Modern Biodegradable Plastics—Processing and Properties: Part I
<p>DSC curves of tested granulates.</p> "> Figure 2
<p>TGA (<b>a</b>) and DTG (<b>b</b>)curves of tested granulates.</p> "> Figure 3
<p>FTIR/ATR spectra of tested granulates.</p> "> Figure 4
<p>Measurements of melt flow rate of tested materials at 190 °C (cut off times: PLA and TPS-C—5 s, LDPE—10 s, TPS-P—15 s) and processing temperatures (cut off times: LDPE—15 s, PLA—30 s, TPS-C—15 s, TPS-P—30 s).</p> "> Figure 5
<p>Dependence of the width of the obtained films on the rotational speed of the extruder screw.</p> "> Figure 6
<p>Dependence of the thickness of the obtained films on the rotational speed of the extruder screw.</p> "> Figure 7
<p>The appearance of the film made at a screw speed of 400 rpm: (<b>A</b>) LDPE, (<b>B</b>) PLA, (<b>C</b>) TPS-C, (<b>D</b>) TPS-P.</p> "> Figure 8
<p>Dependence of the length of measuring sections of the obtained films on the rotational speed of the extruder screw.</p> "> Figure 9
<p>Relationship between the rotational speed of the receiving rollers and the rotational speed of the extruder screw.</p> "> Figure 10
<p>Relationship between the blow-up ratio (degree of transverse stretching) of the obtained film and the rotational speed of the extruder screw.</p> "> Figure 11
<p>Relationship between the draw down ratio of the obtained film and the rotational speed of the extruder screw.</p> "> Figure 12
<p>Relationship between film exit velocity on the rotational speed of the extruder screw.</p> "> Figure 13
<p>Dependence of the haul-off velocity of film collection on the rotational speed of the extruder screw.</p> "> Figure 14
<p>Dependence of the test strip mass of film collection on the rotational speed of the extruder screw.</p> "> Figure 15
<p>Dependence of the mass flow rate of the film measuring section on the rotational speed of the extruder screw.</p> "> Figure 16
<p>Relationship between the volume flow rate of the material and the rotational speed of the extruder screw.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Test Stand
2.3. Research Programme and Methodology
- Testing of thermal properties by application of differential scanning calorimetry (DSC) and thermogravimetric analysis. The DSC was performed with a DSC 204 F1 Phoenix® machine manufactured by Netzsch (Günzbung, Germany) and Netzsch Proteus test data post-processing software (Version 6.0.0), where the heating and cooling rates were assumed at 10 °C/min within a temperature range of 150–180 °C (or 200 °C for the maximum limit). Each DSC sample was processed with two heating cycles. All DSC tests were made in an aluminium crucible with a pierced lid and in an argon gas shield (supplied at a rate of 20 mL/min). The reference container was an empty aluminium crucible. The Tg values of the test specimens were determined at the temperature of thermal curve inflection point. The melting point of the test specimens (Tm) was determined as the maximum of the endothermic peak. The values of melting enthalpy (ΔHm) and degree of crystallinity (X%) were determined. The degree of crystallinity was calculated using the following equation,
- The TG analysis was performed in ambient air and with a simultaneous TGA-DSC thermal analyser STA 449 F1 Jupiter® manufactured by Netzsch (Selb, Germany). The TG tests were carried out at a heating rate of 10 °C/min and within a range of 30–800 °C (and 1000 °C as the maximum limit for PLA) (with an argon gas shield flow of 20 mL/min), in an open crucible made of Al2O3. The reference container was an empty Al2O3 crucible. The loss mass temperatures (T1%, 5%, 10%, 50%), peak maximum decomposition temperatures (Tmax), and residual mass were determined.
- The chemical structure analysis of the tested plastics was performed with FTIR spectroscopy. The FTIR spectra were developed by applying attenuated total (internal) reflection (ATR/FTIR) with the use of a FTIR TENSOR 27 spectrometer (Bruker, Germany), complete with a PIKE measuring cell which features crystalline diamond embedded in zinc selenide. The FTIR spectra were collected within a range of 4000–600 cm−1, with 32 scans per one test specimen, at a resolution of 4 cm−1. An absorption mode was used for these measurements. The ATF/FTIR test specimens were the test plastics in granulated or thin film form.
