Efficiency Enhancement of Dye-Sensitized Solar Cells’ Performance with ZnO Nanorods Grown by Low-Temperature Hydrothermal Reaction
<p>The schematic illustrations of DSSCs with ZnO nanorods.</p> "> Figure 2
<p>(<b>a</b>) XRD patterns of ZnO nanorods grown with different duration; (<b>b</b>) Optical absorption spectra of D-719 dye detached from the ZnO NRs with various lengths.</p> "> Figure 3
<p>SEM images of ZnO nanorods fabricated under various growth time. (<b>a</b>–<b>c</b>) Top-view images of ZnO nanorods grown at 9 h, 18 h, and 27 h; (<b>d</b>–<b>f</b>) Side-view images of ZnO nanorods grown at 9 h, 18 h, and 27 h, respectively.</p> "> Figure 3 Cont.
<p>SEM images of ZnO nanorods fabricated under various growth time. (<b>a</b>–<b>c</b>) Top-view images of ZnO nanorods grown at 9 h, 18 h, and 27 h; (<b>d</b>–<b>f</b>) Side-view images of ZnO nanorods grown at 9 h, 18 h, and 27 h, respectively.</p> "> Figure 4
<p>Electrochemical impedance spectra of DSSCs containing ZnO nanorods with various lengths. (<b>a</b>) Nyquist plots and (<b>b</b>) Bode phase plots. The equivalent circuit of this study is shown in the inset of (<b>a</b>).</p> "> Figure 5
<p>(<b>a</b>) J-V measurements under AM 1.5 illumination (100 mA·cm<sup>−2</sup> ) and (<b>b</b>) IPCE spectra of DSSCs containing ZnO nanorods grown at various durations. Shown in the inset of <a href="#materials-08-05499-f005" class="html-fig">Figure 5</a>a is the photovoltaic performance of DSSC employing TiO<sub>2</sub> nanoparticles.</p> ">
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, Md.K.; Diau, E.W.G.; Yeh, C.Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Han, L.; He, H.; Park, N.H.; Koumoto, K. A novel high-performance photovoltaic–thermoelectric hybrid device. Energy Environ. Sci. 2011, 4, 3676–3679. [Google Scholar] [CrossRef]
- Lee, S.H. Al-doped ZnO Thin Film: A new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 7185–1789. [Google Scholar] [CrossRef]
- Lee, C.J.; Lee, T.J.; Lyu, S.C.; Zhang, Y.; Ruh, H.; Lee, H.J. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 2002, 81, 3648–3650. [Google Scholar] [CrossRef]
- Yagi, E.; Hasiguti, R.R.; Aono, M. Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2−x. Phys. Rev. B Condes. Matter 1996, 54, 7945–7956. [Google Scholar] [CrossRef]
- Zhang, Q.; Chou, T.P.; Russo, B.; Jenekhe, S.A.; Cao, G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cell. Angew. Chem. Int. Ed. Engl. 2008, 47, 2402–2406. [Google Scholar] [CrossRef] [PubMed]
- Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G. Comparison of dye-sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime. J. Phys. Chem. C 2007, 111, 1035–1041. [Google Scholar] [CrossRef]
- Wong, D.K.P.; Ku, C.H.; Chen, Y.R.; Chen, G.R.; Wu, J.J. Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells. Chemphyschem 2009, 10, 2698–2702. [Google Scholar] [CrossRef] [PubMed]
- Baxter, J.B.; Aydil, E.S. Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 2006, 90, 607–622. [Google Scholar] [CrossRef]
- Zhu, K.; Neale, N.R.; Miedaner, A.; Frank, A.J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Yodyingyong, S.; Zhang, Q.F.; Park, K.; Dandeneau, C.S.; Zhou, X.Y.; Triampo, D.; Cao, G.Z. ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Appl. Phys. Lett. 2010, 96, 073115. [Google Scholar] [CrossRef]
- Jeng, M.J.; Wung, Y.L.; Chang, L.B.; Chow, L. Dye-sensitized solar cells with anatase TiO2 nanorods prepared by hydrothermal method. Int. J. Photoenergy 2013, 2013, 280253. [Google Scholar] [CrossRef]
