p> "> Figure 8 Cont.
<p>Optimized topologies and corresponding band structures for out-of-plane mode with shear modulus constraint. (<b>a</b>) The first band gap; (<b>b</b>) the second band gap; (<b>c</b>) the third band gap; (<b>d</b>) the fourth band gap; (<b>e</b>) the fifth band gap; (<b>f</b>) the sixth band gap; (<b>g</b>) the seventh band gap; and (<b>h</b>) the eighth band gap.</p> "> Figure 8 Cont.
<p>Optimized topologies and corresponding band structures for out-of-plane mode with shear modulus constraint. (<b>a</b>) The first band gap; (<b>b</b>) the second band gap; (<b>c</b>) the third band gap; (<b>d</b>) the fourth band gap; (<b>e</b>) the fifth band gap; (<b>f</b>) the sixth band gap; (<b>g</b>) the seventh band gap; and (<b>h</b>) the eighth band gap.</p> "> Figure 9
<p>Optimized topologies and corresponding band structures for in-plane mode with bulk modulus constraint. (<b>a</b>) The third band gap; (<b>b</b>) the fifth band gap; and (<b>c</b>) the sixth band gap.</p> "> Figure 10
<p>Optimized topologies and corresponding band structures for in-plane mode with shear modulus constraint. (<b>a</b>) The third band gap; (<b>b</b>) the fifth band gap; and (<b>c</b>) the sixth band gap.</p> ">
Abstract
:1. Introduction
2. Theory and Optimization Problem
2.1. Band Gap Analysis of Phononic Crystals
2.2. Static Effective Stiffness of Phononic Crystals
2.3. Optimization Problem
2.4. Bi-Directional Evolutionary Structural Optimization (BESO)
3. Numerical Implementation and BESO Procedure
3.1. Reformulation of Objective Function
3.2. Sensitivity Analysis
3.3. Determination of the Lagrangian Multiplier
3.4. BESO Procedure
4. Results and Discussion
4.1. Out-of-Plane Mode
4.1.1. Influence of Stiffness Constraint
4.1.2. Out-of-Plane Results with Bulk Modulus Constraint βκ = 0.3
4.1.3. Out-of-Plane Results with Shear Modulus Constraint βG = 0.3
4.2. In-Plane Mode
4.2.1. In-Plane Results with Bulk Modulus Constraint βκ = 0.3
4.2.2. In-Plane Results with Shear Modulus Constraint βG = 0.3
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PnCs | Phononic crystals |
FEM | finite element method |
PWE | plane wave expansion method |
TMM | transfer matrix method |
MST | the multiple scattering theory |
FDTD | finite-difference time-domain |
RM | Rayleigh method |
MMA | the method of moving asymptotes |
GA | genetic algorithm |
FPWE | fast plane wave expansion method |
NSGA-II | non-dominated sorting-based genetic algorithm II |
ESO | Evolutionary Structural Optimization |
BESO | Bi-directional Evolutionary Structural Optimization |
References
- Pennec, Y.; Vasseur, J.O.; Djafari-Rouhani, B.; Dobrzyński, L.; Deymier, P.A. Two-dimensional phononic crystals: Examples and applications. Surf. Sci. Rep. 2010, 65, 229–291. [Google Scholar] [CrossRef]
- Sigalas, M.; Kushwaha, M.S.; Economou, E.N.; Kafesaki, M.; Psarobas, I.E.; Steurer, W. Classical vibrational modes in phononic lattices: Theory and experiment. Z. Kristallogr. 2005, 220, 765–809. [Google Scholar] [CrossRef]
- Sigalas, M.; Economou, E. Elastic and acoustic wave band structure. J. Sound. Vib. 1992, 158, 377–382. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, M.S. Classical band structure of periodic elastic composites. Int. J. Mod. Phys. B 1996, 10, 977–1094. [Google Scholar] [CrossRef]
- Sigalas, M.; Economou, E. Attenuation of multiple-scattered sound. Europhys. Lett. 1996, 36, 241–246. [Google Scholar] [CrossRef]
- Kafesaki, M.; Economou, E.N. Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B 1999, 601. [Google Scholar] [CrossRef]
- Sigalas, M.; Garcıa, N. Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J. Appl. Phys. 2000, 87, 3122–3125. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tomoyasu, Y.; Tamura, S.-I. Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch. Phys. Rev. B 2000, 62, 7387–7392. [Google Scholar] [CrossRef]
- Cao, Y.; Hou, Z.; Liu, Y. Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Commun. 2004, 132, 539–543. [Google Scholar] [CrossRef]
- Poulton, C.G.; Movchan, A.B.; McPhedran, R.C.; Nicorovici, N.A.; Antipov, Y.A. Eigenvalue Problems for Doubly Periodic Elastic Structures and Phononic Band Gaps. Proce. R. Soc. 2000, 456. [Google Scholar] [CrossRef]
- Axmann, W.; Kuchment, P. An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I. Scalar case. J. Comput. Phys. 1999, 150, 468–481. [Google Scholar] [CrossRef]
- Sigmund, O.; Jensen, J. Systematic design of phononic band-gap materials and structures by topology optimization. Philos. Trans. R. Soc. Lond. 2003, 361, 1001–1019. [Google Scholar] [CrossRef] [PubMed]
- Gazonas, G.A.; Weile, D.S.; Wildman, R.; Mohan, A. Genetic algorithm optimization of phononic bandgap structures. Int. J. Solids Struct. 2006, 43, 5851–5866. [Google Scholar] [CrossRef]