- MFR (melt flow rate) was determined on the granulated form of the processed test plastics. The mass flow rate was tested with a MeltFlow TQ6841 load plastometer manufactured by Ceast (Turin, Italy) and with the test method from ISO 1133 [61].
- Determination of the geometrical features in the sampled test strips of film, which included: layflat film width, single-ply film thickness, test strip length, and blow-up ratio (ratio of the diameter of a blown film bubble (at its largest point) to the diameter of the extrusion die it comes out of), and draw down ratio (the ratio of die opening thickness to product thickness);
- Determination (by measurement or calculation) of the blown film extrusion process defining parameters, including: windup roller rotational speed, plasticized material extrusion speed, film haul-off velocity, test strip mass, and mass and volume flow rates;
- Determination of normal density with the immersion method from ISO 1183-1A [62];
3. Results
3.1. Differential Scanning Calorimetry
3.2. Thermogravimetric Analysis
3.3. Chemical Structure
3.4. Melt Flow Rate
3.5. Geometric Features
3.6. Blown Film Extrusion Characteristics
4. Conclusions
- The error bars, obtained for the geometrical features of the extruded film, were clearly higher for biodegradable materials than for LDPE. This can be interpreted as a lower stability of the extrusion process and a greater susceptibility to interference from PLA-based materials and starch. DSC tests showed significantly lower values of melting heat for biodegradable materials, which may be the basis for finding greater susceptibility to temporary changes in physical properties, caused by a slight decrease in the temperature of the bubble. Such temperature fluctuations can be caused, for example, by air blasts, especially since the film extrusion process was carried out in an open production hall of considerable size. Obtaining high dimensional repeatability for biodegradable materials tested may therefore require ensuring more controlled conditions.
- At a screw rotational speed of 500 rpm could provide almost twice as much biodegradable plastic film than the traditional LDPE packaging film.
- With the screw rpms increasing, the exit velocity of blown film extrusion from the biodegradable plastics would grow more intensely than in the LPDE film. The retention of comparable film thickness values, draw down ratios and blow-up ratios with the increasing speed rotational speed increased the exit velocity twice in the biodegradable plastics when compared to LDPE.
- The DSC analysis revealed that the processing by blown film extrusion changed the crystalline structure between the input granulate and the produced film. However, the chemical structure characterized by FTIR spectroscopy did not change. The variation of screw rotational speed did not significantly affect the thermal properties of any of the produced films, which is an important insight for the determination of the blown film extrusion process parameters. The TG analysis (corroborated by the FTIR spectra) revealed that the granulated PLA, TPS-C and TPS-P and the films produced from these input materials, included some amounts of water, which could cause difficulties in reprocessing.
- With respect to processing, the plastic most resembling LDPE was TPS-C, and PLA had a better flowability, followed by TPS-P, which was worse in this regard. It was also noted that the processability of the tested biodegradable plastics was more affected by temperature variations than LDPE. Temperature can significantly control viscosity and other rheological properties.