- Choopun, S.; Tubtimtae, A.; Santhaveesuk, T.; Nilphai, S.; Wongrat, E.; Hongsith, N. Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl. Surf. Sci. 2009, 256, 998–1002. [Google Scholar] [CrossRef]
- Xie, Y.L.; Li, Z.X.; Xu, Z.G.; Zhang, H.L. Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications. Electrochem. Commun. 2011, 13, 788–791. [Google Scholar] [CrossRef]
- Greene, L.; Law, M.; Tan, D.H.; Goldberger, J.; Yang, P. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.; Freitas, J.; de Paoli, M.A. Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. J. Photochem. Photobiol. A Chem. 2003, 159, 33–39. [Google Scholar] [CrossRef]
- Bernard, M.C.; Cachet, H.; Falaras, P.; Hugot-Le Goff, A.; Kalbac, M.; Lukes, I.; Oanh, N.T.; Stergiopoulos, T.; Arabatzis, I. Sensitization of TiO2 by polypyridine dyes: Role of the electron donor. J. Electrochem. Soc. 2003, 150, E155–E164. [Google Scholar] [CrossRef]
- Lin, L.Y.; Yeh, M.H.; Lee, C.P.; Chou, C.Y.; Ho, K.C. Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes. Electrochimica Acta 2013, 88, 421–428. [Google Scholar] [CrossRef]
- Schlichthorl, G.; Park, N.G.; Frank, A.J. Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 1999, 103, 782–791. [Google Scholar] [CrossRef]
- Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochimica Acta 2002, 47, 4213–4225. [Google Scholar] [CrossRef]
- Chen, H.; Du Pasquier, A.; Saraf, G.; Zhong, J.; Lu, Y. Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films. Semicond. Sci. Technol. 2008, 23, 045004. [Google Scholar] [CrossRef]
- Afifi, A.; Tabatabaei, M.K. Efficiency investigation of dye-sensitized solar cells based on the zinc oxide nanowires. Orient. J. Chem. 2014, 30, 155–160. [Google Scholar] [CrossRef]
- Hsu, Y.F.; Xi, Y.Y.; Djurišić, A.B.; Chen, W.K. ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition. App. Phys. Lett. 2008, 92, 133507. [Google Scholar] [CrossRef] [Green Version]
- Baumeler, R.; Rys, P.; Zollinger, H.; Hel, V. Über die spektrale Sensibilisierung von Zinkoxid: II. Anomales Sorptionsverhalten von o, o′-Dihydroxyazofarbstoffen und Entladungskinetik des damit sensibilisierten Zinkoxids. Chim. Acta 1973, 56, 2450–2460. [Google Scholar] [CrossRef]
- Hauffe, K.H. On spectral sensitization of zinc oxide. Photogr. Sci. Eng. 1976, 20, 124–134. [Google Scholar]
- Keis, K.; Lindgren, J.; Lindquist, S.E.; Hagfeldt, A. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir. 2000, 16, 4688–4694. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, F.-I.; Yang, J.-F.; Kuo, S.-Y. Efficiency Enhancement of Dye-Sensitized Solar Cells’ Performance with ZnO Nanorods Grown by Low-Temperature Hydrothermal Reaction. Materials 2015, 8, 8860-8867. https://doi.org/10.3390/ma8125499
Lai F-I, Yang J-F, Kuo S-Y. Efficiency Enhancement of Dye-Sensitized Solar Cells’ Performance with ZnO Nanorods Grown by Low-Temperature Hydrothermal Reaction. Materials. 2015; 8(12):8860-8867. https://doi.org/10.3390/ma8125499
Chicago/Turabian StyleLai, Fang-I, Jui-Fu Yang, and Shou-Yi Kuo. 2015. "Efficiency Enhancement of Dye-Sensitized Solar Cells’ Performance with ZnO Nanorods Grown by Low-Temperature Hydrothermal Reaction" Materials 8, no. 12: 8860-8867. https://doi.org/10.3390/ma8125499
APA StyleLai, F.-I., Yang, J.-F., & Kuo, S.-Y. (2015). Efficiency Enhancement of Dye-Sensitized Solar Cells’ Performance with ZnO Nanorods Grown by Low-Temperature Hydrothermal Reaction. Materials, 8(12), 8860-8867. https://doi.org/10.3390/ma8125499