- Bilal, O.R.; Hussein, M.I. Optimization of phononic crystals for the simultaneous attenuation of out-of-plane and in-plane waves. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; American Society of Mechanical Engineers: Denver, Colorado, USA, 2011; pp. 969–972. [Google Scholar]
- Bilal, O.R.; Hussein, M.I. Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Phys. Rev. E 2011, 84. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.-W.; Su, X.-X.; Wang, Y.-S. Multi-objective optimization of two-dimensional porous phononic crystals. J. Phys. D 2014, 47, 155301–155311. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, B.; He, C. Band-gap optimization of two-dimensional phononic crystals based on genetic algorithm and fpwe. Wave Random Complex Media 2014, 24, 286–305. [Google Scholar] [CrossRef]
- Rupp, C.J.; Evgrafov, A.; Maute, K.; Dunn, M.L. Design of phononic materials/structures for surface wave devices using topology optimization. Struct. Multidiscip. Optim. 2007, 34, 111–121. [Google Scholar] [CrossRef]
- Dong, H.W.; Su, X.X.; Wang, Y.S.; Zhang, C. Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct. Multidiscip. Optim. 2014, 50, 593–604. [Google Scholar] [CrossRef]
- Kittel, C.; McEuen, P.; McEuen, P. Introduction to Solid State Physics; Wiley: New York, NY, USA, 1976; Volume 8. [Google Scholar]
- Kushwaha, M.S.; Halevi, P.; Martínez, G.; Dobrzynski, L.; Djafari-Rouhani, B. Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 1994, 49, 2313–2322. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Sigmund, O. Tailoring materials with prescribed elastic properties. Mech. Mater. 1995, 20, 351–368. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Xie, Y.; Steven, G.P. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Xie, Y.-M.; Steven, G.P. Basic Evolutionary Structural Optimization; Springer: London, UK, 1997. [Google Scholar]
- Yang, X.; Xei, Y.; Steven, G.; Querin, O. Bidirectional evolutionary method for stiffness optimization. AIAA J. 1999, 37, 1483–1488. [Google Scholar] [CrossRef]
- Querin, O.M.; Young, V.; Steven, G.P.; Xie, Y.M. Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput. Methods Appl. Mech. Eng. 2000, 189, 559–573. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 2007, 43, 1039–1049. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput. Mech. 2009, 43, 393–401. [Google Scholar] [CrossRef]
- Huang, X.; Xie, M. Evolutionary Topology Optimization of Continuum Structures: Methods and Applications; John Wiley & Sons: Chichester, UK, 2010. [Google Scholar]
- Huang, X.; Radman, A.; Xie, Y. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput. Mater. Sci. 2011, 50, 1861–1870. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.; Jia, B.; Li, Q.; Zhou, S. Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct. Multidiscip. Optim. 2012, 46, 385–398. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, S.; Sun, G.; Li, G.; Xie, Y.M. Topology optimization for microstructures of viscoelastic composite materials. Comput. Methods Appl. Mech. Eng. 2015, 283, 503–516. [Google Scholar] [CrossRef]
- Meng, F.; Huang, X.; Jia, B. Bi-directional evolutionary optimization for photonic band gap structures. J. Comput. Phys. 2015, 302, 393–404. [Google Scholar] [CrossRef]
- Huang, X.; Zuo, Z.; Xie, Y. Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput. Struct. 2010, 88, 357–364. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y. Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct. Multidiscip. Optim. 2010, 40, 409–416. [Google Scholar] [CrossRef]
- Komkov, V.; Choi, K.K.; Haug, E.J. Design Sensitivity Analysis of Structural Systems; Academic Press: Orlando, FL, USA, 1986; Volume 177. [Google Scholar]
- Sigmund, O.; Peterson, J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 1998, 16, 68–75. [Google Scholar] [CrossRef]
- Sigmund, O.; Hougaard, K. Geometric properties of optimal photonic crystals. Phys. Rev. Lett. 2008, 100. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.F.; Huang, X.; Zhou, S. Topological Design of Cellular Phononic Band Gap Crystals. Materials 2016, 9, 186. https://doi.org/10.3390/ma9030186
Li YF, Huang X, Zhou S. Topological Design of Cellular Phononic Band Gap Crystals. Materials. 2016; 9(3):186. https://doi.org/10.3390/ma9030186
Chicago/Turabian StyleLi, Yang Fan, Xiaodong Huang, and Shiwei Zhou. 2016. "Topological Design of Cellular Phononic Band Gap Crystals" Materials 9, no. 3: 186. https://doi.org/10.3390/ma9030186
APA StyleLi, Y. F., Huang, X., & Zhou, S. (2016). Topological Design of Cellular Phononic Band Gap Crystals. Materials, 9(3), 186. https://doi.org/10.3390/ma9030186