Author Contributions
Funding
Conflicts of Interest
References
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Passamonti, F.J.; Sedran, U. Recycling of waste plastics into fuels. LDPE conversion in FCC. Appl. Catal. B Environ. 2012, 125, 499–506. [Google Scholar] [CrossRef]
- Pol, V.G.; Thiyagarajan, P. Remediating plastic waste into carbon nanotubes. J. Environ. Monit. 2010, 12, 455–459. [Google Scholar] [CrossRef]
- Oliveira, M.; Almeida, M.; Miguel, I. A micro(nano)plastic boomerang tale: A never ending story? TrAC Trends Anal. Chem. 2019, 112, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Gondal, M.A.; Siddiqui, M.N. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management. J. Environ. Sci. Health Part A 2007, 42, 1989–1997. [Google Scholar] [CrossRef]
- Hanfi, I.; Rohani, A.M.; Razaina, M.T. Effect of soil burial on properties of linear low density polyethylene/thermoplastic sago starch blends. Pertan. J. Sci. Technol. 2011, 19, 189–197. [Google Scholar]
- Obasi, H.C.; Onuegbu, G.C. Biodegradability and mechanical properties of low density polyethylene/waste maize cob flour blends. Int. J. Appl. Sci. Eng. Res. 2013, 2, 242–249. [Google Scholar]
- Volova, T.G.; Gladyshev, M.I.; Trusova, M.Y.; Zhila, N.O. Degradation of polyhydroxyalkanoates in eutrophic reservoir. Polym. Degrad. Stab. 2007, 92, 580–586. [Google Scholar] [CrossRef]
- Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini review. Adv. Ind. Eng. Polym. Res. 2020, 3, 27–35. [Google Scholar] [CrossRef]
- Janik, H.; Sienkiewicz, M.; Przybytek, A.; Guzman, A.; Kucinska-Lipka, J.; Kosakowska, A. Novel biodegradable potato starch-based compositions as candidates in packing industry, safe for marine environment. Fibres Polym. 2018, 19, 1166–1174. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Stloukal, P.; Kalendova, A.; Mattausch, H.; Laske, S.; Holzer, C.; Koutny, M. The influence of a hydrolysis-inhibiting additive on the degradation and biodegradability of PLA and its nanocomposites. Polym. Test. 2015, 41, 124–132. [Google Scholar] [CrossRef]
- Liu, L. Bioplastics in food packaging: Innovative technologies for biodegradable packaging. San Jose State Univ. Packag. Eng. 2006, 13, 1348–1368. [Google Scholar]
- Muller, J.; González-Martínez, C.; Chiralt, A. Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 2017, 10, 952. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacqout, M.; Desobry, S. Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef]
- Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar] [CrossRef]
- Rhim, J.W.; Honk, S.I.; Ha, C.S. Tensile, water vapour barrier and antimicrobial properties of PLA/nanoclay composite films. LWT—Food Sci. Technol. 2009, 42, 612–617. [Google Scholar] [CrossRef]
- Siccardi, M.; Garcia-Fonte, X.X.; Simon, A.; Pettarin, V.; Abad, M.J.; Bernal, C. Effect of the processing-induced morphology on the mechanical properties of biodegradable extruded films based on poly(lactic acid) (PLA) blends. J. Polym. Environ. 2019, 27, 2325–2333. [Google Scholar] [CrossRef]
- Cao, Z.; Pan, H.; Chen, Y.; Han, L.; Bian, J.; Zhang, H.; Dong, L.; Yang, Y. Ductile and biodegradable poly(lactic acid) matrix film with layered structure. Int. J. Biol. Macromol. 2019, 137, 1141–1152. [Google Scholar] [CrossRef]
- Mallegni, N.; Phuong, T.V.; Coltelli, M.B.; Cinelli, P.; Lazzeri, A. Poly(lactic acid) (PLA) based tear resistant and biodegradable flexible films by blown film extrusion. Materials 2018, 11, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, K.; Tabuani, D.; Arena, M.; Gennari, M.; Camino, G. Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React. Funct. Polym. 2013, 73, 540–549. [Google Scholar] [CrossRef]
- Ayana, B.; Suin, S.; Khatua, B.B. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr. Polym. 2014, 110, 430–439. [Google Scholar]
- Ma, Y.; Li, L.; Wang, Y. Development of PLA-PBH-based biodegradable active packaging and its application to salmon. Packag. Technol. Sci. 2018, 31, 739–746. [Google Scholar] [CrossRef]
- Arrieta, M.P.; López, J.; Hernández, A.; Rayón, E. Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications. Eur. Polym. J. 2014, 50, 255–270. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Sutera, F.; Gulino, E.F.; Morreale, M. Degradation and recycling of films based on biodegradable polymers: A short review. Polymers 2019, 11, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudnik, E. Compostable Polymer Materials, 2nd ed.; Elsevier; Newnes: London, UK, 2019. [Google Scholar]
- Khan, B.; Niazi, M.B.K.; Samin, G.; Jahan, Z. Thermoplastic starch: A possibile biodegradable food packaging material—A review. J. Food Process Eng. 2017, 40, e12447. [Google Scholar] [CrossRef]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Progress Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Isotton, F.S.; Bernardo, G.L.; Baldasso, C.; Rosa, L.M.; Zeni, M. The plasticizer effect on preparation and properties of etherified corn starch films. Ind. Crops Prod. 2015, 76, 717–724. [Google Scholar] [CrossRef]
- Liu, P.; Yu, L.; Wang, X.; Li, D.; Chen, L.; Li, X. Glass transition temperature of starches with different amylose/amylopectin rations. J. Cereal Sci. 2010, 51, 388–391. [Google Scholar] [CrossRef]
- Yu, L.; Christie, G. Measurement of starch thermal transitions using differential scanning calorimetry. Carbohydr. Polym. 2001, 46, 179–184. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S.J. Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films. Carbohydr. Polym. 2002, 50, 331–337. [Google Scholar] [CrossRef]
- Chang, Y.P.; Karim, A.A.; Seow, C.C. Interactive plasticizing—Antiplasticizing effects of water and glycerol on the tensile properties of tapioca starch films. Food Hydrocoll. 2006, 20, 1–8. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Moradpour, M.; Saeidi, M.; Alias, A.K. Thermoplastic starches: Properties, challenges and prospects. Starch/Stärke 2013, 65, 61–72. [Google Scholar] [CrossRef]
- Sikora, J.; Gajdoš, I.; Puszka, A. Polyethylene-Matrix Composites with Halloysite Nanotubes with Enhanced Physical/Thermal Properties. Polymers 2019, 11, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasimowski, E.; Sikora, J.W.; Krolikowski, B. Effectiveness of polyethylene extrusion in a single-screw grooved feed extruder. Polimery 2014, 59, 505–510. [Google Scholar] [CrossRef]
- Zullo, R.; Iannace, S. The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohydr. Polym. 2009, 77, 376–383. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.G.; Wan, J.J. Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohydr. Polym. 2006, 64, 267–273. [Google Scholar] [CrossRef]
- Da Róz, A.L.; Carvalho, A.J.F.; Gandini, A.; Curvel, A.A.S. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr. Polym. 2006, 63, 417–424. [Google Scholar] [CrossRef]
- Shi, Y.C.; Capitani, T.; Trzasko, P.; Jeffcoat, R. Molecular structure of a low-amylopectin starch and other high-amylose maize starches. J. Cereal Sci. 1998, 27, 289–299. [Google Scholar] [CrossRef]
- Cheetham, N.W.H.; Tao, L. Variation in crystaline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydr. Polym. 1998, 36, 277–284. [Google Scholar] [CrossRef]
- Themeier, H.; Hollman, J.; Neese, U.; Lindhauer, M.G. Structural and morphological factors influencing the quantification of resistant starch II in starches of different origin. Carbohydr. Polym. 2005, 61, 72–79. [Google Scholar] [CrossRef]
- Xie, F.; Yu, L.; Su, B.; Liu, P.; Wang, J.; Liu, H.; Chen, L. Rheological properties of starches with different amylose/amylopectin ratios. J. Cereal Sci. 2009, 49, 371–377. [Google Scholar] [CrossRef]
- Fabra, M.J.; Martínez-Sanz, M.; Gómez-Mascaraque, L.G.; Gavara, R.; López-Rubio, A. Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae. Carbohydr. Polym. 2018, 186, 184–191. [Google Scholar] [CrossRef]
- Wang, X.; Yang, K.; Wang, Y. Properties of starch blends with biodegradable polymers. J. Macromol. Sci. Part C—Polym. Rev. 2003, 43, 385–409. [Google Scholar] [CrossRef]
- Imre, B.; Pukánszky, B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013, 49, 1215–1233. [Google Scholar] [CrossRef] [Green Version]
- Mangaraj, S.; Mohanty, S.; Swain, S.; Yadav, A. Development and characterization of commercial biodegradable film from PLA and corn starch for fresh produce packaging. J. Packag. Technol. Res. 2019, 3, 127–140. [Google Scholar] [CrossRef]
- Matzinos, P.; Tserki, V.; Kontoyiannis, A.; Panayiotou, C. Processing and characterization of starch/polycaprolactone products. Polym. Degrad. Stab. 2002, 77, 17–24. [Google Scholar] [CrossRef]
- Peres, A.M.; Pires, R.R.; Orefice, R.L. Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr. Polym. 2016, 136, 210–215. [Google Scholar] [CrossRef]
- Jachowicz, T.; Sikora, J.; Dulebova, L. Investigating effects of prodegradant content on selected properties of polymer composite materials. Environ. Eng. Manag. J. 2017, 12, 2879–2886. [Google Scholar] [CrossRef]
- Mensitieri, G.; Maio, E.D.; Buonocore, G.G.; Nedi, I.; Oliviero, M.; Sansone, L.; Iannace, S. Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends Food Sci. Technol. 2011, 22, 72–80. [Google Scholar] [CrossRef]
- Sabetzadeh, M.; Bagheri, R.; Masoomi, M. Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydr. Polym. 2015, 119, 126–133. [Google Scholar] [CrossRef]
- Khanoonkon, N.; Yoksan, R.; Ogale, A.A. Morphological characteristics of stearic acid-grafted starch-compatibilized linear low density polyethylene/thermoplastic starch blown film. Eur. Polym. J. 2016, 76, 266–277. [Google Scholar] [CrossRef]
- Mazerolles, T.; Heuzey, M.C.; Soliman, M.; Martens, H.; Kleppinger, R.; Huneault, M.A. Development of multilayer barrier films of thermoplastic starch and low-density polyethylene. J. Polym. Res. 2020, 27, 44. [Google Scholar] [CrossRef]
- Malen E FABS 23-D022 Polymer Resin—Technical Data Sheet. Available online: http://www.basellorlen.pl/assets/produkty/produktyEN/ML_E_FABS_23_D022_TDS_2016_06_20_rev8_ENG.pdf (accessed on 25 February 2020).
- BioPlast GF 106/02 Polymer Resin—Technical Data Sheet. Available online: http://www.biotec-group.de/BroschBioplastGF10602_EN_Web.pdf (accessed on 25 February 2020).
- BioComp®BF 01HP Polymer Resin—Technical Data Sheet. Available online: https://interpolimeri.com/content/uploads/2019/12/BIOCOMP-Tds.pdf?x47421 (accessed on 25 February 2020).
- BioComp®BF 7210 Polymer Resin—Technical Data Sheet. Available online: https://interpolimeri.com/content/uploads/2019/12/BIOCOMP-Tds.pdf?x47421 (accessed on 25 February 2020).
- Davachi, S.M.; Kaffashi, B. Preparation and Characterization of Poly L-Lactide/Triclosan Nanoparticles for Specific Antibacterial and Medical Applications. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 497–508. [Google Scholar] [CrossRef]
- ISO International Organization for Standardization. ISO 1133-1:2011—Plastics—Determination of the Melt Mass-flow Rate (MFR) and Melt Volume-flow Rate (MVR) of Thermoplastics—Part 1: Standard Method; ISO International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- ISO International Organization for Standardization. ISO 1183-1A:2019—Plastics—Methods for Determining the Density of Noncellular Plastics—Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method; ISO International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Puchalski, M.; Kwolek, S.; Szparaga, G.; Chrzanowski, M.; Krucińska, I. Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers 2017, 9, 18. [Google Scholar] [CrossRef]
- Jia, S.; Yu, D.; Zhu, Y.; Wang, Z.; Chen, L.; Fu, L. Morphology, Crystallization and Thermal Behaviors of PLA-Based Composites: Wonderful Effects of Hybrid GO/PEG via Dynamic Impregnating. Polymers 2017, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Miyata, T.; Masuko, T. Crystallization behaviour of poly(L-lactide). Polymer 1998, 39, 5515–5521. [Google Scholar] [CrossRef]
- Siemion, P.; Kapuśniak, J. Preparation and industrial use of oxidized starches. Przem. Chem. 2011, 90, 2023–2027. [Google Scholar]
- Mościcki, L.; Janssen, L.P.B.M.; Mitrus, M. Processing of the thermoplastic starch for packaging application. Inż. Rol. 2006, 6, 65–72. [Google Scholar]
- Ptak, S.; Żarski, A.; Antczak, T.; Kapuśniak, J. Esterification of potato starch with oleic acid in the presence of lipase from Candida antarctica in a microwave field and under conventional heating. Polimery 2016, 61, 442–448. [Google Scholar] [CrossRef]
- Prószyński, A.; Gładyszewska, B.; Ciupak, A.; Mościcki, L. Determination of the elastic modulus of biodegradable thermoplastic starch foils. Acta Sci. Pol. Tech. Agrar. 2016, 15, 3–15. [Google Scholar]
- Perdroso, A.G.; Rosa, D.S. Mechanical, thermal and morphological characterizations of recycled LDPE/corn starch blends. Carbohydr. Polym. 2005, 59, 1–9. [Google Scholar] [CrossRef]
- Shujun, W.; Jiugao, Y.; Jinglin, Y. Preparation and characterization of compatible thermoplastic starch/polyethylene blends. Polym. Degrad. Stab. 2005, 87, 395–401. [Google Scholar] [CrossRef]
- Liu, X.; Dever, M.; Fair, N.; Benson, R.S. Thermal and Mechanical Properties of Poly(lactic Acid) and Poly(ethylene/butylene Succinate) blends. J. Polym. Environ. 1997, 5, 225–235. [Google Scholar]
- Osborn, K.R.; Jenkins, W.A. Plastic Films: Technology and Packaging Applications; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Sikora, J. Characteristics of the studies on the energy efficiencies of the extrusion process and of the extruder. Polimery 1999, 44, 190–197. [Google Scholar] [CrossRef]
Parameter | PE | TPS-P | TPS-C | PLA |
---|---|---|---|---|
Density, kg/m3 | 923 | 1200–1300 | 1270–1300 | 1380 |
MFR, g/10 min (190 °C, 2.16 kg) | 1.95 | 2.5–5.5 * | 2–6 | 10.76 * |
Melting point, °C | 112 | 120–130 | 110–130 | 140–150 |
Tensile strenght MD, MPa | 18 | 20–35 | 18 | 35.7 |
Tensile strenght TD, MPa | 17 | 20–35 | 10 | 25.7 |
Tensile elongation MD, % | 450 | 600–900 | 200 | 250 |
Tensile elongation TD, % | 540 | 600–900 | 250 | 610 |
Specimen | Tg (°C) | Tm (°C) | ΔH (J/g) | X (%) | ||||
---|---|---|---|---|---|---|---|---|
I | II | I | II | I | II | I | II | |
PE | −111 | −116 | 117 | 115 | 156 | 163 | 53.24 | 55.56 |
PLA | −113 −31 65 | −117 −29 - | 121 147 | 121 | 7.4 1.12 | 9.38 | 1.08 | - |
TPS-C | −115 −26 | −117 −29 | 124 | 124 | 45.7 | 11.7 | 15.63 | 4.03 |
TPS-P | −109 −31 | −119 −31 | 120 | 120 | 36.4 | 12.5 | 12.4 | 4.27 |
Specimen | Tg (°C) | Tm (°C) | ΔH (J/g) | X (%) | ||||
---|---|---|---|---|---|---|---|---|
I | II | I | II | I | II | I | II | |
PE 300 | −116 | −113 | 112 | 112 | 162 | 161 | 55.35 | 55.08 |
PE 400 | −120 | −123 | 112 | 112 | 157 | 162 | 53.72 | 55.42 |
PE 500 | −120 | −116 | 112 | 112 | 153 | 156 | 52.14 | 53.33 |
PLA 300 | −116 −31 48 | −120 −31 59 | 117 148 | 120 | 7.6 1.23 | 9.84 | 1.38 | - |
PLA 400 | −120 −26 48 | −118 −30 59 | 118 148 | 120 | 9.28 1.04 | 9.28 | 1.17 | - |
PLA 500 | −122 −31 49 | −118 −29 59 | 117 149 | 120 | 7.52 1.38 | 9.81 | 1.49 | - |
TPS-C 300 | −117 −28 | −120 −30 | 96 | 122 | 91 | 13.4 | 31.06 | 4.59 |
TPS-C 400 | −122 −29 | −121 −32 | 92 | 122 | 96.5 | 17.13 | 32.94 | 5.85 |
TPS-C 500 | −113 −28 | −120 −30 | 104 | 122 | 89.94 | 17.17 | 30.70 | 5.86 |
TPS-P 300 | −114 −30 | −112 −28 | 102 | 122 | 114.5 | 9.99 | 39.08 | 3.41 |
TPS-P 400 | −115 −29 | −117 −29 | 104 | 123 | 125.8 | 10.18 | 42.92 | 3.47 |
TPS-P 500 | −114 −30 | −117 −30 | 104 | 121 | 116.1 | 10.43 | 39.63 | 3.56 |
Specimen | T1% (°C) | T5% (°C) | T10% (°C) | T50% (°C) | Tmax (°C) | Residual Mass (%) |
---|---|---|---|---|---|---|
PE | 270 | 317 | 339 | 386 | 381; 410; 451; 521 | 0.92 |
PLA | 299 | 324 | 348 | 399 | 307; 389; 437; 525; 703 | 14.54 |
TPS-C | 232 | 292 | 302 | 386 | 305; 359; 400; 489 | 1.20 |
TPS-P | 259 | 280 | 289 | 389 | 292; 401; 501 | 1.20 |
Specimen | T1% (°C) | T5% (°C) | T10% (°C) | T50% (°C) | Tmax (°C) | Residual Mass (%) |
---|---|---|---|---|---|---|
PE-300 | 282 | 330 | 349 | 396 | 355; 387; 413; 426; 451; 505 | 1.16 |
PE-400 | 302 | 330 | 347 | 401 | 342; 360; 375; 426; 451; 463; 502; 650 | 0.70 |
PE-500 | 277 | 325 | 345 | 384 | 334; 373; 401; 418; 446; 511 | 1.36 |
PLA-300 | 298 | 324 | 348 | 401 | 309; 391; 441; 529; 702 | 14.79 |
PLA-400 | 302 | 329 | 349 | 402 | 312; 390; 440; 528; 703 | 14.82 |
PLA-500 | 307 | 331 | 349 | 401 | 390; 438; 529; 704 | 11.97 |
TPS-C 300 | 258 | 297 | 306 | 387 | 309; 397; 481; 640 | 1.33 |
TPS-C 400 | 254 | 295 | 304 | 386 | 306; 397; 481; 640 | 0.78 |
TPS-C 500 | 256 | 297 | 306 | 389 | 308; 399; 485; 640 | 1.15 |
TPS-P 300 | 269 | 286 | 295 | 392 | 294; 398; 507 | 0.98 |
TPS-P 400 | 273 | 287 | 296 | 390 | 296; 397; 440; 480; 530; 665 | 0.96 |
TPS-P 500 | 271 | 289 | 298 | 392 | 299;398; 443; 487; 532; 665 | 1.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, J.; Majewski, Ł.; Puszka, A. Modern Biodegradable Plastics—Processing and Properties: Part I. Materials 2020, 13, 1986. https://doi.org/10.3390/ma13081986
Sikora J, Majewski Ł, Puszka A. Modern Biodegradable Plastics—Processing and Properties: Part I. Materials. 2020; 13(8):1986. https://doi.org/10.3390/ma13081986
Chicago/Turabian StyleSikora, Janusz, Łukasz Majewski, and Andrzej Puszka. 2020. "Modern Biodegradable Plastics—Processing and Properties: Part I" Materials 13, no. 8: 1986. https://doi.org/10.3390/ma13081986
APA StyleSikora, J., Majewski, Ł., & Puszka, A. (2020). Modern Biodegradable Plastics—Processing and Properties: Part I. Materials, 13(8), 1986. https://doi.org/10.3390/ma13081986